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On Some Spectral Properties of a Transition Matrix I

by
Paul T. Holmes

Purdue University

let P = (pij) be the transition matrix of an infinite, irreducible,
discrete parameter Markov chain with state space I = {1,2,...}. In this
paper we will consider P as a transformation acting on different function
spaces (here sequence spaces since the Markov chaiﬁ is in discrete time)

and study some of the associated spectral properties.

Definition: ¢ is the space of sall infinite vectors x = (xi,xz,...) of

conplex numbers sabisfying

[I]1,, = swlz,] <.
n

Ve define a transformation T on zm by

o-]
k=1

Jemma 1: T is a bounded linear transformation on zm into zm.

Proof: It is clear that T is linear.



«©
Izl 1, = swpl (22}, | = sl Yo xl <

k=1
® =]
sw ) polx] Ssw ) by sw|x,|
8=l T k=l g

o .
=swp Y oy Izl = [lxl], <= .
B k=1

Thus Tx € 6 . Also, ||Tx|| < |lx|] implies T is bounded (and there-
fore continuous). QED
Corollary: IITII‘S 1.

Proof: We know that ||Tx|| < ||x|[  for every x e 47 Therefore,

(see Taylor [8], ps 86)

Hr=l,

el =gy o TR S 2

Definition: A non-negative, not identically zero, real valued function

{Qﬁ} on I is called a super regular measure if

[ee]
Oij ->_ zak;pkj for j = 1,2,...
k=1

{05} is on a regular measure if equality holds for every Jj, and {ab} is

a sub regular measure if its negative is a super regular measure. It is

known that every irreducible Markov chain possesses at least one super regu-~

lar measure (see Kendall [6], p. 140). If the chain is recurrent, then every



Since the existence of a super regular measure is assured for an ir-

reducible chain, we will assume that a particular super regular measure

.}
f 3.

of the paper.

Tema 2:

then

©
E C&J -
j=l

(2]

Proof: Suppose 2043 < .
=1

hes been chosen, and it will rewain fixed throughout the remainder

Ir i Ozj} is a super regular measure in a non recurrent chain,

By super regularity we have

Y T
* L 05 2 Z Z Pka ZJ L S, Prj ~ L%
J:: k=1 J-—l k=1

©

It o;j > z Ozk'pkj for some J,
k=1

which would be a contradiction.

we would obtain strict inequality in ¥

Therefore, under our assumption, the su=

per regular measure {ch} is regular. But
oo [«
- Vs = (n)
% = L %Py T Z %e Prj

for every n.

Thus, using the dominated convergence theorem,

o
- 14 (n) z . {n) _
= il’nl> y % Pxy = S % 31‘1__“_1_> Py = °
since the chain is non recurrent. = Q0 for

j = 152,00'

But this implies that ozj

vhich violates the definition of a super regular measure.
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Hence N O, = @, QED
L 73
J=1

Definition: For 1 <p <o, ,gp(oz) is the space of all infinite vectors

y = (yl,yz,...) of complex numbers satisfying

oty = () vyl® aj)l/'*’ <o
J=1

We define a transformation T on () by

o
=1

(=e]

Ve will let ,@m(oz) = 4, end T =T. The usual proof (see Taylor res,

P~ s P 21, can be applied

p. 100) of the completeness of the spaces
here without revision to the spaces £{a), p > 1. It follows that our
spaces ,ep(Ol) » P > 1, are Banach spaces. In particular, ,@2(05) is a Hil~
bert space. It would be of interest to study in detail the properties of
the sequences which are elements of gp (@). This will not be done in this
paper. We do note, however, that in non recurrent and null recurrent chains
(vhere super regular measures are infinite) constant sequences are not in
P(a). Indeed, by the very definition of sP(a), we must have that IuJ.I:p

converges to zero at a rate which is rapid enough to insure that

¥ P
/. |uj| Ocj < e,
j=1
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The space zl(a) has been used in the study of potential theory for dis-
crete Markov chains (see Keweny and Snell {57, p. 200). Transformations

TP (on the usual ¢ spaces) defined by

1/
(Tp X)j = % XKC:%D : ij:

L

+ 5= 1, have been studied by Kendall [6] for the case p = 2,

wvhere

R o]

and for p >1 by Vere-Jones [11].

Lemma 3: ™ is a bounded linear transformation of ,tzp(cz) into ,@P(a).
Moreover ||TP]| <1 for every p e [1, o]

Proof: T is clearly linear. Suppose X € £ (Ot) Then

L=l ]y = Z | (T} oy = Z 'Zpkj %oy < Z Zplialxala
k=1 k=1 i=1 =1 =1

ZIXICZ ,Pk> le =“XHl<co.

Therefore, T maps ,q,l(oz) into ,@l(oz) and is bounded. Ve have already
shown that the same result is true for T operating on ,a,m(a). It follows
from the M. Riesz Convexity- Theorem (see Taylor [&] pp. 221-224, especially
problem 1 p. 224) that ™ is a bounded linesr transformation of ¢ (@)
into sP(c) for every p, 1 <p <=, and that ||T°]] < 1. QED

Example l: Suppose the Markov Chain under consideration is positive re-
currents lLet u be a real valued, non negative, super regular function



©

(u.j > Ejpjk w for every k). Then u is regular and constant, say

k=1

uj = ¢ for every J, and

- 1/p

- P
ell, = C 2y a)™ <o

J=1
Hence u € zp(c&), 1<p <o and we have ||T°|| = 1. The same example
shows ]lTwll = 1. Thus, for a positive recurrent chain IITPII =1,
lSp=s~

Example 2: Consider a Markov Chain with state space I = {1,2,3;4+41 and

transition probabilities given by

. =p. >0
PJ:l pJ

j = 1,2,100 .

. .o=1=p,. >0
PJ:J+1 pJ

dJ
Iet O.= l, ., = H (l"p) for ,j = 2,3,.-., and Cﬁm = liln a_.‘-
b=l Y > *

k

©~

c.. Now, as is well known (see for example

Furthermore, let o = lim 5

k—> o =1

Kemeny and Snell 57, p. 249-250), this Markov chain will be non recurrent
if and only if o > Oe If this is the case then {aj} is a super regu-

lar measure, with



o]

0’ > Z Jl oz -C, and Ok Zaaka’ for k = 2,3,4¢0 »
J=1

It ozoo = 0, the chain is recurrent and {ozj} is ibs (essentially) uniqﬁe
regular measure. If o = 4+ o, the chain is null recurrent and if o < o,
the chain is positive recurrent with fozi/ o} as its stationary absolute
distribution.

We will comsider first the non recurrent case. Here { ozj} is a super
regular measure (there are no regular measures), but there is no guarantee
that this super regular measure is unique. ILet us search for another; call

it | 53}. We must have

© \

¥* 3 == - » ] i = »
L. Bk ka Bj-l(l pj"’l) S Bj for J 2)3)!!
k=1

and

b ). PP = ) B P S By

. k= k=1

Any non decreasing sequence of non negative numbers will satisfy equations
*, If order to obtain a sequence which will satisfy equation ¥¥ as well,
v;v'e can choose Py = pk where 0 <p <1, and Bk = Bk vhere B 1s such
that Pp < 1l-p.

For this choice of P, Ve have

n
R , m
¢ =lim & =lin I (1-p ).
n—> o n—> o m=1



Now

n . [oe]
lim Z log(l-p™) = log(1-p")

log Q=
B> el m=1

AN Z [0 K i § z kym

=T L k - L 2B
m=1 k=l k=1 m=l
i k

1

=T Z k o end

k=1 P

[ee]

T 1t 1 TeE
) EEEsTs )% - mp s 0.
k=1 k=1

Wi

k
1-p

Thus the series converges when 0 <p <1l. It follows that & >0 for
0 <p <1, and that the chain is non recurrent for 0 < p <1,

Equations ¥ are satisfied, and equation ¥¥ becomes

- k _ _
Z Py Py = E (ep) '—i%p<6.
=1 k=1

We see that Bk = Bk, 0<B< -];lg:e' s yields a super regular measure for this
Markov chain.

Now let ue ¢ (), 1 <q<w. We have
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(el )%= ) 1) [ e = )] ) oy, % By

k=1 k=1 j:l
- k k. .k
<) Y meglwyl%y = Y rlel 5 fu, [® ) 8
k=1 j=1 k=1

Qe fp. L 4. a4
<yl B+ 2 r(lful] )% - [uyl% 6

=5 (la [ )% + fuy|® B8

Choose B and p so that 1 <3P <:min(l§E3 é%), for example B =2 and

1

p = will work. Now <1, and we have

2pp-l
1-pf
(Hmall)® s Fl a1 )% ens [2¥] < Y2 <.

If we choose B = 1, we obtain |[|T%] = 1. Thus we have examples of non
recurrent chains for which ||T%]] <1 ana ||7%| = 1.
Consider the bounded linear operator ™ acting on the complex se=

quence space ¥ (c), 1 <p £« The point spectrum of ™ is

o(T®) = {complex numbers A: T°x = Ax for some non-zero
x ¢ /()7

The element x of Ep(a) involved in this definition is called an
elgenvector of Tp and the scalar A 1is the eigenvalue of which x be=

longs. ZEigenvalues which lie on the unit circle have been of particular
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interest. If the Markov chain under consideration is finite with period 4,
we have the following classical results which follow from the Perron-
Frobenius theorems (see Gantmacher [37], Chapter 13; or Rosenblatt 97, pp.
bhie51):

For the stochastic matrix P, one is always an eigenvalue of maximum
absolute value. There are d eigenvalues of absolube value one, and they
are exactly the dth roots of unity. Moreover, a non negative matrix is
stochastic if and only if it has the eigenvector {1,1,...,1) for the
eigenvalue 1. We will show that some similar results hold in the infi-
nite case when the chain is positive recurrent (every finite irreducible
Markov chain is positive recurrent), but that for non recurrent or null
recurrent chains that part of the point spectrum on the unit circle may

well be empty. Following the notation of Chung [1], p. 12, let

Cl, C2""’Cd be the cyclic subclasses of Ij so that
a
U Cc.=I C.NC =0 if ris,

r=1

s (mod d).

—
-
-

end, if i eC, and p:g?) >0, then j € C, where T +n
d is the period of the Markov chain. Suppose the chain is positive re-
current. Let u be the sequence defined by

Y, = hr if ke Cr

where xl,...,xd are complex constants each having finite absolute value.
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(Il ] )P = Liuklp o = le k Z Oﬂk
r=1

< d max lx lp Eja. <o,
- r i
I'—"-’l,n.u’d k=1

Hence u e ¢F(Q) for each p e [1,0). Also, u e 4°(a), since

[ful]_ -supluk)l < e

Suppose keCr. Then

Tg)k = Z Py gty = Z Prg Mpsy = Mpid
JeCr-l-l

Thus T° here acts as a kind of rotation or as a shift operator since the

value of w_ is A, and that of (Tpu)k is Ay

Consequently, let xl,...,x be the dth roots of unity, i.e.,

d
2ni§
Lr=e 1"=l,oo-’dn
Now we have, for k ¢ Cr’
oni T oni L ol = omi =
(Th), = e d Z: —e % e 4. @
k= Py = Y
;Jc-:Cr+l
Thus we have shown that
2ni %

8
1
()

£
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2ni -‘]'-
and it follows that e e o(T®).

We can generalize these ideas in a very sﬁraightforward fashion. Let
v® be the function on I defined by

2nis
= e if keCp. ¢

w b
ol {0

Clearly V° e /2(d). For k e C,., we have

e omis B opis £ 2pis & onis &
(TPVE)=ZP v = 4 e d 4 d e dys
k ij 'y " ¢ k
27is %
Therefore, e € c(‘Ip) » and we have proved the following theorem.

Theorem l: In a positive recurrent Markov chain,

a {eEﬂlS/d: § = 1,2,...,d} c o(?), 1 <p < .

ILerma b: Let u e ,ap(a)' (l <p< o) be real, non-negative, and sub regular

“with respect to the operator Tp, i.e4,
(T%)kzu.k. k= 1,2,3,00- .

Then ('I%)k = u}{ fOI‘ k = l,g’o-. )

Proof: Using the sub regularity of u, we have

(Hul] )P = Z(“ P oy < E( Z%kuk) % -

J=1 k=l



1k

o0
Wow z pjkuk is the expected value of the discrete random variable u
k=1

with respect to the probability mass function {p. 51° P 2,...}. This ex-

pected value is finite for each J since

ijkuk = (T;pu)'] <o,

k=1

The function g(u) = W is convex for p > 1. Therefore, by Jensen's in-

equality (Loeve [7], p. 159 e)

[eo]

i P
ijk“i —>-< zpjk “k>
k=1 k=1

Hence,
o w
v
(Hull, ¥ < Z ( ij’uk) LJ L Py Uk %
J=1 k=1 J=1 k=1

- TCT mpe) s Z»iak Clislly) -

k=1 Jj=1
[>¢]

If, for any J, uj < ijku?, we would obtain strict inequality in this
c=1

expression which would be a contradiction. Thus

<«

Z pjk uk) j = 1,2,--. . Q,ED
k=1



15

Lemma 5: Let u be a real valued function in P(c), and let u' be the

3
positive part of uw. If u S_I‘Pu, then u+ < ™ u .
Proof's

u. if u, >0
J—

0 if u, <0

(‘I;p u+).j - ijk u;?_ Zp,jk Y = (TP u)j =Yy Zuj + QED
k=1 k=1

Lewmg, 6:7 If ue ,zp(c«:) and u=T u, then u is identically equal to a
constant.

Proof: Suppose u is real. By‘ lemma 5, we know that u+ < i u+
and by lemma 4, it follows that uw" = ® u¥, Therefore , either u:; =0
for every Jj, in which case u 1s non positive; or u; >0 for every J,
in vhich case u is a strictly positive function. Thus we see that either
U‘j <0 for every Jj, or uj > 0 for every jl In the same way, by con-
sidering the funq;cion V defined by Vj = U‘j - a (which also satisfies
™y = V) where a is an arbitrary constant, we see that either uj <a
for every J, or u‘j >a for every J. Now suppose u is not identically
equal to a constant, Then there exist two states 4 and k such that
uﬁ < uk. Choose any number a so that u 2 <a< Uy e This contradicts
u.‘j <a or uJ. >a for every J» Thus u is ldentically equal to a con=-

stant. The result follows by applying what has Jjust been shown to the real

and imaginary parts of u. QED
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Theorem 2: Suppose the Markov chain is null recurrent or non recurrent.
Then there are no eigen values of P (1<p<w) onthe unit circle
(having modulus 1).

Proof: Suppose there exists a complex number A\ such that Tﬁ = AU
for some non zero u in ,(J,p(oz) s and for which l)\,l = 1. TFor every

j = l)2,3,-tu we have

©

(Plul)y = Yoy lud 21 ) oy wl = Iyl = [g,]
k=1 k=1

Tt follows from lemmas 4 and 6 that Iujl is identically equal to

a constant, say lujl =Ce But ue zp(oz). Therefore,
©

o> ( Po ViufPa =F Ve, .
> (P = ) lylPay=c® ) o
3=1 j=1.

o8]
But Zozj = o for a null recurrent chain and for a non recurrent chain.
J=1

Hence c¢ = 0 and this implies that uj =0 for every J» This is a con~

tradiction. . QED



1.

2.

l".

De

Ta

-9,
10.

11,

17

References

CHUNG, Ko.L., ''Markov Chains with Stationary Transition Probabilities'?.
Berlin 1960.

DERMAN, C., ''Some Contributions to the Theory of Denumerable Markov
Chains'', Trans. Amer, Math. Soc., Vol. 79 (1955) pp. 541-555.

GANTMACHER, F. R., !''Matrix Theory, Vol. II'!' New York 1960.

HARRIS, J+B., ''Transient Markov Chains with Stationary Measures'!,
Proc. Amer. Math. Soc. Vol. 8 (1957) pp. 937-9L2.

KEMENY, J.G. and SNELL, J.L., ''Potentials for Denumerable Markov
Chains'', J. of Meth. Anal. and Appl. Vol 3 (1961) pp. 196-260.

KENDALL, D,, ''Unitary Dilations of Markov Transition Operators, and
the Corresponding Integral Representations for Transition-Probabiw
lity Matrices®'. In U, Grenander (Ed), Probability and Statistics
(Cramer Memorial Volume). Stockholm and New York 1959.

LOEVE, M., ''Probability Theory'' New Jersey 1963.

TAYIOR, A., ''Introduction to Functional Analysis''. New York 1958.

ROSENBIATT, M., *‘'Random Processes''. New York 1962.

VEECH, W., ''The Necessity of Harris! Condition for the Existence of
a Stationary Measure'', Proc. Amer. Math. Soce. Vol. 14 {1963)
Ppo 856"'860;

VERE~JONES, D.y ''On the Spectra of some Linear Operators Associated

with Queueing Systems®', Z., Wahrscheinlichkeitstheorie Vol. 2
(1963) pp. 12-21.



