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1. Introduction

The utility of the moments of the binomial distribution in finding the
n-stage transition probabilities was indicated by Khazanie and McKean (1965)
In this paper, maintaining tJ;xe same breeding structure as 1n the two-allele-~
case, it is proposed to extend the technique to cover the multiallelic case
in general with specific emphasis on the triallelic case. The existing it~
erature oﬁ the multiple all=li¢c case is at best scanty (see for example
Kimura (1955)). Section 6 will bﬁefly touch cn a further extension to mul~

tiple lpci which segregate independently.

2. The Triallelic Case.

2.1. Formplation of the Process. In the triallellc case the M(= 2u)

gametes which form the populationvare;nade up of three kinds of alleles which
may be dencted by A’l’ A2 and A3. If at any time the population consists of
x Aj-alleles, y A,-alleles (and consequemtly, M-x-y A3-alle1ee.) the
population will be saild to be in stete (%, ¥). The evolutionery pattern

is thus characterized by a Markovian i)rocess' whose states are given by such
palrs and the trensition probabilities specified by a trinomial distribution.
Since in every generation M gametes are picked and since there are three
(5

alleles the total number of states is ) as this corresponds to the num~

ber of distinguishable distributions of M objects into 3 cells..



Sl= O,l’!v"M
The set 8 = (51’5'2)': such that s1% 8, < Mp consisting
52= O,’l,t!.,VM ‘

40
of (M22) states thus constitutes the entire state space of the process,
These states in S can be broken down into tze Jollowirg distinct classes,

depending upon the kinds ¢f alleles present in the populstion:

JCR T ——— Ayshy 1035 l.e. Ay is fized
Class Ti { (O)M) ~—smeme Al,A3 lost i.e. A, is fixed
(\(M,o) --—«--—-——-A2,A3 lost i.e. Ay is fixed

Igroy . o 1, hatc =+ =f" . i
| 1('31:52)" 8128, > 0 such that &,+s =M 1.e A3 is lost

‘ (0, 8,): e, $ 0 or M, i.e. A, is lost

l .
Class II: (Sl,O) p SJ. + 0 or M, Lo A2 is lost

Thus, in all there are 3(M~.} states such that

exactly one of the three alleizs is lost.

(81’52): 5y o, 5o $ 0 and s, +8, <M
Class III:

f.e. all the alleles coexist.

Schematically the state space of the process can be represented by means

of triangular coordinates (Fig: 1).



Fig. 1 A Geometric Representation of the State Space.

In the figure, the states in Class I are represented by the vertices of the
triangle, whereés the states of Class II are interior points of the sideg of
the triangle. Class III states are interior points of the triangle. Concep-
tually, one can envision a point moving randomly about the triangle until
it reaches one of the sides (which it must do with probability one in & fi-
nite member of generations), after which it must oscillate on that side un-
til 1t is finally sbsorbed at one of the two vertices. Note. tixat a transi-
tion to Class II reduces the problem to the binomisl case considered in the

Tirst peper.

2.2. n-Stage Transition Probabiliﬁies. Iet Zn denote the number of A

1
slleles and Y the number of A, alleles in gemerstion n. Let x, y > 0.

Then,
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Expression (1) gives us the one-stage transition probabilities. The n-stage
transition probabllities are obtained as follows. By the Chspman-Kolmogorov

equation we know that

B n-1
P(X:"\ (1,9) ~ Z P(x,:,r“- fu,v) p(u:"".' (1,3)°
u,v)

vhere the summation is carried over sil the possible states {u,v). Now

P(u,v) is given by (1). Hence,

M M-u
-1 A g WV \Medn]
P(X:Y)(l)J) E y Pfx,y)(_'u_,v) 1EJI(M-2m3) 8 (M) ( )° (2~ )
u=0 v=0
MM
_ o Rl -1 . 3
) 2 L Plx,y) (uyv) T35 (M-"='J P @
u=0 v=0_
Me~i=]
c ) 0T (L) (ue)T T
r=0
v M-j_..”j (M=3-3) . ot
= : r o, = -1
BHETRE Z (-1 (FL) M
' r=0
M-u
n-1 i3 r
Z Z p(}e:_,:y')(t.l‘,v) 'y (utv)
u=0 v=0
oo (Mei-g)
=1=] .
MmN £ Meiedy . -r
= II3(M1-3) 1 (-1 (L) M
r=0
M-u
n-1
Z L S e
u=0 v=0

=0



e M f3mo) M
! T Med=jy, =T ,
= T131(M-1-3)1 E: (-0
r=0
M M~u
i+ J+r~0 n-l
z( ) ZO Z (X,y)(u,v)

u=0 v=0

Whence
ME M 1_3 e Mei=
P ! 3 r o ~rMei~jy
(2) (x:y)(qu) TI-I-5)T ) (0T
r=0

Ky f{)': ¥)

VR Ny
: T ,r) E(ii..l -i-r IX

O’,-O
Eq. (2) suggests that we can utilize the product roments of Z—-ﬂn-l and zn;-l
in order to find the nth stage transition probebilities. Thus the problem
amounts to that of finding the product moments of the type
X -llnllxc X, L= y) forall t and s such that t +s <M
These product moments can be obtained from the following recurrence re-

lation (Khazanie, 1965)

A (u+v)
st =g = _M'-HV“j FV I e T =
(3) E(X-n lnl}—co - X’Io—y) T L L Bu %5y Y Ecg-l %—1'%*"*20’3’) '
=l v=1

where the aij‘s are Stirling's numbers of the second kind and M(i)u, the

ith factorial power of M, given by M(i) {MiM—l)...(M-i-i‘l) s 120 .
l 2 l = O

- Put in matrix form (3) yields,

(u} ()"0 = %1 "(x,5) -1



(0%

where

. . STV _ _ = Uyv
(1) writing E(gn__Y_ano— X, Y= ) (x,-y)'fl.n ’

M_l, :.1‘,.

1,1 2,1 1,2 o0
(%,5)Pn = ((x,y)nrf1 * (x,y)‘nn’ o2 (x,y) ”(X;y)ﬂn’ ?(x,y) T 20t

M-2,2 _ 1,M-1y,
’(x,y)nn 3--‘«‘:"\3{:},)"]1,1 )7

the prime indicating the transpose.

(i) C, is the matrix of the coefficients which can be partitioned as

€y = FBD 1

B€M-:J,)ﬁ,3. Uiy e B.(m-l),k,.’ Trees B{M—l),(M—»l){
L

Bea By wees By | i
3
i

wvhere B;; = ;(Eij-l-oij) are (M-i) x (M-j) matriees with

-
CI+L)
Eij= aij a-ll —M—J::IT 0 O o o o o o @ 0
. uld+1) , M(9‘+2) o .
21 Iﬂj*’l :22 Mj"‘e L] ., L ] » L ] L]
(9L) ul3+2) (i =1)
a. o g T st urgeesns N S S S Sl st —
i Mei, L 4L BM-1,2 o2 A1, Mai I

k
and Oj_j an (M-i) x (i-j) zero matrix.
. . .
From (4) it follows that (x,y)En= cy .(x,y)EO’ and, since (x,y) is
the inltial starting point,



(X,y‘)EO = (XV:KEY: ‘e ':XM-ly: XYE: oo °:XM-2Y2: oo ';WM-Q:XEVM-%"WM-I) e
We will now proceed to obtain the spectral resolution of Cl‘

The distinct eigenvalaes of C, are M(I‘)/Mr s T=25000,M, M(r) /M being
repeated r-l times. In general, e matrix with repeated eigenvalues need
rot be diagouable. We wlll establish in the following section that the ma=~
trix Cl beczuse of its nature is dizgoneble and will show how to get the

similarity transformation. _ ,

3« Diagonebility of C’l;

ﬁemna 1, I T, 'ﬂ", V are given p xp lower triangular metrices such
that t $ U, Tor 1 <s <k <p, then there exists a triangular matrix

Q such that
(5) _ or - T = V.

Proof: The rows of Q may be chosen step by step working to the left
from the diagonal in each successive row.

We will show by induction on k that for every k there exists a pxp
matrix Q(k) which makes (5) true in rows 1,2,¢ss,k. For k = 1 we have

to solve

(u)ll'tll,o,ooo,O) - (Hlu)ll?o,-on,O) = (vll,O,...,O).

That is, (tllfull)wil= v,,+ Since tll* ull, we get wll=vil/(t11"“11>‘
Wh.ence the fiI‘St row of 0 is giVen by (Vll/(’bll-ull),o,o,.--,()).

Suppose then there exists a pxp matrix 0 which mekes (5) true in rows

1,2y+4e,k=1s Since all matrices under considerstion are triangulsr, only the

N



first (k-1) rows of Q are involved in the first (k-1) rows of OT - UQ.

(x) by taking as its first (k-1) rows those

Therefore, we can construct Q
(k-1) . -(k)
of @ and by thenr choosing the kth row of & s0 as to make (5)

true in the kth row. That is, suppose the se% y T=1,25004,k-1} is

‘Opg
knovn with w, =0 if » <s. We must now chcace o (1 <s <k) with

S 0 for k <s to salisfy,

k .
Z (0 brg™ Weplug) = Viggr (8 = 1,250005K)

r=8
that is,
k k-1
Z Uerlrs ~ Yik%s T ks T L Ykr¥rse
r=8 r=8
Whence
k
/ I - -— _‘—_.
\6) Z(”-krtrs u]{ku)ks - nks’ Say (Q"'-L)e,too,k).
. =S8

By the induction hypothesis, the numbers o (s St <k-1) are known.
Therefore the values 1, . are known. Thus frow (6), given Thes? S 7 Werc

we have only to solve

k
(7) u)l{S(tSS- uk,k) = T,ks - Z%{rtrs) <S=l,2,o--,k).

r=s+l

Now each tss' U is non~zero, whence, in particular

(8 e = Viae/ (bige = Yge)»



By downward induction on s we can now successively obtain
Wige? B 1?02 %"
Note: In the special case when T is actually diagonal (as in our applica~

tion of the lemma) (7) simply reduces to wks(tss" u'kk) = g+ Therefore

wkS = T]ks/(tss- ukk)? (S = l)z,nco,k).

Theorem L: et m>n and P=/ A | O \ where,
\B C

i) A is triangular and diagonable; thus, there exists a non singu-

D4

lar matrix M om (triangular) such that

partitioned so that T,R are diagonel with T an nx matrix and R an
(m=n) x (m~n) matrix.

ii) Cnx ;_i.s a trianguwlar metrix which is diagonable with tss =|= Crx

n
for 1<s<k<n

iii) B = (E]0) where 0 is an n x (mw-n) zero matrix and E is mxm
triangﬁlar matrix so that B is n x m.

iv) 0., 1isan mm zero matrix,
then the matrix P is diagonable.
Proof: Since C is diagonable there exists a non-singular matrix N such

1

that N "CN = G where G is a diagonal matrix whose diagonal elements are

the eigenvalues of C.

Let L = M

0 \ where k is an nxm matrix to be suitably chosen.
K| N |
"/
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Since M and N are nonesingular so is L. Hence L+ exists. Consider

1 L.
- [ \
t pr = [ * o\ /fa o) / m o
\ ,
\-N"l et Y B / ( K N |
= [/ Mt am 0
vt tan + N (EwCK) vt cn

F -0

N’l(-KF - BM + CK) G

This shows that if L 1is to diagonalize P it suffices to choose K such
that N-l(-—KF’+BM+CK) = 0. That is, choose K such that KF-CK = BM. Since

M is triangular we can partition it as

n men
with H ~ triengular. If we now choose K = {0, 0 )ln, we need only find
Q to satisfy

(e, 0) [T 0\ -~¢(2,0) = (E,0) H|O

so that (6T,0) » (€Q,0) = (EH,0) and consequently,



(9) Or - CR=FEH=V, say.

Now E and H are triangular. Hence EH is triangular. The result
now follows from Lemma 1 with U = C
Remark: (9) indicates that it is not essential that E be triangular. It
suffices to ha&e B such that EH 4is triangular,

In the following let Bij(ts.z) represent the (t, £ Jth element of the

matrix Bij'

-

: I ¥ = ‘II \
Theorem 2: ILet DX f Biq \
- ‘ \
|
| Bor Ba
i L]

\%d Bp »vvee B

be a trianguler metrix where B, = QEijloij), {5,3=1,25c00,k), is an

(M~i) x (M~j) metrix with E;; an (M-1i) x (M-i) triangular matrix and

035 en (M-1) = (i~j) zero matrix. Also let By,, (L = 1,2,400,k) De

diagonable, and if u >v let BW(S,S) 4 Buu(k,k), 1,8 <k <M-i. Then

for every k <, Dﬁ can be diagonalized by a trinagular matrix Pﬁ which

can be written as

\
Bf = 11
So1 Sop
‘ .
\\ 81 Sip + * + Sy /

where S, = (Tijloij), (i,5=1525004,k) is an (M~i) x (M~j) matrix with

T an (M-i) x (M-i) triangular matrix and 0;; and (M-1) x (i~j) zero

13 J
matrix. Furthermore, in the process of diagonalization of D¥ by Pﬁ, S

k ii
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diagonalizes B for every 1 so that S;i Bii S

11 11 = Fige

Proof: The proof will be by induction on k. Bll" Bel’ 322 satisfy the

- ) 3 -
conditions of Theorem 1. Therefore D”2< Bll 0 can be diagonalized
Boy B
by a matrix of the type P'g = Sll 0 so that
Sp1 Bpp
lpepx= | s1p . s 0 = [ F 0
2 272 O it I R I § \ 11
0 st s \ 0 F
22 P2 P22 | \ 22 .
Hence the theorem is true for k = 2. Next let us assume that it is
true for k-1l; that is, Di)é-l can be diagonalized by a matrix P*k-l so
that By Peq PRy = Dieg {FqpsFops e s Py yan) = Fopo S0
We will now establish that, indeed, D*k = Dﬁ-—l 0
R ' Bk /
where R = (Bld"“’Bk,k-l) s can be diagonalized by Pi’{% = Pﬁ-l 0 \
|
Where Q, = (Skl)skz,o-l,sk,k_l?o

If Pfg diagonalizes Dilg then following the argument in Theorem 1,
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P T DR P = Fra1 ‘ 0

Lk ( QFk-l+RP* +Bk& ) l Fkk

il 1Py o - “l D% —
Thus it is sufficient to choose Q such that S (-QF ,+FP¥ ,+B,0Q) = 0,

which yields QFk_l-Bka = RPﬁnlj that is, it suffices tc cluvose

Skl’ske""’ﬁk,k—l such <hat

(SyqseeesSy pey) Dhag {FypoFopseesFyy o} = B (SigaveesBy ) =

(B l""’Bk -l_) / Sll \

( So1 Sop

1

suee
b

~

\ Sl{.-l,l bK'l’ID et S "l,k l/

whencey (S4Fy; Blk 1612 7+ > 259575 4 BB o 00 005y k—],“ml "By, ge1)

k=1 k=1
= () BSaeees ) By Sgg7+e* B 1S, o)
t=1 t=1
Thus we get
kel
(10) S1iF1s = BaSyg = 31 BSis» 1= 1,2,...,k-1.
t—l

M-k k-t

In equation (10) we know that B, = (Ekt Iokt)} M-k. Also S., can be

written as



M~k k~1i
Sp1 = / Vi1 0 } 1k
| -
\ A1 o1 /J s

\ ,

with ¢, an (M=k) x (¥~k) +triangular matrix. Hence

M~k k-i

(B tyyl 0 )3 Mok

By Bgg =

vhere E_ ¢ ; is an (M~k) x (M-k) triangular matriz since By
are triangular. Conseguently, .
M-k k=1
2 o
- Loy
B Sis = y 31 thl o Y M-k
o=l T=d
with ) B ¢, triengular.
t=1i
Hext, let us write
M-k k-1
(1,1) ~ \ 3 -
Fys / 3 0 } jl\{[ X
l |
'x\ 0 g(lJl) / } ki

Mek Ked

If we now choose S, = {I‘k_ll

satisfy

0 )} M-k, then from (10) we need find

1k

and Yeg

to
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k-1
(1,4 10) glts1) l 0 - By (7,10) = () B, v,,100;

) t=1

/

— l e

k-1
. (i,1) - }”
that is, (T, & lo) - (Bkk Tki|0) = () By ¢tilo). In other words we
=1
mist find Tki such that
k-1
(1,1) - E: ,
(11) Ty @ "B Tes T L B Vea o
t=1
k~1

. (i,1) PR s s
Now since @& s Tpg 8wl ) By by satisfy the condition of Lemma 1,

=1
the fact that we can find a triangular matrix Tki is an lmmediate conse-

guence of the Lemma.

4, The Distribution of Time to Homozygosity

Iet us syppose that the population starts with x Al-alleles and ¥y
Ag-alleles, and let T(x,y) denote the time taken to reach one of the homo~-
zygous conditions for such a population. In order to obtain the distribution
of T(X,y) we will state without proof the following lemma which is basic
to the distribution. (Khazanie, 1965). |

Lemma 2: The probability of fixation for any given allele is indepen-
dent of the initial gene frequency of the other two alleles. In fact,
for every y

(12) p%X:Y)(NBO) - piM
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where, PzM is the probebility of fixation by the nth generation, as defined
in the two allele case, when the initial frequency is x. (Khazanie and
McKean, 1965). |

We will now derive the distributich of T(x,y)° The population cah be=
come homozygous either by absorption in the state (M,0), or in (0,M) or in

(0,0). Following the argument in the two allale-case then,

(132) P(rp, o= 1) = G+ @+ - EHY,

and, if n > I,

-, _ on Nl n . el
P, )™ ™) = P, ) 0,00 (2, 71014, 0) "2 (2,570, ) P (e, 7 (0, )

+ o N P n-l - .
P(x,5)(0,0)" P(z,y)(0,0)

Avplying lemma 2 and noting that

(see Khazanie and McKean, 1965) it is a matter of simple algebra to show that

M s .
(23b) B(r(y, )" B) = ) ) (M('S)/NF)D"E[%F— -1

s=2 B=1

[+ 5+ ox)® g v -
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Comparison of the distribution of T(x ¥) with that of Ty in the two
.

allele case shows that thc(a functional form of both is the same. Hence, wri-
S)
M

ting C(x,y,s,3) for - lTx + y + (M-x~y) :I u.Ms we get:

1. The probability generating function G(x 7) (z) of = (x,7) is
1 39

M s ,
— 2
+M~M Z zC(X:Y:S:ﬁ) "‘“%5‘5"‘_
s=2 B=1 (1~ A z)
o
2. The expected value cf T(x, ¥) s
(15)  Bre, ) = @Y+ GO+ (e BT
o
el M
Z Zc(x}yxsyﬁ)m .
5=2 P=1 (1~ -;E-)
3« The variance of T(X’y) is
E(T(X:Y)(T(X:Y)-l))+E<T(X:Y))—(E(T(X:Y)))2
where
M s
. - 1)) = v M 2
W Mo 2 ) )l s
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5. Multiple Alleles.
The extension of the sbove tregtment to the multiallelic case is now
straight forward. ILet us suppose that there are k+l alleles which we will
denote by Al’A2""’Ak+l' If the population consists of iv genes of type

. k+1.
Av’ v=1y325see,ktl such that E:iv = M, we will say that the population is

y=1
in the state (il’ie"'°’ik) and call this particular‘state Si. Gepmetri-
cally, the representation can be accomplished by means of a regular k-dimen=-
sional simplex where the states correspond to the points of intersection of
the (k~-1) dimensional hyperplanes parallel to the faces of the simplex.
Iet VZh, v=1,25e00yk+l denote the number of Av alleles in generation
n. The transition probabilities from any state si=(il,i2,...,ik) to any

other state g9= (3399500 023;), given by

ms

;s =TT
g Jl'Jz""Jk‘<M Jp=eee Jk).

31, (',
LN ) M

(17) D

i

M -
(l ll+- [} -+lk .M"‘Jl" se -jk

L] - —“—r ,

completely specify the underlying Markovian process.
In analogy with the triallelic case it is a matter of straight forward

generalization to show that

=Jq=ese=dy Il

_ ' J
MIM r YK+l -1
18 i .- 1 — -1 M T,
( ) I%xsg 311321...Jk13k+l£ E: ( ) ( r )

r=0
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(I‘-al"--.—a’k_g)
) Z z “ r 1 B )

see T - — Y
S -0 Oll.u.CZk_lr(r al -o-'ak_l)-
1= %e-1”

3.4 3 +r-al-...qj“m -
PR R R -1} = .
E(l)'sn-l see kz L X: = x\), \)——l,-t.k)o

and the recurrence relation between the product moments is,

= R
(19) E(l}_{n '"I{Zn \)XO = x.v, \)=l’2}'.-,k)

(p,l+. . -‘l'p,k)

. E(l‘_)sn_l- .n'.- k-x-n-l \)}’_(0 = Xv, \)=l’2,..0k)
Put in matrix notation, this gives

(20? (xl,...,ngn = Ck'(xl,...,xk)En-l

where, (x is the vector of the conditional product mements in
“L

,..1,xk)En

generation n given v26 = xv, v=l,2,00.3k and Ck is the metrix of co-

efficients analogous to C, in the triallelic case. Iike C.,C. is also

1 177k

triangular. The procedure for diagonalizing it is similar to that of di-

agonalizing Cl.

As regards the distribution to time to homozygosity, if T x represents
S

such a random veriable with S_ = (xl,...,xk) as the initial state of the
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process, adopting the argument in the triallelic case, it immediately follows

that

| KHL
(21a) B(r = 1) - ) ("

v=1

and if n > 1,

—M'\Bﬁ4 o ) neor(®) - k+lB
@ rew ety Tl T,

s=2 P=1 v=1

where, of course, , x = M.

The functional form of the probability function of 7 x being similar
S

to that in the triallelic case, the probability generating function, the ex-

pected value and the variance of 7 5 can be obtained in g like manner.
S

6. Multiple Loci.
The investigation will now be extended to a more general case involving
an arbltrary number of alleles at an arbitrary number of loci but assuming

that the loci segregate independently. Iet there be L loci with kﬂ

alleles at the [th locus. Further, let '  represent the time taken by

S
£

the population to reach homozygosity at locus ,f wvhen it initially starts

x_ (L) (2) . .
from the state S L= (,cl ""’xkfz Z1) at that locus. The distribution

of T _ has already been found in (21a), (21b). What we are interested in

S

here is thé distribution of the time taken to reach the homozygous condition
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for all the L loci concerned. This random varisble which we will denote

by ¥ 1s obviously

T* = nmax (TQX: ,£=l’2,col,L)-

&)

The distribution function of <% is given by,

1 L
P(Tx<n,..a,'fz <n,oos,'rxsn)

P(T* <n)
: | S, 5; 81,

Lol
I P(r5 <n),
,(Li:l SU\'

since the loci are assumed to be independent. The probability function of

1% is therefore,

L
(22) P(t* =n) = 1 P('r <n) - n P(T < n-1),
£=1 s £=1 SQ’

which requires that we know the distribution function of at every locus.

.
5y
Now it has been shown in (21a), (21b) that ’
(/c)
P(T
Sf.

and, if m > 1,

LS - :
P(r', =m) = W) Z (s 2[“ - { Y 0P g v,
v=l

Sy =2 p=1
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Therefore, clearly

S (0, (s) R
¢ N z)
Bl <0 - ) [ Z[“ ] {2 =T} e v
59 v=1 5= 2 p=1 v=1
(s)
1
l..--—--
. M
o

Whence, from (22) we get

P(1* = n)
- (S)
- kz {0 (5) “q 5 2-E—
=£_; M Z Z[ 'l]{Z[ ] s se["—'—(_f—
=1 5=2 PB=1 v=1
i
(S)
Ky (r)) M s () )
) ZL-u{zr T sa,r———m—-J}

v—l s=2 B=1 1- X

'

T+ DNumerical Illustrations of the General Technique.

From lemma 2 and its obvious extension to the case of k alleles, ire
respective of the number of allelomorphs at a locus, basic to the distribu~
tion of the time to homozygosity when a single locus is involved are the
probabilitles of fixation P?M' For example, with three alleles at a locus
in a population of twelve gametes and initial frequencies of 3,4, and 5 the
distribution can be obtained from Table 7 of Khazanie and McKean (1965) by

considering columns corresponding to i=3, i=k, and i=5. For example, for
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n=15, we have P(7T = 15) = (.11843 - ,10783) + (.17L497 -~ .16166)
+ (.24077 - .22540) = .03928.

Table 1 gives such distributions for 3 allelic, k-allelic and 5-allelic
cases with respective initial states, (3,4), (2,3,6) and (4,2,2,2). From
this is obtained in Table 2 the distribution when the above mentioned loci
are involved simultaneously in the population but segregate independently.
07 and T3 denote
the times to homozygosity of loci 1,2, and 3, respectively. From Table 1,

To illustrate the calculations for Table 2, let Ty, T

P(Tl <5) = 07132 (the sum of the first 5 entries in column (3, 4), Sim=

ilarly, P(72 <5) = ,08888, and P(T3 <5) = .03289, Whence, since

]

P(t* < 5) P('cl < 5) P('r2 < 5) P('r3 <5) (for 7% = max(Tl,T ,73)), we have

2

P(* <5) .000209, which is the fifth entry. in Table 2.

8. Summary and Conclusion

By the methods outlined in the series of two papers, it is possible to
obtain directly the exact distribution of time-to-homozygosity of a diploid,
monoecious, random mating population of any finite size and with arbitrarily
many independently segregating loci each with an arbitrary number of alleles.
The technique does not depend upon continuity assumption and further is nu-
merically feasible even for large population sizes. The main results of the
papers have numerical verification in the paper of Ewans (1963) who obtained
results identical to ours (to four significant figures) by the direct approach
of powering the transition matrix.

Extension of this procedure to allow for mutation appears feasible and
is presently under investigation .
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Table l. ZExact Distribution of < «? Time to Homozygosity (M = 12)

for 4O generations S
T tlal (3,4) (2,3,6) (152,2,2)
Generation
1 0. 00003 00002k 0.00000
2 0.00218 0.00590 0.00042
3 0.01106 0.01760 0.003L5
L 0.02347 0.028L6 0.01013
5 0.03461 0.03668 0.01889
6 0.04268 0.042L2 0.02768
7 0.04767 0.04606 0.03519
8 0,05018 0.04799 0.04089
9 0.05086 0.04358 0.04473
10 0.05026 0.04315 0.0L692
11 0.0:880 0.04696 0.04775
12 0.04678 0.0L505 0.04751
13 0.0hllo 0.04318 0.0L6L8
14 0.04189 0.0L039 0.04489
15 0.03928 0.03849 0.0L291
16 0.03668 0.03606 0.04070
17 0.03"13 0.03365 0.03835
18 0.,03167 0.03130 0.03596
19 0.02933 0.0290L 0.03358
20 0.02T1L 0.02689 0.03126
21 0.02502 0.02485 0.02901
22 0.02307 0,022 0.02687
23 0.02125 0.02115 0.02485
ol 0.01955 0.019u8 0.02294L
25 0.01798 0.01792 0.02115
26 0.01653 0.01648 0.,01948
o7 0.01518 0.01515 0.01793
28 0.0139L 0.01392 -~ 0.01649
29 0.01280 0.01278 0.01516
30 0.01175 0.0117k 0.01393
31 0.01078 0.01077 0.01279
32 0.00989 0.00988 0.01175
33 0.00908 0.00907 0.01078
34 0.00832 0.00832 0.00989
35 0.00763 0.00763 0.00908
36 0.00700 0.00700 0.00833
37 0.00642 0.006k42 0.0076L
38 0.00589 0.00589 0.00701
39 0.00540 0.005Lk0 0.006L2
40 0.00495 0.00495 0.00589
Vaﬁﬁieggei 1779313 17.64650 19,5961k
SX
Viﬁiince 145.92499 148,64218 15010495
X

S



Table 2. Cumulative Distribution of 7%, Time to Homozygosity
(M = 12), for 40 Generations

- Loc 1 (3,L4)
ftlal Loc 2 22,3,6)
Loc 3 (L".'Zs 2;2)
Generation

1 .00000
2 . 00000
3 . 00000
b .00003
5 .00021
6 .00091
7 .00275
8 . 00653
9 . 01306
10 . 02302
11 . 03686
12 05477
13 07669
1k .10234
15 .13130
16 .16305
17 .19702
18 23264
19 .26936
20 30666
21 234408
22 .3812L
23 11780
2L L5349
25 .18808
26 52140
27 «55337
28 .58386
29 .61283
30 64025
31 66614
32 .69050
33 71336
3h . 73478
35 . 75480
36 <ST7347
37 . 79086
38 .8o70kL
39 .82207

Lo .83600



