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1. Introduction. This paper is concerned wi?h the systematic
development of the theory of cycles in matrices. We define a
cycle as a product of certain distinct elements in a matrix; the
Precise definition is given below in section 2 (Definition 2.1).
The concept is not new. The same idea has appeared both implicitl:
and explicitly in the literature ([3], [4]). our contribution
consists in exploiting the concept of matrix cycles and turning
it into an apparently new technique for studying problems in matri:
theory. The results have been somewhat surprizing.

This work has been primarily motivated by the desire to
solve an old problem, namely that of finding an appropriate general
zation of the well-known recurrance relation among the determinant:s
of principal submatrices of a Jacobi matrix (see [51, [6], [2].
[10]). The reason for desiring such a generalization, say to
various types of so-called band matrices (or generalized Jacobi
matrices), is based upon the facet that mést of the theory of
Jacobi matrices can be defived from the recurrance formula. As a
result of more than a yearts work on this'problem I can say that
the required generalization is quite subtle since there seem to be
at least two fruitful ways of generalizing. Nevertheless the
problem is solved for the most part in section 3 where, among other
things, we give a formula analogues to the Jacobi recurrance formul

for an arbitrary square matrix. This result is presented in



theorem 3. 1.

The concept of a matrix cycle and the determinant theorem
Just mentioned lead one in a natural way to introduce two
new types of equality between (square) matrices. T have called
these cyclic equality and principal equality, and the nature of
cyclically and Principally equal matrices is carefully investigate
in sections 3 and 4. An unexpected dividend which accrues from
these notions is a new method of characterizing the n M n
matrices to which the entire Perron-Frobenius theory may be
extended. (here the emphasis is on entire, since the basic
result obviously extends to any matrix similar to an irreducible
non-negative matrix.) This extension is given in section 5 where
we derive in a very elementary fashion the Moroshima theorem [7]
by the use of matrix cycles. We also show that a result first
pointed out by Debreu and Herstein [8] is an elementary consequenc
Oof the methods devised in sections 3 and L.

The fundamental approach developed here can be expanded and
extended to give results on other types of problems. One obvious
extension would be to the theory of totally positive matrices
and oscillation matrices ([5], [9], [10], [11], [12]). Another
direction for further study lies in the investigation of stability
of matrices, particularly to the theory of qualitative stability
([%#1, [13], [1%]). We have already obtained interesting results
in this area which will be reported upon in another place.

In order to keep the present paper to a reasonable length we

have deliberately left out many concepts closely related to those
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presented here and, of course, many other possible applications
of these concepts.

We restrict ourselves everywhere in what follows to the
consideration of square matrices of order greater than or equal
to three. This is mainly in order to avoid constant repetition
of exceptions. Anyone interested in the 2 X 2 case can easily
work out the results for himself.

Finally I wish to give credit to Professor J. Quirk (Economic:
and John Rice (Mathematics) of Purdue University for patiently
discussing many of the ideas contained herein on countless
occasions. I also wish to thank the Statistics Department of
Purdue University for inviting me to include this work in their

mimeograph series.

2. Notation and fundamental concepts.

A square matrix of order n will usually be written in the
notation of Gantmacher [1], A = (ajk)?. Meost of the remainder
of our notation is identical to that of Marcus and Minc [2] or
in the same spirit.

Let s = (1,...,n) be the set of the first n positive
integers. A set of r indices satisfying the inequalities
1 g_il < i, < ... < i, { n will be called an increasing multi-
index of length r and written in the form o= (il e ir)'

Qr,n is the set of all such i of length r in the set

80 0 r{n. (For r=0 the set u is taken to be the empty
get.) The set Qr,n contains (? ) distinct elements. If ‘
b€ Qr,nf is fixed, the set denotes the set of increasing

Pl

multi-indices of length 0¢ p {r in p. Clearly Qp u(: Qp n



For e » B! denotes the complimentary set of indices.

r,n
Let 1 € Qr,n be fixed, then Gj(u) will denote the set
of permutations of W and & (u) the subset of ¢ (v) consisting
of all cycles of length r. & (i) contains (r-1)t distinect
elements. Let T denote an element of /& (u).
We come now to the fundamental concept upon which the entire

paper is built.

Definition 2.1: Let u € Qr n be fixed. The product
5

2

a(n,t) = figr(i) Pipr(a,) v Pae(e )% () (2.1)

is called a cycle of length r in the matrix A.

Note that the cycles of length 1 are just the elements on
‘the main diagonal of A. On the other hand, a cycle of length
greater than 1 never contains an element on the main diagonal.
A= (ajk)g contains (r-1)1 (?) distinct cycles of length r.
Ever& cycle of length 'r can also be written in the form

a Ba 4 eee 8. . 8. . . (2.2)
Jydp Tdnds Jp-1dp Jpdq

Definition 2.2: A = (ajk)? and B = (bjk)g are said to be

i

cyclically equal, written A B, if for each 1 {r< n, ali

e Q. ,andall Te & (1), we have

a(ﬂ,r) = blu,t) .

Clearly A = B implies A = B. The converse is not true.
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In fact, we shall see below that we can have A = B with the
elements of A and B different everywherec except on thc noin
diagonal.

To see more clearly into the meaning of cyclic equality it
is convenient to introduce the principal submatrices of the matrix A.

For each O g;r'g_n and each p € we denote by A[n] the

r,n
principal submatrix of A in rows and columns p. For r = 0 this
array 1s empty and for r = n it is A itself. Let d(A[u]) denot.

the determinant of Alul : we write d(A) for r =n and set

d(alp]) = 1 if r = 0. Let o(i[u]) denote the spectrum of A[u]
and put
A n .
o(a) = YU U o(alpl). (2.3)
r=1 o€ Qr n

We shall call G(A) - the total spectrum of A.

Lemma 2.1: If A c B then for every 0< r{ n and every
woe Q.. d(alnl) = a(Blu]).

Proof: The proof consists in the observetion that.every permutation
is the product of cycles.

It should be remarked that simple examples can be found for
which A = B and corresponding noh-principal minors are not equal.

In view of the fact that A has (2) principal minors or order
r and (r-i)! (?) cycles of length r, it seems unlikely that the
converse of lemma 2.1 is true. We shall prove later that it is in
fact false and establish the precise relationships between cycles and
principal minors. 8ince this is so, there is room for another type

of equality.
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e . _ n _ n .
Definition 2.3: A = (ajk)l and B = (bjk)l are said to be
principally equal, written A<§ B, if for each 0< r{ n and all

b e Qr,n s

d(Aln] ) = a(Blul).
For future reference we find it convenient to record here

A A
Lemma 2.2: If A;; B or if Al;>B, o(A) = o(B).
=4
It will also be useful to recall that the matrix A = (ajk)g
i1s irreducible if for each pair of indices J s (j,k) there is a

chain

Q.0 5 84 .
Jd Jada se005 @, s 2@
1 1°2 Ip-19m jmk
with the property that
Qe: Qo 2 oos &, 0.
3373135 k7

3. Some combinatorial results.
In most of our work we shall assume that the elements of
matrix A belong to the real or complex field. The concept, of a -
cycle in a matrix is essentially combihatorial in character, however,
and we exploit this fact in the present section. Accordingly, the
elements of A may belong to any field, unless otherwise indicated.
Our first result is an apparently new formula for the expansion
of the determinant of a matrix of order n. I call this formula the
expansion of a determinant by principal minors. It is a natural
generalization of the well-known recurrance formula for the expansion

of the determinant of a Jacobi matrix.



Theorem 3.1: Let A = (ajk)g and let e Q be fixed. Then

~-1,n
a(a) = 2, ,a(afel) 1
-2 -
PE (OPIT s aabl) z o a(vr ). (3.1)
r=0 vVeR Tef(v?

r,u

In this formula v! is computed relative to 8, rather than
relative to u.
Proof: The proof of formula (3.1) 1is accomplished in three steps.
First we observe that each summand is a term appearing in the defini.
tion of thevdeterminant. Secondly the formula contains the correct
number of terms. In fact, let N be the number of terms in (3.1);

then

(n-1)t + % (n;l ) (-r-1)
=0 :

n-2 (
, n-1)¢
(n - 1)+ rfo ri(n-r-1)1

=
It

(n -r-1) r! =nt

Thirdly, it is only necessary to point out that no two summands are
equal. This proves the theorem.

With the aid of (3.1) we can now study more closely the
relationship between principal and cyclic equality of matrices.
For this purpose it is convenient to define the sums

Ary) - “’gﬁ (@) a(u,T) (3.2)

for each 1< r{n and each u e Q, Thus A(#) is the sum
. 2

0’
of the cycles of length r in Afn]. There are (r—l)! terms in



A¢ .
w)
' Using the sums A(u) our determinant formula becomes:

d(A) = au,g, a(aful)

n+1- ' '
+ = (-1) r s g d(A[v])A(V,). | (3.3

Lemma 3. 2: .Aé;IB implies that, for every 1< r<{ n and each

€ Q Ap y = N\
W€ St Bl = B)
Proof. The proof is by indirection on r. For r =1 the

statement is obviously true. Suppose the result true for

r{p-1 and all p e Q, Let p e Q By (3.3) we have

,nc p,nu

for any fixed i € Qp 1,u "
~Ls
o)

AALEG)) = s dlaluy))

+ P£2 (-1)Prl-a 5 | d(A[vj) s | t a(vt,t)
g=1 . vV € Qq’ul Te (g (vt)

s (1P Ay,
o

and

@i@i d(B[ull)

-2 . -
Pz (-1)P-a+1 b Cd(B[v]) = b(vt,T)
g=1 . v e -Qq’u'l - reﬂ(v‘ ) »

d(B[uoj) = b

4- (_1)P'Yr‘1 B(u ) .

In these formulas the complements v! are taken relative to Ky

so that = a(vt,r) = Afp ] and
Te@ (V) ( o §V’)



9
b b(vt,r) = Blp_] . By the: inductive hypotheses
T e & (vt) ’ °© (V')
these numbers are equal for A and B. Since d(A[uo]) = d(B[uO]),

it follows that A(g y = B , as was to be shown.
o

fin )
Definition 3.1: We say A = (ajk)? is of cyclic order p (K n) if
every cycle of A of length greater than p is zero.

In another place [15] we have denoted the class of matrices
of cyclic order two by the symbol ?#2. The best known subclass of
f{z 1s the class of Jacobi (tridiagonal) matrices. The class jyz
has many special properties." Lemma 3.2 makes it clear why this is th

case. We state the result formally in

Lemma 3.3: A 6? B 1is eguivalent to Aé; B if A and B are of
cyclic order 2.
We proceed now to study other combinatorial results based upon

the concept of cyclic order.

Lemma 3.4: If A is of eyclic order p 2> 1 there are at least
%[n(n~l) - p(p-1)] zeroes in A off the main diagonal.

Prodf: Each element ajk with J # k appears in precisely (n—z)!
n-cycles of A. It follows that we must set at least n-1 distinct
elements of A off the main diagonal equal to zero in order to make
all n-cycles vanish. Without loss of generality we may set
81ps++-,87,  equal to zero. Obviously all of the nonzero (n-1)-
cycles of A are then (n-1)-cycles of A[2,...,n] and we have reduced
the problem to the caée of a matrix of orde? n-1! The process may be
continued until we arrive at Aln-p+1,...,n] which contains cycles
of length g_p. Hence the least number of zeroes off the main diagonal

of A 1is
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1
p+ (p+ 1)+ ... + (n-1) = Za(n-1) - 2 p(p-1),

as was. to be shown.

Note that our proof also shows how to construct a matrix of
cyclic order p having no more than the least number of zeroes off
the main diagonal.

Matrices having 'imost!? off diagonal elements equal to zero
are of conslderable interest in a variety of problems in computation.
Of particular interest are certain types of so called band matrices.

In many applications these matrices enjoy a kind of symmetry.

Definition 3.2: The matrix a = (ajk)? is called combinatorially
symmetric if 23y # O dimplies o £ 0.

This concept appears in a pagper Qf Drazin and Haynesworth [3]
where such matrices are called special. These authors also introduce
the concept of a cycle - not by any name - but they make only limited

use of cycles.

| The usual definition of a band matrix (also called a generalized
Jacobi matrix) requires the nonzero elements to be on a prescribed
number of diagonals adjacent to the main diagonal and usually implies
combinatorial symmetry. Thus one defines A = (ajk)§ to be a

band matrix of order p > 0 if a5, =0 for ld - x| > p. The band
width of A 4is defined to be the number 2p + 1. A would then have
at most pn - p LE%£2~ nonzero elements above the main diagonal and
at most the same number below. Moreover, if r Z_p + 1, pef

r,n’
the submatrix Afu] would have at most pr - pﬁggll— nonzero
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elements above the main diagonal and a like number below. By

reversing the point of view just outlined we arrive naturally at

Definition 3.3: The matrix A = (ajk)§ will be called a generalize
band matrix of order p (K n} if for each p+ 1 {r{n, and all

b e Qr 0’ the submatrix‘ Aful has at most pr - p i%iil nonzero
2 .
elements above the main diagonal and at most pr - PLE%ll nonzero

elements below the main diagonal.

This definition includes the diagonal matrices, p = 0, the
Jacobi matrices , p = 1, and the class ﬁfl of [15} s p = L.

Before examining generalized band matrices more closely, let us
first note some ideas connected with definition 3. 2.

Ir a(e,r) = a is a cycle

» ) a'u LI I 2 a. .
1,T(11) i,7(1,) 1r7(1r)
of length r of A, then ’
= (] > A 3 LI ) a . ]
at {u,7) aT(ll,ll 81:(12)i2 (i),
is also a cycle of length r of A. We shall call a'(u,r) the

transpose of a(uw,t). Note that

2] @) = Ay (i) Bua(s) B,

Thus the product of transposed r-cycles in A ean be written as
the product of r 2-cycles of A. The following result is therefore

immediate.

Lemma 3.5: A = (ajk)g 1s combinatorially symmetric if and only
1f au,t) # O implies a'(u,7) # O for all 2 {r{n and
all n ¢ Qr,n‘

For our next result it is useful to have at hand the notion

of the j-th cross of the matrix A = (ajk)ﬁ- For fixed j this
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consists of the elements in the Jth row and column of A excluding
the element ajj’

Lemma 3.6: Let A = (ajk)§ » be combinatorially symmetric and have
Pn - p iﬁ%ll- nonzefo elements above the main diagonal where p
is an even integer satisfying 2<{ p<{ n. Then A is of cyclic
order p 1if and only if all nonzero off diagonal elements of A
are contained in p/2 crosses of A..
Proof: If all nonzero off diagonal elements of A are contained
in p/2 crosses of A it is easy to see that A can have no nonzero
cycles of length greater than pP. This result does not require
that A have a fall quota of nonzero off diagonal elements. To
prove the converse suppose the assertion false, i.e., suppose all
nonzero elements of A above the main diagonal lie in p/2 + 1
crosses. Each cycle of A of length greater than 1 intersects a
given cross of A twice or not at all. Among the cycles of A
intersecting the p/2 + 1 crosses of A containing nonzero elements
there must be one different from zero, because A has a full |
quota of off diagonal elements.

Actually it 1s not essential to assume A has enough nonzero
off diagonal elements to fill p/2 crosses in order to obtain such a
result. We have not attempted here to formulate the most precise
relation between even cyclic order and the location of nonzero
elements. It is known, for example, that if A 1is of cyclic order
2 and irreducible then A 1is necessarily combinatorially symmetric.

In order to better illustrate the connection between the ideas

we have been developing thus far, consider the following two examples.
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A = X x X o \\ )
bid X b's X 3
X X X b'd X
X b'd b'd X X
X X X X
0 X X X
A, = /X X X X X x N0t
2 \
\
X X X X X X :
X X X
0
b’ X X
» b'd b'd X
: 0
X X X

The x's in these examples are intended to denote the location

of nonzero elements of A. Both Al and A2 are combinatorially

symmetric and irreducible and both have the same number of nonzero

off diagonal elements. Both are generalized band matrices of order

P = 2. A, has no nonzero cycles of length greater than 4 while

2
Al has nonzero cycles of all lengths as is easily seen by con-

structing G(Al), the directed graph of A The key to the

1°

gintlarity between Al and A lies in the fact that both have

2
35 nonzero cycles. This motivates the following definition.
Definition 3.4: By the combinatorial type of A we mean the set

of integers (no,nl,ng) where n_ is the number of nonzero elements
on the main diagonal of A, n1 is the number of nonzero elements of

A above the main diagonal, and n is the number of nonzero elements

2



14

of A Dbelow the main diagonal.

Theorem 3.2: If A and B are irreducible and have the same
combinatorial type, then A and B have the seme number of non-
Zero cycles.
Proof. I have not been able to construct a proof of this theorem
which does not make use of graph theoretic arguments. Since A
and B are irreducible, their directed graphs, G(A), G(B), are
strongly connected (see [17],7[18] for the application of graph
theory to matrices). Hence each path leaving a vertex of G(A)
or G(B) can be regarded as an arc of a cycle containing the verte
in quéstion. The result now follows readily.

Incidentally, the hypothesis that A and B be irreducible

is essential as the following example shows:

A = /“x 0 X\ B = /x ple 0N\
/
[0 X 0 0 p'e 0
\ X 0 X v X 0 X

From theorem 3.2 we obtain immediately an estimate of the

number of nonzero cycles of a generalized band matrix.

Theorer 3.3. Let A = (ajk)g be a generalized band matrix of orde:
rls [% 1), then A has at most
. _ o
N= = (r-1)t (3) (3.1)
" I‘::l .

nonzero cycles.
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L, Elementwise characterization of principal and cyclie
equality.

We assume henceforth that all matrices are over the real or
the complex field. Our first aim is to study cyclic equality
more closely. It turns out that the set of matrices B such that
34? A for a given matrix A = (ajk)§ can be nicely characterized
if A 1is irreducible.

Theorem 4.1. ILet A = (ajk)? be irreducible and let B = (bjk)?.
Then ?éf A if and only if there exists a diagonal matrix D

such that d(D) ¥ 0 and

B = DAD . | (4.1)

Proof. We suppose first that ajk # 0 for all j and k.

Clearly B = A implies bjj = 8 J=1,...,n. Since
éj

33’
Py Py = 85k By 0 < K

we may put

It follows that B may be written in the form

B = /ag, PCIPR elnaln“\\ . (4.2)
-1
€10%201 Bop er €opfoy
-1 -1
€in anl €EnanE e 2hn

From this representation it is clear that the matrix E defined by
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E = , 1 €1o €13 - €1n ‘\
-1
/ € 1 €3 - €on }
-1 -1 /
eln ' €2n s s e e o o L /

must be such that every cycle equals 1. E is combinatorially

symmetric so that transposed cycles will yield the same relations

among the € e If 1< j< k, we have
1
€.. €. — = 1,
ij egk €5k
hence
€ = €

In particular ¢ € and an easy inductive

1,102 T S, 141 €ir1,i40
argument shows that
ik T €5, Spl,pe 00 Cke1x 9 < KL
If we now put ejk = crj/ck all these ralations are satisfied

and it follows that

B = D IAD

where D = diag (cl,...,cn), a(p) # o.

Now it is an easy matter to verify that every matrix B of
the form (4.1) is such that BA? A regardless of the presence of
zeroes in A. Hence it only remains to prove that B = A implies
(4.1) if the hypothesis 8510 # O 1is described.

. Suppose, in fact, that 25, = 0 for some { k. If 2 4 £ 0

and there exists a nonzero cycle of length 2_3 containing akj’
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we must set b, = 0. If akj # 0 and every cycle containing

Jk
akj contains a zero element of A, then A 1s reducible. Hence,
. . _ _ -1
if ajk = 0 and a3 # 0 we put bjk = 0 and bkj = € -
It akj = 0 we nust set bkj = 0 as well as bjk =0 by a
similar argument. If a. =0 for some J > % the situation is
similar except that we put bki = ekj or zero. Hence in any case

B still has the form {4.2) except that now some entries are zero.
Let il""’im be any set of distincet indices such that

By 4 9 85 5 5,2 5 is a chain of nonzero elements of A.

i i L
11to 273 m-3"1
If any cycle containing these elements is different from zero we

obtain as before the consistancy relationships

| 'ei,im = €i1i2 ce eim-lim .
Every sucﬁ feiatiohéhip is satisfied. by séfﬁing €5k = ch./Gk .
Since A is irreducible, at least n - 1 ejk differ from zero,
and the matrix D is determined up to the condition d4(D) # o.
This completes the proof of the theorem.

As may be expected, the characterization of the set of matrices
B such that ISE; A, A a given matrix is not quite so simple. Let
us assume first, as in the proof of theorem 4.1, that ajk # 0.
One finds agein that B must have the form given in (4.2). Now let

i < 3< k define a principal submatrix of order three. We must then

have

a 1 L -1 1

®15 %13 ®gk %9k ik %kt oS3 %31 Syk %k Cik ik

= 845 %3k %1 Y %31 %xy ik’

This yields the relation
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-1 -1 -1 B
(eij’ejk - eqdlely ry g 2xg - €1y €5k @51 % Bkl = O (4.3)

If the transposed three-cycles appearing in (4.3) are equal, then

necesgsarily
€55 €3k = €ix (b. 1)
In the contrary case either (4.4) holds or else
€rp = € € (Brs Buy 80 ) (Bas Bpy By ) T
ik ij “JkMiJ Tk Tki‘MIIL Tki Tik ’
It will be most convenient to introduce the choice function
-1, _ ,
{(aij i By ) {8y By 853 )7 = 1 , (4.5)

or ‘aij B Bq) (851 By 84T,

It is to be understood that the value 1 is to be assigned if either
three-cycle is zero or if both are zero, i.e., there is no choice in
this case.

One may prove by an inductive argument that the elements bjk’

j< k-1, of B have the form

Pyk = €331 "'ek-l,k{(ajj+1 Gi1ge2 aj+23)§aj+lj qgrodl 2g1ge2) Hx
x oo Hage g ey 2y (B ay B ajk)-l}ajk’

with bkj defined in terms of the reciprocals. In the case

ajk # 0 for all Jj and k, the number of choices for bjk is

QK”J—l if j< k and each pair of transposed three-cycles is
distinct.

These considerations lead us to formulate

Definition 4.1: Let A = (ajk)ﬁ be irreducible. We define the set

- V Vo
of matrices {A} by the requirement that A e {A}, A = (ajk)? satisfy
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(1) ’;'jk= 8 » if g -xl <1,

(2) Tk = (@50 25152 2009) (Bge1g 830301 2yge0) ) X
oo lege 2ok 2kg) (B Ben ajk)—l} %k’
if < k-1, and

(3) fgkj = %; 25y By

Extension of the arguments used to prove thoerem 4.1 now

permit us to prove

n . . n
Theorem 4.2: Let A = (ajk)l be irreducible and let B = (bjk)l .
Then B = A 1if and only if there exists a diagonal matrix D and

=
a matrix A in {A} such that d(D) # 0 and

5 = 01 Ap (4.6)

We note that the setv {A} is not empty since it contains A.
If 854 Ay Bq = Byq Bpy By for every triple i< j< k, or if
A 1is of cyclic order 2. Then {A} consists of the single matrix A.
Here is a consequence of theorem 4.2 which generalizes the

concept of a symmetric matrix.

Theorem 4.3: Let A = (ajk)§ be real and irreducible and suppose

(1) Sgn 8y = SEn oyy 5 J #£ k,

! - . .
(2v) 35 B4k Pt = 845 By Byx for every triple i < j< k.
_ ~ :
Then o(A) 1is a subset of the real line.
Proof: By (4.6) and the remark above, every matrix having the form

1

B = D "AD has the same total spectrum as A. It will suffice to

establish the theorem in the case where all ajk # 0. for j # k.
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2 continuity argument will then yield the result in the general

case.

)1/2

= /
Let us put €54+1 (aj+lj’ajj+1' i

Then

€k = [(aj+lj akk-l)(aj,j-l-l"' 2y 1k

and we shall have

-1
by = gsgn ajk)[(ajj+l ceeBy 30 (aj+1j ceclppy By

= 1/2
= gSgn ajk) (ajk akj) )

since the quotient under the first square root can be written as the

product of quotients of transposed three-cycles. Similarly,

byy = gsgn akd) (ajk akj)l/z .

Thus A 1is principally equal to the symmetric matrix B and the
theorem is proved.

In order to extend this result to complex matrices we introduce
.the concept of a combinatorially hermitian matrix. We say

A= (ajk)? is combinatorially hermitian if a is real,j = 1,...,r

JJ

and
ajk = ajk ij: dJ % k:
where O, is real and

Jjk

Theorem 4.4: TLet A be a complex, irreducible, combinatorially

hermitian matrix and suppose
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(l") SgN Gy = SEN Oy

Jk

11 _ .
(2 ) R 851 8y 81k i< i< k.

Then o(A) is a subset of the real line.

5. Matrices of non-negative type.

The aim of the present section is to introduce a class of
matrices enjoying the same properties as the non-negative matrices.
The results of section 4 on cyclic and principal equality enable us
to sort out all of the various kinds of matrices to which the Perrc:
Frobenlus theory has been applied (all finite matrices). Moreover,
the proofs are in every case considerably simplified. We shall
not dwell upon the implication of our results here; we hope to
return to this problem on another oeseasion.

The following definition is quite obviously motivated by

our previous work.

Definition 5.1: A = (aj will be called a Perron-Frobenius mat-

k)1
rix if A 1is irreducible and ajkz_o for all J,k. A will be
called a positive Perron-Frobenius matrix if A also satisfies the
condition ajk f 0 for j#k. A will be called a matrix of
non-negative type if it is principally equal to a Perron-Frobenius

matrix.

Lemma 5.1t Let A be a Perron-Frobenius matrix, then every matrix
in {A} 4is also a Perron-Frobenius matrix.

Proof: E%ery nonzero cycle of a Perron-Frobenius matrix is positiv
It follows from the definition of the class {A} that every elementv
is a non-negative matrix. Since A 1is irreducible, every element

of {A} 1is also. This proves the lemma.
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From lemma 5.1 we conclude immediately by formula (4.6)
that if B 1is principally equal to a Perron-Frobenius matrix.
1t must also be cyclically equal to a Perron-Frobenius matrix.

Therefore we have

Theorem 5.2: A 1is a matrix of non-negative type if and only if
A =B for some Perron-Frobenius matrix B.

The importance of the approach we are using rests upon two
aspects of the classical Perron-Frobenius theory which we are
able to preserve. These are the relation between the spectral
radius of A and the spectral radius of any principal sub-
matrix of A and the fact that A is invariant on a cone
(actually a minehedral éone in the sense of Krein and Rutnan
[19]).

Let us turn now to the results of Moroshima [7].

Definition 5.2: A will be called a Moroshima matrix if A is

real with 8x £0 if j # k, and

(1) aJ.J._)__O, j=1,...,n,
(@) ag a2 0. JAK
(3) aij ajk Qs > 0, 1i# J#k#1.

We shall say A 1is a matrix of positive type if A is cyeclicall

equal to a positive Perron-~-Frobenius matrix.
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Theorem 5:3: A 1is a Moroshima matrix if and only if A 1s a
real matrix of positive type.

Proof: If A is a real matrix of positive type it is clearly

a Moroshima matrix. To prove the converse, assume the conditions
(1)- (3) are satisfied. Clearly we must show every cycle of lengt
éreatér than 1 6f A is positive. Let a{u,t) be a cycle of

length r of A and write it in the form

P I - fys0eesd distinct.

Then

a(@,r) =

a, . a, ., a, . )a, . a, . a, ... {(a a. sa, . )
( 3132 3233 3331)( 3133 3334 3431) ( jljf—l Jr~lJr JrJl

fiod, as s Mas & oa, s Y. (ay sa, . )
U3 333" Ay dy dhdy Jr-191 J1dr
It now follows from (2) and (3) that

a{u,t) > 0

and the theorem is proved.

Actually Moroshima stated his theorem without the restriction
23k # 0, J # k, but his proof (which is quite different and much
more complicated than the above proof) does not extend to this

case. Moroshima also gave the condition
§3’) 835 85k 84x 2 O

in place of our condition (3); but these are clearly equivalent
conditions when we asgume hajk # O for J # k. One can con-~

struct a counterexample to the Moroshima theorem in the form
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given in [7]. Nevertheless the Moroshima result can be extended

to the nonpositive case by the folliowing considerations.
Assuming for the moment that 8y £ 0 for j# k and

replacing condition (3} by Moroshimi!s condition (3%') , one can

show that there exisés a permutation matrix P such that

PIAP = 7 Agq A T\ (5.1)

k fo1 Bop )

where All and A22 are square Perron-Frobenius matrices

and - A21’ - A12 are (in general rectangular) Perron-

Frobenius matrices. This fact was first pointed out by Debreu

and Herstein [8]. Now discard the hypothesis that C ik # 0

for j # k and assume there exists a permutative matrix P such
that A satisfies (5.1). We shall call such a matrix A a DHM

matrix (Debreu-Herstein-Moroshima matrix). The following theorem

follows easily from our previous results.

Theorem 5.4: TLet A be a real irreducible matrix. Then A 1is
a matrix of non-negative type if and only if A is either a .
Perron-Frobenius matrix on a DHM matrix.

Let us consider next the complex case. There seems to be
nothing comparable to either theorem 5.3 or theorem 5.4 in the
literature for the case of complex matrices. Yet it is obvious
that theorem 5.3 and our proof of the theorem do not in any way
rest upon the hypothesis that A 1s a real matrix. Hence we may

state



25

Theorem 5.3'¢ Let A be a complex matrix satisfying the
condition 25y A 0 1f J # k. Then A 1is of non-negative
type (actually, positive type) if and only if A satisfies
the conditions (1), (2), (3) of definition 5.2.

The analogue ofﬂtheofem 5.4 for complex matrices must be
obtained by starting with a Perron-Frobenius matrix B and

a complex diagonal matrix D = diag {zl,...,zn}. Setting

1

A = D "BD

-=1
we obtain ajk = Zj bjkzk'

hermetian. Beyond this fact it is not trivial to give an easily

This shows that A 1is combinatorially

recognizable form for the complex matrices of non-negative type
similar to the form (5.1) for a DHM matrix.

In fact, considér the Perron-Frobenius matrix

B= /+ 4 o+ ,
+ o+ o+ o+
+ o+
+ o + o+

and let A Dbe obtained by the diagonal matrix
D= (+, =, +, +) + i{-, -, +, =)
Here, of course, the magnitudes of the elements are irrelevant.:

D"! has the pattern given by

pt - (£5 = +u4) = i(-5 =, +, =)

from which one readily obtains
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R(A) = + - ,0 +"i + fj -+ + 0 + Ej s
- -+ - - ‘ 4 -+ + - + “
+ 0 + + } { - 0 + - ;
+ 0 T + / Y o+ 0 - + /

+ - 0 + - - o - 1)
-+ - - -+ 0

Fach summand in R(A) is a DHM-matrix, but R(A) itself is not

o

a DHM-matrix. Neither summand in TI(A) is a DHM-matrix.

We conclude this section with an examples of some
significance for the theory of finite difference approximations tc
differential equations. ILet A = (ajk)?, where 8y has the
property that

("1)j+k lajkl = ajk' (52)

(Such matrices were called sign-regular by Gantmacher and Krein
in their book [5] if the matrix |A| with elements lajkl
is totally non-negative. See also Karlin [11], [12]. The

diagonal matrix
L as _ (_qydrl
D = diag (dl,...,dn), dj = g 1}
has the property that
-1

D™ AD = |A]

so that A 1is a matrix of non-negative type.

Now it is easy to see that the standard finite difference
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approximations to the operator

dP
dxp

ol x aPu
(o) —5)

on a finite interval with sufficiently small mesh widths all lead to
e matrix of the form of A. The same is true of the approximations
known to the author for elliptic partial differential equations not
involving mixed partial derivatives. It is probable that a wide
class of such difference operators for boundary value problems of
elliptic type yield matrices of this form. In another place [16]

we have introduéed methods for analizing the form of such matrices
and we believe these methods could be applied to obtain information

regarding the above conjecture.
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