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1. Introduction and Summary. ILet A, and A, be two positive definite

1 2
watrices of order p; A, having a Wishart distribution [2, 12] with £, de-
grees of freedom and ‘§2 (pseudo) non-central (linear) Wishart distribution
[1,3,4,12,13] with f2 degrees of freedom. Now transform
Ay=CI X' C
where C is a lower triangular matrix such that
- 1
L+"62— gg
and the density function of Y: p x f2 is given by
1
2 2 . =(£, =p-1)
‘F—'ol -\ z J g._ . - 1 2V1 .
\1e1) k e (2n yqq) rf2 (£y+ £+ J)]I;p yy'| /3!

J=0

tere ;ﬂ is an indentity matrix of order op,

=
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£
r'[%- (fl+f2-i+l)]/ﬂ§p ai?llr[(fl-iﬂ)/a],

e

k., =
1 5o

=]

A 1is the only non;centrality parameter in the linear case and Y11
is the element in the top left corner of the Y matrix.

Now V(s) criterion suggested by Pillai and U(S)(a constant times
Hotelling%s To), [7,8,9,10] ave the sums of the non-zero characteristic
roots of the matrix z‘g’" and (;P-gg')'l-;p respectively. Here s is
mindmun (fz’P)-’ Also we may note that V(S ) = trace YY' = trace Y'Y and

U(s);-:tr(;p-g')-l-p:tr(;f -'y)™ £, It can be shown that the density
’2 .

function of Y'Yy for f, <p can be obtained from the density function

2

of ’£ E_E' for f2 >p if in the latter case the following changes are

made: [12,5]

(1.2) (fl’ fEJP) —> (fl"fe"'.P:P: f2) .

Hence, for the criterion v(s), (and similarly for U(S.)), we shall only

consider the density function of L = X }f_' for £, 2>p vwhich is given by

2
[€]
(L3) o) =k e m ke e )d 2, 02 )1l e
. L1 (fl-p-l)/Q
oL
where

o(p-1)/4 2 ‘
x = P 1)/4.Hl I-[.:!'E.(fl+f2+l-i)]/{I‘[%(fl+l-i)] I‘[%(fz‘rl-i)]},
L=

Ill is the element in the top left corner of the matrix L and lFl

denotes the confluent hypergeometric function. We shall call the

distribution



3
of L: p xp the non-central (linear) multivariate weta distribution with f2

fl degrees of freedom.
Pilléi [11] had noted that the elements of the matrix L can be trans-
formed into independent beta variables which he showed Ffor P = 2,3,4 and 5.
In this paper we give a theorem which proves the general case,

In addition,

vhen A = 0 the first and second order moments of ﬁ are obtained and

tised to derive the first two moments of V(S) in the non-central case when

f2 2 P« The moments of V\S) for f2 Sp can be written down with the help
of (1.2). Similar results are obtained for U(p)= ti.(%—_Ii) "l-p.

2. Indepéndent Beta Variables. Iet

,Q.u gy 1

and we note that

erd

I':'[I’- ;‘.l = (l" ftll)l'lp-f ,.1322" gg/,/[ /gll(l" ﬁll):” .

Then it is easy to show that

211 and (.1'.222 ¥ ="g/‘/ ill(l- gﬁ)-)



are independently distributed and their respective distributions are

¢ -1 44~/
‘ Lo yq-1 2,022 ) \2

{ = (o3 . 4
\2’1) fl( Qll) = B(Lf.dio l! e‘q)( A )Q‘ll(_"zlh}jl §(fl+f ):2 2}'\' ll]
and

1 .

EER 2)- (p-1)-1] 5{£,~p-1)
(2.2)  £(Lppsy) = 3, Ll Ty Lo @

where

fp =k B(2 2’2 2+

For further independence, we can use two types of transformations given

by

,\
"
o
w
~——
=
it
L)

where _:l_:p_l- Lo,=IT" and T :(p-1) x (p~1) is a lower triangular matrix.

i% is easy to show that v (or w) and L, are independently distributed and

waelr respective distributions are

i, 1 : 1
, S rize) 0 5{(e-p-1)
(2.4) f'3\_.1_1‘) =1 ° ;?—i-:;::_'—i; 1-u* u) 1 'l[or f3(y_)]
2

and



Tope oy g 1
| 5L (£,-1)~(p~1)=1] sl £ =(p-1)-1]
'(2'5) f4(922) = k3 l“EEI 'II"'L‘QQ '
1
5(p-1)
where k; = e kye We may note that the distribution of L,:(p-1)x(p-1)

is central multivariate beta distribution with (fe-l) and £, degrees of

1

freedom, and the similar reduction from I, can be carried successively.

=pp
We may also note that the transformation

, 2 |
&2-6) Xi = ui/(l-u?--...-‘ui'l), i-= 1,2,-..,'_'9-1

in (2.&) gives us the independent beta~variates and their density functions

are given by

1
X, )§<fl-i)~l

*

= .1
(&1 gylm) = 003 Ho-0n™ G-

From the foregone, we have the following theorem:

t
Theorem T: If the distribution of [ = ! 1 ﬁ is given by (1.3), then

Zp-1

- -l - ‘ | - - 3 ] -
[or w=1" /1T fp) where TT'=I .-, end T is e lover tri
sagular matrix] are independently distributed and their respective distribu-
tlons are defined in (2.1), (2.5) and (2.4).

Tt cen be verified for p=3.that from the variates (Z, 11+ ¥ and : L’QE’

we can obtain the Independent
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f-variates exactly the same as given by Pillai [11], but the use of 117 &

and ;22 will give independent B-variates different from those of Pillai

[11] in spite of the idemtical B-distributions.

3+ The first and second order moments of Bij when A=0. Let the density
function of L be given by

L - e e

E(fg"p'l) Q(fl P l)

|z, -1l

(3.1) k |1 I-L J

vhere k is the same asw(1l.3). It is easy to see that

14
(3.2) m(l ) = el when 1=
= E(ng) when it 3
. and
. o, )

(3’3? E&'ij &‘i}j' = E(Vjil) When i=j=it=j’
= E(gllale) when dI=j=1°, :H:j'
= E(&ll(ge) when i=j,ivdi,i'=j"
- 5([%,) when 1=1', J=j', 11"
= E(QHL%) when 1=j,it$j'4i
= B( _@12613) when i=i',3j'i!

when if3jdditdjr .

I
=
—
[ateny
=
o
W=
=
g



It is easy to see that if yp = :f‘l+ f2,

a .
E(}{ll) = fa/\_)! E( Ll2) = 0,

and

m(l2) - ¢ 202020 /w2
i

i

For E(Q,Ja_e) » we integrate over other variates except J/“ll’ £l2 and

Then as in theorem I, u;= ﬂlz/‘/ (1"211)(1'2)1/_]_1: ﬂl.l and (:geg‘ﬂig/zll)"' 2

are independently distributed. Hence

E(fig)

E[(l-ﬂll)ﬁll]-"’ E(l'z) E(ui = xl)

£, f{v(v-1) (v+2)3,

2l by = sthy, T s - o

ond

E(Ellﬁee) E(ﬁu 2) + Eiﬂl;dl-@u)(l'ﬂxl}

(£,(2,m1) + 2,2,/ (vi2)}/u(v-1),

fl 1
$imilarly for obtaining Eailﬂ?s) and E([la Qis)»’ we consider (3.1) with

p=3 only. Using the successive reduction of theorem 1, it can be shown that

n(l 0, - =(h !

12 13) = 0,



The same type of reduction gives us after some algebra
/ Y=0.

Hence, we have the following theorem:

Theorem IT: Let the distribution of L: pxp be given by (3.1). Then

E(gi‘]) = fe/\) if 1=
(3.4)
=0 otherwise,.
and
- £ (£ 42)/Tu(vi2)] if i=j=i'sjt
£.2,/Tv(v-1)(v+2)} if i=i',j=j',iij
and i=3',i'=J,i$]

(3.5) B( Qij g = <

£ 0 (E5m1)48, /(W2)}/Tu(v-1)} if 1=j,2857,341"

0 o otherwise., -

.

L, First two moments of V(S)criterion. We note that
. v(s)= - Q‘_u - vt ot
thal) v tlo= Ay 8L, + {1 lal)g_(;p_l ;éz)g,

wheTre Qll’ u and 1‘.._22 are ind.ependen’tly distributed and their respective:

dstributions are given by (2.1), (2.4) and (2.5). With the help of Theorem

II, we find that



(4.2) B(Ly1” Lpp) = Lpf0/ (1)},
(4.3) B[ (b, Lpp) (Lyoq~ Lpp)d = 81 I,
and
(p1)(£,-1) £41  (p-2)(E 2 f(-2)

2 2 2 2
(b-n)-*) E(tr "I“‘QQ) = v-1 s + V=2 (\)'I-l)(\)nQ) }’
where
' (2, 1) £,41 (1, -2)(p 2) £, (p-2)
U‘l"5) T:ﬁ { b= l - \)-l- » v~2 (v+l)(v-25 }
Moreover,
{L..6) E[u' (L, _'1-5.22)5 = {£,/(v-1)} E(u' u) = (p-1)/(v-1),
10.7) B[(t, Lyp) w(T -Ly,)u) = &, E(w' w-= &, (p-1)/7,
and
(8)  Blu'(L, Tl - Bfw' s w® i s-1 -1,

p=1
) E(sll) Z E(v ) ¥ {B(s)15,5) + EE(S'ig)} z E("i\’j)
=t 143=1

- ~3{p-1) (p=1} (p~2) 3(f 2*1)
" AT ¥ e ety () = )




Hence, we get

(5.9)

and

(4.10)

waere

(ko11)

anad

fh.12)

, (p-1)(f l) 1
E(V(S)) = poec) l{P - l} a
mvie))2 . 1 4 Ef;f%_f_’_ (o + 2 (e-2)(fy2) 7 (p-2)

“1)(f, -1
- 2[f; {1~ S (p-1) (2 )}

vl v=1
(P“l)(L ~l) £+ (£ -g)tp-g) £ (p-2)
+ s B {1l-p+ a4 2

+ £, (£t 2)[1.. _.(IL_)_ + @% +

(p-1)( *2) 3(fp"l)
zh-lg(v~é?(f T5Y (f-1F

H 32:

8 = {'§:<h2)i/[i3(v*2i)]} exp(=22),
i=0

o]

2 = { ), 03 /e (veet) (wiee2)3} em(12).
i=0

T

10
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The expressions for the moments of V(S) given by (4.9) and (4.10) re-
duce to the results for s=2 given by Pillai [11] when p=2. However, Pillal
has provfided the first four moments of V (2} in that paper [11]. TFor ob-
taining the moments of V(S) when f2 <P replace in the expression of the
momentts in (L.9) and (4.10) £, by Iy~fytp, £, by p and v by £, as

in (L.2).

5+ The First thres momencs of U(P) « We prove first the following theorem

for obtaining the moments of y*p) [7,8,9,10].

Theorem IIT. Let M: p xp =(mi.j) be distributed as

1 : . 1
~ip(p-1) p , £ 4f -itl £ =141 £ _-i+d L wpel)
¥ r {r(+—5—)/1(L—r(E—1} [ 2
=15 ‘

(5.1) @

1
“3(F1#25) .

-

|z,+ ul

Then for f; > (p+1),

{5.2) E(mij) = L,/{Zy~p=1) if i=j

hv]

=0 otherwise

aad for f'l. > (p#3),
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(£,(2,42)/1(2,-p-1)(£,-p=3)]  1f 1==1'=]"

fe(f2+fl'P-l)/{(fl'P)(flﬁp'i)(flfp'3)}

if i=1',3=J,itj

(5'3) E(mijmi'j') =

f2{(fl~p)(fl#p-l)}-l[(f2~1)+(f2+flﬁp-l)(fl-p~3)-l]

if 1ej,it=3t,idd’

! 0 otherwise.

Proof: M is symmetric and positive definite and for evaluating E(mij)

and E(mi j') it is easy to see from (3.2) and (3.3) the various

q,
Ji
cases which should be considered separately.

- Moreover, we may note that
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1
mys B0 = fagy (em )} ¥ 0 m and My o = dyymm/myy

are independently distributed and their respective density functions are

1 1
L EL-l v (. +f ~p+l)
(5:4) (B[% £, 2o, o))}l B () 2N 2T,
~2’~(p-l) £, +f —§+1 R —52L- (fl+f2)
(5.5) n2 T r(-=—5—1™ (r(=9)) (A W) ,
and

1 )
-=(p=1)(p-2) p-1 fo4f, =i Powidd £ -1
(56) n" 1A/ () T2
1=1
L(r wp-1) (£ 45 1)
vt SRR
U Izp-lﬂf[ea.ll
where

Moo,1= (M1 103253500050)s T g+ Moy 9= TT4 5 Ti(e-D)x(p-1)

is a lower~triangular matrix end M,, is obtained from M by deleting the
first row and column,

From the above results, it is easy to verify the following,

1
B(my,) = £,/(8,0-1);  Blmy,) = (Bwy) Blmyy (demy) (T, 1)1° = 0,



1k

E(m;eLe)

1

B(vF) [E my, (L4m)] [E(Lm,, )]

£5(£ 42 ,=p-1)/{ (£, p) (£, p-1) (£ ~p-3)};

E(mllmEZ) = E(mllm22.l) + E(mie) = fg(fe'l) {(fl-p)(fl-p-l)}-l+ E(m?_a)i

B(my i) = E(wy) [E m§{2(1+m11)l/2 ;éelj = 0;

Y

E{mll(l-fmll)wi m23.l} + Efmy, (L )( (l+m33 1 m;i'—i-)

i

E(m:Lzth3 )

0,

where w., and w

1 , are the first two elements in W, Again

(m12m34) = 0.

This proves the theorem III.
Lemma I: If L: pxp i1s a symmetric and positive definite matrix and

() _ L .
U = 4,(L,- L7 - p, then

(5.7) 1arlP) o {(1- Q (a-u' )}t (=g ur)” (u'M u) +t, M

where

W}
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N
la J . .

—-—

) 2
P 'le:(p-fl)xl = {Qll(l‘ﬂ_u)} (:59._1"5'22) : b

e
1

Lot (p-1)x(p-1) = Ly~ EMH and M (p-l)X(p~l)=(}P_l-;;ae)'l-;gp_l .

Proof: We may note that

_ 2 -1
//(l-ﬁll) ® 9 \ . S v \
-l
(- D™ ) y
k @ (Zp17Top) N Ay 2 CARLER) 05N /
=
(1'41) 2 Q,
L
S (qu—l';dea) °
and
1 _:/El E’f -1 1+Ql]_ .E't B/(l-l}.,t E) ‘/Iz]-_‘l ‘;1,'/(1"2' E’)
3 Yll 9 }p-l'(l' ZL].)E Y ‘/E.'-L-l y/(1-u' u) Lot .131}"/(1-3',},1)

Hence
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6, (- D7 = 1w @™ (-G w1 (T - 1)

+u(T, ‘ w1 ).

22

From this, the lemma is obvious.

Theorem IV: If the distribution of L is non-central (Linear) multivariate

beta distx'ibution/arld U = tr(n;p'g) -.p’ ‘then for fl>(p+l),

(5.8) 5(0®) = (v 4202)/(£-p-1)

and for f, > (p43),

(5.9) Var(ulP)) - 2[hx”(fl-p)+(u>»2+pf2) (2,-1) (£3#0,=0-1)1/{ (£,-0) (£, -p-1)°

(fl':p"3)}"
Proof: By theorem I, we may note that Qll’ u and M-(I 1 22) l";'p-l

are independently distributed and their respective density functions are given

vy {(2.1), (2-4) and

%(p-l)(p—e)p-l £o4f (it g Lip pe1)

_(
I 12 Sy e 2T
i=1

1
-E(fl+f2 1)

Iup“l -~

Let 'Q'll 0 be the variate whose distribution is the same as that of gll when
2

).2=0. Then
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p1-ly)™ - sl 7 + 2%/(e2),
E(J.-Qll)‘2 = B(1- Lu, 0)‘2 + lma{ (:E‘l+f2-2)+>\,2}/{(fl'~2)(f‘l-h)}.

it ng) ve the UP) statistic vhen ) is replaced byQ

11 y then

11,06

(5.10) E(U(P)) = E(U(()P)) + [2)»2/(fl-2)] E(1-y’ g) ™t

and

(5.11) E[l+U(p)]2 = E[1+U(()P)]2 + {lme/(fl-e)} E{(l-g’g)'l[tr;\y(l-g'g)'l x

N,
(it w1} + [0 2(e 5e,-202)/ 02, 1) VIE(L-ut) 2,

That is,
(5.11a) ver(U®)) = var(®)) + o,
where

o = 2/(£,-2)} Bf (Lu'w) Tt pek(1-u'n) ™ (u’ B w)]} +
[ (2pee,-2n2)/1(2)-2) (2 -1 B(L-urw) ™ - T/ (2,-2)°] x

(e(-ar) ™2 - 2r2n?/(2,-2)] B maw w



18

We note that

E(ng’ ) = pf,/(£;-p-1), B(M) = (£,-1) I _,/(f-p),
E(s ) = (p-1)(£,-1)/(2,-p), B(1-a'w)™ = (£;-2)/(2;-p-1)

and

E(1-u'w) 2 = (£,-4) (£, -2)/{ (£,p-1) (£, -p-3)

Putting these values in o, we get.

g 2k 8X2(fl—l)(fl+f2-p-l)
o= : + .
(fl~p-l)2(fl-p-3) (fl"P) (fl"'P"l)Q(fl"P"3)

(5.12)

From theorem III, it is easy tec find Var(U(()p)), However the first fouxr

(central) moments of U(()p) are available in [7, 9, 10] and substituting the

value of Var(UéP) ) in (5.1la), we get theorem IV.
(p)

The expressions for moments of U given above check . with those ob-

tained by Pillei [11] for p=2.
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