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1. Introduction and Summary

In this paper a new set of inequalities and bounds for the incomplete gan-
ma function are obtained. These inequalities and bounds are based on continued
fraction expansions of the incomplete gamma function (Sectiors 2 and 3).

Comparisons between the two sets of inequalities and some other known in-
equalities are made (Section 4).

Bounds are also obtained fdr the Mill's ratio for the normal integral
(Section 5) and an analogue of Mill's ratio (Section 6) for the gamma distribu-
tion. Some other applications of these bounds to distribution theory problems

arising in multiple decision theory are described (section 6).

2. System of inequalities for Yja,x) based on the continued fraction

expansion
X 8-l -x
Iet Y(a,x) =J x e * dx . Various authors (see, Khovanskii (1956))

0

have derived the following continued fraction expansion

(2-1) X-a eX 'Y(a,;c) = 1 ax (l"'a)x Sn-l'i'a.!x

a= ltatx~ 2+atr- | °° -ntatx-

where the more commonly used notation has been employed for the representation
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of the continued fraction.

The terminating continued fraction

(2.2) Pn(a,x) _ 1 ax (1ta)x (n-1+a)x
* QnZa,xs T a- liatx- 2+atx- *°° -ntatx

is called the nth convergent (approximant) of the continued fraction (2.1).

Using certain well-known recurrence relations, it can be shown that

n-1 ]
Pn(a,x) = Z (n-l+a.)j &d=1
J=0
(2.3)
Qn(a,x) = (n-l+a)n
where
(n)r = n(n-1) «ees (n-r4#l), r >1, and (n)o = 1.
Since
P (a,x) P '_l(a,x) n-1
(2.4) Q;l(a.,x) - @z-l@ﬂ = (n:-cl+a)n >0, x>0,a>0,n>1,
Pn(a,x)

W is a monotonically increasing sequence. converging to exx-ay(a.,x).
3

Again from (2.4),

P/ P (a,x) P,  (a,x)) B k-1 .n-1

“k 2 kel 2 _ ( +a)

(2-5) Z(Qk(a,x) - Q:-l(a’}a)— Z @-}Jf-l-a)k < (n-ii—agn(n-l-a-x) » ¥ < (n+a).
k=n =n

From (2.5),



lim Pk(a,x) B Pn_i(a,x) 2L (nta)

(2.6) k ~> oo Qk(a,x) - Qn_l(a,x) < (n-l+a)n(n+a-x) » ¥<nta

This leads to the following system of inequallities

P_(a,x) x - Pn(a,x) < (n+1+a)

a
m <e x y(a,x) < Qn(a,x) + (n+a)n+l(n+l+a-x) s x<n+a+l

n= 1,2,3,0-0

where x <n+a+l is a necessary restriction only on the inequalities on the

right hand side of (2.7) and where

Pn(a.,x) 2 L1

1
SR N O [+ mEe e t T e

Tt should be noted that the length of the interval between the two bounds

L (n+l+a)

(nta) , (otita~x) ’ x < ntatl, It follows from (2.8) that for

in (2.7) is <

fixed x and n, if we let

P (a,x)

(2.9) @, (asx) = imy ’

then for fixed x, @n(a,x) decreases monotonlcally as a Increases. Hence

(2.10) cpn(al,x) > @n(a,x) > q)n(a.e,x), a; Sage,
-8 -8
2 -a 1
(2.11) x -y(az,x) <x  y(a,x) <x y(a.l,x), a; Saga,.

In particular, if 8, =p end a,=p+1l, p<a<sp+1l, vhere p is a
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positive integer,

+1) o X - . D
(2.12) (e Mp+1)Y( Z £ jf ) <x 2 yfe,x) < x'Pl‘fpv_-)( Ze jf ).
' J=p+l J=p

The two bounds in (2.12) can be computed easily from a table o;f Poisson
cumtlative distribution.

The tables at the end of the paper illustrate the sharpness of the in-
equalities (bounds) in (2.7).

It appears thﬁt the inequalities (2.7) glve close estimates of the func-
tion for x small (x <1). The bounds improve in precision as & increasses.
For fixed a, the relative error appears to increase with x. For fixed x,

the relative error decresses as a increases.

3. System of inequalities for I'{etp,x)(0<a <1, p = 0,1,2,...) based on

a different continued fraction expansion

o
Let TI(a,x) = ‘f e x° 1 dx, O <a <1l then a continued fraction ex-
AR %

pansion for r‘(a?_;c) (see, for example Wall (1948),Khovenskii (1956)) is

-a X _ Lt 1-a 1l 2-a 2 3-a n-1l n-a
(3.1) x e r(g'fx_'? Toxt 14 xb I+ x+ 1+

The odd and even convergents (approximants) of the above continued fraction are

Pén+1(a’x) 1 ' 1(1-a) 1(1'-3)

(3.2) CLN P Bl €8 Bl ] O o o7 BT e v B

(nl)(n-a)_
+ Qé;ga’x)génﬂ_(a’x) sy 20,

(1t),=1.




Pon(2s%) 1 1(1_-;) + J_{l-a)

(3.3) Qa‘n(a.,x) = Q,]'_(a,x) Ql(a,X)Qz(a,z) Qg(a,x)Oa(a,x)

(n-l) (n-a) >
s connc R

where
n - n '

(3.4) Yplesx) = zxn-J(ﬁ—a)J(?)and Qg (3s%) = anﬂ-d(nﬂ-a)J (?)
J=0 J=0

For 0 <a <1, the coefficlents of the continued fraction in (3.1) are posi‘tive,
a,d\.
hence the even order convergents ankg-_—)- (n =1,2,...) generate a mono-

tonlcally increasing sequence and the odd order convergents

Bl (32%)
QU (85 %)

sequences converge to the function & x2 I‘(a,:;). Thus, the following system

(n = 0,1,2,+..) generate a monotonically decreasing sequence. Both

of inequalities (bounds) is obteined,

B} (a,%) P} 1 (a:x)

(3.5) W <t @ I‘(a,_x) < 6;;-—(-_7 a<l,n=1,2,3000

The first two sets of these inequalities are ,for any x>0, 1 >a

= é_a < e® x™® I(a,x) < 21*““
' X +2X-ax
(3.52)
x+3-a <X g8 r(a,x) < x(x+5=a) + 2

x242(2-a)xH{2-2) (1-a) 42x°(3-8)+x(2-2) (3-a)



Again, using the recurrence relation

(3.6) Tlvyx) = (v;l) r{wl,x) +e*x¥ L, y>1

the following bounds are obtained. For any positive integer p,

B(a,x) RS (atp-1) .
(3.7)  (atw-d, Q?n(” Z -(f'—-—i<e ® M{atp,x)

— 2n+l(a,x)

(a+p-1)
< (a-l‘p-l) 552-;3:(——5- + 2 12
n

n= 1,2,3,0000

Tt can be shown that the length of the interval i.e. the distance

d=d(n,p,x) between the lower and upper bounds in (3.7) satisfies the inequal-

ity
-l -. 4 -1) (n-
(3.8) (atp )p(n a)n(n ) < (,p,%) <£i¢p ) (n a) (n
x(n-atx)® (n+l-atx)" x(l-a+x) (2-atx)?

The table at the end of the paper illustrates the sharpness of the bounds

in (3.7).

4. Comparison of Inequalities and Bounds for the Gamme Integral

In Sections 2 and 3, two different sets of bounds have been obtained for
the integrals vy(a,x) and [I'(a,x), respectively. The lower bounds for y(a,x)
for given a and x as given in (2.7) form a monotonically increasing sequence
converging to the true value. The upper bounds in (2.7) form a monctonically
decreasing sequence converging to the true value for n > Ny g where n, is the

smallest positive integer which satisfies x < n, + 1 + a. The proof of this
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latter statement is straightforward and hence has been omitted. If x is small
as compared to (1 + a), then the lower bounds obtained in (2.7) are very good
since the successive terms in the series for this bound rapldly converge to zero.
The series for the lower bound was also obtained by Pearson (1922) by a method
different from ours. Pearson (1922) used this series expansion for computing -
the tables of the incomplete gamms function. Pearson and his collaborators
(1922) did not obtain explicit expressions for upper and lower bounds.

For selected values of n, x and a, uvper and lower bounds in (2.7) were
computed. For n = 2,3,4,7, x = .3,.5,1.0,1.5 =2ad a = .5,1.5,2.5,5.5, the
valves have been included in Tatle I at the end cf the paper. A glance et this
table confirms the earlier ascextioa thzt the bounds are very good in the range
of values B and a for wialch x/(l+a) is very small. For example, if x = .5
end a = 5.5 so that x/{i+a) = 1/13, the upper bound is accurate to 6 decimal
places for n as small as 2. For the same case the lower bound is accurate to
within one unit in the sixth decimal place for n as smell as 3.

The system of bounds for I'(a,x) as given in (3.5) and (3.7) are monctone.
The lower bounds form a monctone increasing sequence and the upper bounds form
a nmonotone decreasing sequence. Empirical evidence as illustrated in Table
I shows that for small x, the bounds on vy(a,x) (as obtained from (3.5) and
(3.7) and following from the relation that v{a,x) + I'(a,x) = I'(a)) are much
worse than the bounds using (2.7). The bounds on ['(a,x) improve as x in-
creases. For selected valuese\ n,x and a, the bounds on I'(a,x) were computed
end an excerpt from these vaiues is given in Table II for n = 2(1)7,

x = 1.5,2.0,5.0,10.0 apd a = .5, 1.5,2.5,5.5. Of course the lower and upper
bounds are formed by the pairs of convergents corresponding to n = (2,3),(4,5)
and (6,7). A glance at this table shows that for =x >10, and n >2, there

is agreement to 6 decimal places for a < 2.5 and the values agree to 5
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decimal places for a < 5.5. It would be interesting to find out the behaviour
of these bounds with respect to a and also with respect to x/a.

Some other bounds on the incomplete gamma function, I'(a,x), a <1, bhave
been derived by Gautschi (1959). Gautschi's inequality gives a lower and an
upper bound for fixed a and x. For a = .5 and x = 1,2 the-following table

compares Gautschi's result with our bounds of Sectlons 2 and 3.

L’L Method Lower Bound Upper Bound Length of the Interval
x=1 x=2 x=1 X=2 x=1 x=2

I | Section 2 .2787 LO7LT .2939 .2377 .0152 .1630
Section 3 2711 080k .2943 .0963 .0232 .0159
Gautschi 2693 .0793 . 2924 .0840 .0231 L0047

6 | Section 2 . 2788 .0801 2792 .0820 .000L .0019
Section 3 .2760 .0805 .2830 .0809 .0070 .000k
Cautschi +2693 .0793 .2924 .0840 .0231 L0047

As x increases, Gautschi's bounds improve. From the above table and
Table II, it appears that for x large, the bounds of Section-3 of this paper
are as good as Gautschi's and seem to be better for n moderately small (n <6)
and x =2 and for a = .5.

Wilk, Gnanadesikan and Huyett (1962) have discussed the epproximation of
the incomplete gamme function. These authors studled the truncation error in
using the series earlier also given by Pearson (1922) and the partial sum of
which forms the left hand side of (2.7) derived in this paper by the methecd of
continued fraction. Thus the right hand side of equation (5) of their paper

gives the upper bound on truncation error at n terms as



xn

(%.1) ) (e (x/(ma)) ¢ F SR

which is greater than the corresponding bound i.e.

n

(4.2) aa+l)...(al-lc-n)(l-x/(n+l+a)) s E<pHte.

Clearly (4.1) is sharper than (%.2). Finally, the upper bound in (2.7) of this
paper has been shown to be monotonically decreasing.
Reference should be made to Whittlesey (1963) who gave brief details of

some subroutines for computing the incomplete gamma function.
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5. System of Inequalities for the Mill's Ratio and the Cumulative Distribution

Fuhction of the Normal

Let #(:) and o(*) denote the cumulative distribution function and the
density function of the standard normel random variable. Then the Mill's Ratio

, is defined as
{5.1) R(x) = (1 - 3(x))/o(x)

Laplace (1802) gave the following (by now well-known) expansion for R(x)

(5.2) R(x) 2224, (x > 0).

For more recent work on the Mill's Ratio for the normal reference should be made
to Ruben (‘963) and the references contained therein.

Now using the fact that
(5.3) r(1/2,x) = 2J7 (1 - & (/2% )),
we have from (3.5)

2y (1/2, +%/2) <t B (/20 £72)

— <
&y, (1/2, +°/2) ? (172, £%/2)

(5'4) % ) t>0, n=l,2,o.'

P! (1/2, t°/2)
where the are defined in (3.2 and (3.4). The first few of these

Q. (1/2, t%/2)

convergents are,

(/2 852) B/ €f2) 4 B(/E 6/2)  pou?)

a(1/z, t¥/2) +° qx(1fe, t/2) P aiife, t/2)  tP(3#%)

Tt should be pointed out that these inequalities in (5.k4) are the same as

obtained by using the successive convergents of Laplace's continued fraction
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expangion (5.2) as derived by Murty (1952). However, our method of derivation
is different.

The bounds in (5.4) are reasonably good for large t as illustrated by
Shenton (1954). For + = 4.0 and t = 5.0, the value of n required to achleve
an accuracy of the. order of 2.5 x 107 4s 5 and. 4 respectively.

We now give a new set of inequalities for the Mill's ratio and the normal

integral. Using the fact that

2. 1
(5.5) v(1/2, t5f27) = 2/x [8(8) - &, ¢ >0
we obtain, from (2.7),

4--. + 2 2a-1
_@ 30?2' - [t +_LL§.+———+ PRI

t " t I .
1.3 1l.3.5 1.3.5...(2n=1)

- t2n+l(2n+3 ) 2< 2n .+ 3.
(5.6) 2" (2nt3-47) (a+ )

< R(t), t20, t
n+l1
3 £ gen-l

2 t2/2_ L h
R(t) <5 e E°+1.3+1.3.5+'” T3S Gaap 70

Tt is interesting to note that the expression within the square brackets
in (5.6) represents the first n terms in Pllya series (see formula (2.8) of

Polys (1949)) for (&(t) - 1/2)/e(t).

-

To illustrate the bounds in (5.6) we give the following brief table for

R(t) = (V2x Ry 2,»/2 RE) -
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Table 1 illustrating the bounds on R(t)

as obtained from (5.6)

t n Lower Bound Upper Bound Exzet Value

1 |3 .100,334,000,020 |  +100,33L,000,953 .100, 334,000,953
5 |5 543,826, 47 .543,826,52 .543, 826,52
1.0 {5 1.1410,582,01 1.410,686,23 1.410,686,13
3.0 8 1105.776,010,93 112.896, 452,14 112.515,153,2

The entries in the above table for t = .1 and t = 3.0 can be compared
with the values given by Shenton (see Table I of Shemton (1954)) which are

based on a different continued fraction expansion. These values are

8, R(t) ¥  .100,33%,000,953

¢t
[

.1; n =3, R(t) ¥ .100,334,001,3; n

= 3.0; n = 8, R(t) = 98.7 ; n =15, R(t) ¥ 112.515,2

ot
I

The above table indicates that the bounds given in (5.6) are sufficiently
close (agree to T decimal places with the true value for n =5, t < .5) to the
true value. As t increases,the value of n has to be increased to aéhieve
the same degree of accuracy. It should be noted that the value of n is sub-

2
ject to the condition n > [t—z-:l] + 1. Comparison with Shenton's results seems
to indicate that the bounds in (5.6) are better. It should be pointed out that
the upper bound in the above table is very close (muck'l closer than lower bound)
to the true value. |

6. Applications of the bounds

A. Analogue of Mill's Ratic and the Hazard Rate Function

Inequalities and bounds have been obtained for the Mill's ratioc which is
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(1 - §(x))/¢(x) where &(- ) and ¢(+) refer to the cumulative distribution
function and the density functlon of the standard normal distribution. An ana-

logue of this function for the gamma distribution is
(o]

(6.1) R(a,x) = &* x 8% I et 81 4t
: b4

It should be noted that the reciprocal of the function R(a,x) in (6.1) is the
hazard rate (failure rate) which is important in the study of statistical reli;
ability. Barlow, Marshall and Proschan (1963) have studied the properties of
distributions with monotone hazard rate. From the results proved in the above
paper, it is seen that

(1) R(e,x) isanincreasing function of x for a < 1

(ii) R(a,xj is a decreasing function of x for a >1

| (for a =1, R(a,x) is constant for all x)

v

The first set of inequalities for R(a,x) is

n-1 -X n+a

(62) S Z T comco

n-1
bx _-atl -
R(a,x) <e e EI"( ) e™F X2 Z z——r—J, for the first part

X < n+l+a »
the second being obvious from (3.5), (3.7).

B. Applications to Multiple Decision

For the problems of selecting a subset containing the best of several gam-
me populations as discussed by Gupta and Sobel (1962) and Gupta (1963) it is

found that the following integrals have to be evaluated



1k

(6.3) [r(a)] ~&*) [ Tasexf]? e 521 ax

(6.4) [F(a):[ -(+1) J'Oo I:I"(a.,dx)]lJ e¥ 21 ax,
Q .

Bounds on the above integrals can be obtained by using the results of
Sections 2 and 3.

It should be noted that if we equate the integrals in (6.3) to «, then
2

*

¢ is the th percentile of the statistic F___ = max(—= ,..., ==) where
, max 2 2

XO Xa

Xg, 2,..., Xg are (p + 1) independent chi-square random variables with 2a

degrees of freedom. Similarly the integral in (6.4) represents the probability

2 X2

1 o P | )
integla]- [ox3 Fmin mln(va PR NN \,2) .

l\.o l\.o

6.5) — ,cx) -x a-l g s F£2a+j) o9
C) Tor f: vlesex) e T x (1+c)2'“‘(r(a 2 - 2 L (we)i(an)

It should be pointed out that (6.5) represents the probability that the
random variable F with 2a, 2a degrees of freedom does not exceed c.

In order to obtain explicit upper bounds on (6.4), one proceeds in a simi-
lar manner as above. It should be pointed out that lower (upper) bounds on the

noments of the smallest (largest) order statistic from a gemms distribution can
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also be obtained in the manner outlined above.
Armitage and Krishnaiah (196L4) have been interested in the distribution of
the Studentized largest chi-square. The inequalities of Section 2 of the pre-
sent paper can be used to obtain the bounds on this distribution function and

to approximate it.
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