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1. Introduction. Robbins and Pitman proved in 1949 [3], that the distribution

T
of a linear combination z aixi, ai>1, can be expressed as a mixture of x2 dis-
i=]

tribution, whose“numﬁer of degrees of freedom are random variables distributed
like - the sum of independent negative binomials. Teicher used this relationship
in his 1960 paper [4] to demonstrate a mixture of gamma distributions, with a
common scale parameter, which yields a gamma random variable with a different
scale parsmeter. The relationship exhibited is:

(1.1) G(Ap,B) ~ G(A,B+) , O<A<o | O<p<l ,

where G(A,v) denotes a gamma random variable, with a scale parameter A; and M
denotes a random variable having a negative binomial distribution, with prob-
ability density

(1.2) pien] = () o8 (-1, m=0, 1, 2, . . . , O<<l.

The mixing identity for x? random variables, which was derived by Robbins and
Pitman in [3] is obtained from (1.1) and (1.2) by substituting B=v/2, A=1/2,
and p=(1+$)"!, O<¢<w, The effects of mixing gamma random variables with prob-

abilities following a Pascal distribution was also studied by Gurland [1,2].

t An earlier version of the present paper was published in April 1966,
Mimeograph Series No. 70, Department of Statistics, Purdue University.

tt Supported in part by a National Science Foundation Grant, GP-6129,
awvarded to the Department of Statistics, Kansas State University.
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In the present note we prove two theorems (in section 2), and apply the
mixing identities derivable to prove certain expressions for the mcments of
negative binomial random variables. The first theorem gives a necessary and
sufficient condition on the mixing probabilities of G(A,B+M) distribution laws,
which yield a G(Ap,B) distribution law. The second theorem proves that only
the family of G(A,8) distribution laws has the property that a mixture of powers
of its Laplace transform, y(s;A,B) say, with negative binomial probabilities

yields a Laplace transform of a gamma G(Ap,B) distribution law, i.e.,

(1.3) ) (’B> of (0-1)" (w(s;x,80)" = w(f;x.s) .

v
v=()

This 1s a further characterization of the mixing identities studied here. In
section 3 we utilize some of the mixing identities derivable from (1.1) to obtain
various moments of negative binomial random variables, and of their inverses.

The derivations of expressions for these moments by the aid of such mixing
identities becomes a very simple task, compared to the computation requirements
for deriving those expressions directly. In section 4 ve show a case of a linear
model (ANOVA model II) in which a mixtrue of F-distributions yields an F-distrib-

ution, which is a mixing identity derived from (1.1).

2. The characterization of mixing probabilities. Consider an additive Markov

process X(t), for which:

-sX(t§ _ (_A_)“t'"
(2.1) E {é T \A+s ’

where, 0<i<», -A<s<», t>0, a>0 and v>0. Let T be a random variable, independent
of{#(t); tzé}, and such that: P[T<x] = F(x). We consider the problem of char-
acterizing the conditions under which X(t) has a gamma distribution. In other

words, the first problem we consider is that of characterizing the distribution

F(t), which satisfies:
at+y B

Ay

(2.2) { F(dt) (ﬁ;)
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for some u>0 and B>0. F(t) is the mixing probability distribution of the
(random) gamma distributions, G(A,aT+y), which yield a gamma distribution G(p,B).

It is sufficient to solve equation (2.2) for 8>0. Setting,

A )¢ -u
(2.3) X:é) =e , 50, u0,
we obtain,
w - By _u
(2.4) Je " Frar) =e © pBE-(l-p)e ¢ ]"B ,
0

for u>0, p-uk'l, 0<p<l. The R.H.S. of (2.4) is the Laplace transform of a
negative binomial distribution. This implies that aT-(B-y)is a negative bin-

omial random variable on the non-negative integers, i.e.,
(2.5) rE- al(g-y) + a7} n] - (‘%) o G-, m=0,1, ...

for B>y. We have thus proven that a mixture of G(A,at+y) distribution laws,
which yields a G(Ap,B) distribution law must be a negative binomial ome. Using
characteristic functions, it is simple to verify that a negative binomial of
(GA,at+y) distribution laws yields a G(Ap,B) distribution law. We have thus

proved.
Theorem 2.1: A mixture on t of the family of gamma distributions laws G(A,at+y);

'£20; is again a gamma distribution law G(Ap,8) if, and only if, the mixing dis-
tribution law is a negative binomial, with parameters p and B, on the lattice

points
(2.6) L+ k=0,1,2, .. .7, 6.

The mixing identity (1.1) is a special case, where y=B, a=1 and T=M. We

proceed now to state and prove the second characterizing theorem.

Theorem 2.2: Let ¥(s) be the (bilateral) Laplace transform of a distribution

function, and let ¥(s) satisfy the equation

(2.7) ! (‘3) o (o-1)V v** (o) = w“(§>,

y=0
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in a neighborhood of s=0, with 0<p<l, 8>0. Then, the distribution function is

either degenerate or negative exponential.

Proof: From (2.7) with B=l we obtain the equation,
(2.8) p¥(s) {1-(1-p) ¥ (s;_-l'=1 = w(—f-,‘-) .
Since y(s) # 0 for s>0, set 6(s) = $1(s). Then, (2.8) is reduced to

(2.9) pE(%) -zl = 8(s) - 1.

Setting || (s) = (8(s)-1)/s, we obtain:
(2.10) TT'(r) = TT.(pT) » for 1>0.

Hence, by iteration,
(2.11) T 65 =TT , for all k = 1,2,...

Since [ (s) is analytic at s=0, equation (2.11) implies that ||(s) = constant.
Therefore,
(2.12) ¥(s) = (14Cs) 7!,
where ¢2>0. Hence the distribution function, of which y(s) is the Laplace trans-
form, is either degenerate (c=0) or = negative exponential (c>0).

Finally, if.w(s) is the Laplace transform of the negative exponential law
G(x,1), then ws(s) is the Laplace transform of the gamma distribution law G(A,B).

Thus, theorem 2.2 proves (1.3).

3. Extensions and applications of mixing identities. In the present section we

derive from mixing identity (1.1) further mixing identities, which relate x?, F
and B-distributions, and indicate few possible applications of these identities.
As is well known, a x? random variable with v degrees of freedom is related

to a gamma random variable G(A,p) according to the relationship,
G(h,p) ~ 5 xA2pl.
’ 25 .
Thus, identity (1.1) yields the following mixing identity of x2 random variables:

(3.1) (148) x*[vi ~ x? [v+2m] , O<ps=,
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v=l, 2, . . . , where M is a negative binomial, with density

m m
o) =~ (vi2) (AN

(3.2)
(+p)¥/2 N m

P
v,

Relationship (3.1) yields immediately the expected value and variance of a neg-
ative binomial random variable M, having a probability density (3.2). Indeed

from (3.1),

(3.3) ) B{2v)) = & f2tveau}
= E fvim} .
Hence, since E{xz[v]} = v, we obtain,
(3.4) Ev.¢{M} =12’-¢ ,v=1,2, ., ., 0o ,
Similarly, from (3.1) we have
(3.5) (1+4)2 Var{xz[v-]} - Var {x?(v+2u]}
“E, {Vat {xz[wzmlu}} + Var, o {E{xz[v+zm|u}} o

From (3.4), (3.5) and Vataflev]} = 2 , we obtain
(3.6) Var, {u} - Y o0, vel,2, ..., 0o .

A straightforward computation of the first two moments of M, without a use of
identity (3.1) is considerably more complicated.
Division of (l+¢)x2[v] by an independent x2[s]/s, yields according to (3.1)

to following mixing identity for F-distributions,
(3.7) (1+$) v Flv,s] ~ (v+2M) F [v+2M,s],

for every v=1,2, .. .and s =1, 2, , ., , ; where M has the density (3.2).

Since

2 2.
ewe) -5y e

identity (3.7) implies,

(3.8) E, R { (v+2M) (v+2M+2)} = (1+$)2 v(v+2) ,
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for ail v = 1, 2, ¢ <« . . and O<$<= . This is another application of a mixing
identity, which can yvield the second moment of M. Howsver, exnression (3.%) is
more useful for the derivatiou of the expectation of (v42M~2)~} (v#2M-4)"}, when
v>4, We start, however, with the derivation of a double mixture identity, which
yields the expectation of (vi2M-2) "}, for all v>2, Dividing (1+¢)x%[v] by an
independent (14} x?[v], we obtain,

vy

(3.9) Flv,v] ~ o 2M,

Flv+2My, v+2M, ],

where M; and M; are independent negative binomial random variables, identically

distributed like (3.2). Hence, for every v>2, the expectation of (3.9) yields,

v_ . v+2M; -
(3.10) w2 Ev,¢ {\H-ZMZ—Z} » V2, 0<¢<

Since M) and M; are independent, we obtain form (3.4) and (3.10),

-1 = ______1 (]
(3.11) Ev,¢ {1v-2+2M?.jl 1+6) -2 » V22, 0<¢<

This result proves that for all v>2, ;:%i%ﬁ-is an unbiased estimator (when v is

known) of p = (14¢)~!, where M is a negative binomial with density,

- od »
P[M=m] = (véz)pv"'z(p-d)m y,m=20,1, . . . , O<p<l,

To obtain the expectation of (v-2+2M)~!(v-4+2M) "}, for all v>4, we consider the

second moment of F{v,v]. From (3.9) we obtain,

(3.12) E (V2M)) (VM3 #2) ) v(v$2)
: v,9 | (v-2-2M3) (v-4-2M5) ) (v-2)( ~4) )
The independence of M; and Mz, and fbrmula (3.8) imply, for all v>4, O<p<» , ,
- <1yt =1 { = 1
(3.13) B Ev,¢ {kv 242M) “* (v-4i42M) _} = TT-D & °

Mixing identity (3.9) cannot be applied for the derivation of E {}1+2M)'£} when
v=l, It is interesting to note that straightforward but somewhat novel derivations
'yield for v=1,

-10 o A —1‘/_2_ : -
(3.14) E¢ {(1+2M) } /_sin ( T+¢ > , 0<¢<o

¢
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For v=3 the result is simpler, and is given by (3.11); namely:
E {1+2M""1} = 1+ .
3,5 1 (1420 (1+9)
We conclude the present section with another example of a useful application
of a mixing identity derivable from (1.1). It is well known that if Gi(X,p) and
G2(A,q) are two independent gamma variables, having the same scale parameter

A,0<iz», then
GI(A’p)
A
S R YN A U

where B(p,q) desingates a beta random variable, with expectation p/(p+q). We thus
obtain, from relationship (1l.1) the following mixing identity:
1

~5;
1+ S ° Flva,v;]

(3.15) » B(;‘ vy, 2 v2>, 0<p<1,

where M has the negative binomial distribution (1.2). In particular, for V1=V,

one obtain,

1 ;_av.l.)‘
(3.16) T FIv,v] A B(/z udM, 5V , O<p<l.

This relationship (3.16) can be utilized in the following problem; Consider two
random samples Xj, - . . , Xn and Y3, . . . , Yn from normal distributions
'}((u,oi) and JVku,a;), respectively having a common mean u, -w<u<», and an unknown

variance ratio, p-og/oi > A common estimator of u (see Zacks [5]), is:

-~ _ Sa/s; _ 1
(3.17) P o= Xn I;§;7§; + Yn T:§;7§; .

n
where in and ?n are the respective sample means, and S; = X (Xi—in)z,
i=1

n
S5) = z (Yi-?n)z° The efficiency of this unbiased estimator, relative to that of
i=}
the best unbiased estimator when p is known, is given by:

(3.18) effo(ﬁio) = i - .

( 140F2(n-1,n-1]
(14p) E}. (l+pF[n—1,n-l])2}

The computation of the expectation in the denominator of (3.18) is a very tedious

task whenever n>3. For n=3 one can show that,
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(14972(2,2] | _ 2(62-1) - 4o 1n o
(3o19) E ( (lﬂF[Z,ZJ)Y} = (0_1;3

Very tedious computations yield, for n=5,

(3.20) . 1+pF2{4,4]
(1+pF[4,4])2

E—26p+26p3-p“-6p 1n p-36p2 1n ;:’-6;)3 lng o

(p~1)3
To obtain a closed formula for the expectation in the denominator of (3.18) when
n>5 is a very difficult task, which becomes iapractical as n grows. Numerical
integration is always a possible solution. We utilize here the mixing identity
(3.16), for v=n-1, to give this expectation in a power-series form. From (3.16)

we obtain, for every 0<p<1,

(3.21) E, {(l-v-pF[v,v])“z} =E {32( + xx,:_,-)}.

It is easy to verify that,

o) - iy

Hence, from (3.21) and (3.22), for every 0<p<l,

3,29 r, { (vortonn) 2} - 1 ] Qe <—v/2) o2

ao(v+m) (v+1+m; m
Furthermore, for every 0<p<l,

F2[v,
(3.24) E {(liﬂg \‘j})‘} - {(1 -8( %+, 2)>}

l
P
2 v
1+pF{v v]) v 6.-8 5+M’ —)>

p2F2(v,v} (-

Indeed, (1+pF[v,v])z'% <
Thus,

1 v+2M
3.25) E Zuw{v vn} b FE

Py E gv+2MZgw+2+2M2
4 “v,p (viM) (v+14M)

Combining (3.23) and 3.25), we obtain, for all 0<p<1,
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1+DF2[\’L\’] - _]; Qi]; v _viZ_m; °
(3.26) Ep {(lﬂp[v,\!])?} p E+ 4 peo vim

of ¥¥2#2m 4\ [-v/2 V2 (e m

(\)+1+m p+l> ( m) ° (b -

4. An example from linear models. Consider a Model II in ANOVA, namely,

(4.1) Xi = a + e 1=1,...,n)

where-ei ~ N(0,02), for all 1 = 1, « - . , n, independently of a; and a ™~ N(a,B2),

For testing the hypotheses;

(4.2) Hp : a =0

versus

consider the test statistic:

(4.3) F "n-}'t—' ’

. , m
where X is the sample mean,'% f Xi , and 02 1is the sample variance,
i=]

m
;%I z (Xi - X)2. To exhibit identity (3.2) with v = 1 and s = n-1 consider
i=]1
the distribution of F, under Hg . The conditional distribution law of 02, given

a, is

~ o2
;Z:(o ia) = JZ&ISI xz[n-ll) independently of a.

- - - 2
Hence, X and 02 are independent, Moreover, Jf(X|a) =)Y?a,g;?. Hence,

- 2
JC(nlea) = ét?ozx2[1;§f§]). The conditional distribution of F, given a, is
20

2
therefore like that of the non-central F[1,n-1;1]; where A = &2 According

202
2
to the assumption of the model, A » %-lell, where ¢ = 55; . Thus, since
o

x%[1,A] ~ x2[142M], where M is a Poisson random variable with parameter A, ome

obtains:



(4.4) P[M = mn] = :T!f e \"ap Exz[l]f_ﬂ

It follows that, under Hyp,

o 2m> n
(4.5) P[Fix].-L ) (_“L (_L> F( % | 142m, n-1> .

m n=0 4111 1+ 1+2m

On the other hand, since Var {I}= 52 4 02/n, the distribution of nX2, under Hg,

is like that of (mB? + 02) ¥2[1] = 02(1+$) x2[1]. Hence,

niZ
F = —:; ~ (1+4) F[1l, n-1]. Therefore,
o

(4.6) P[F 5_x1'= F(l—:‘_; | 1, n-1> .

The comparison of (4.5) with (4.6) yields the mixing identity (3.7) with the

special values of v = 1 and s = n-1.,
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