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ON THE DISTRIBUTION OF RANGE FOR A GENERAL

*
SYSTEM OF DISTRIBUTIONS

by
IRVING W. BURR

This paper gives exact results on the distribution of the sample
range for n =2 to 10, for a general system of distributions.
The system has Q3,0 shape-parameter combinations covering most
of the regions for main Pearson Types IV and VI and an important
part of that for the other main Type I. Exact results for the
distribution of the range were obtained for the following charac-
teristics; standardized mean and standard deviation, curve shape
parameters Y350, and coefficient of variation, for 81 popula~-
tions, Thus the effect of non-normality on the range distribution

for small samples is quite thoroughly covered.

1. INTRODUCTION
Since the early paper by Tippett [45], interest in the distribution of sample
ranges and associated applications to hypothesis testing and estimation has stead-
ily growm, perhaps reaching a climax around 1955, It is now possible to substi-
tute the range in small samples or the averége range in larger samples for the
sample standard deviation and perform most of the standard tests and interval
estimates. The loss of efficiency has been figured in most cases, being surpris-

ingly small in some,

Research sponsored in part by a grant from the General Electric Foundation.



The distribution of the range and mean range for samples from a normal popula~
tion has been well covered, for example, Harter and Clemm [22], Pearson [34],
Pearson and Hartley [36,37], Resnikoff [40] and Tippett [45]. The distribution
of the range for correlated normal variables is given by Gupta, Pillai and Steck
[20]. Distributions for approximating the distribution of the range from a nor-
mal population appear in Cadwell [7], Cox [10], Patnaik [33], Pearson [35] and
Thompson [44],

The calculation of the distribution of the range for the normal population is
quite formidable, Faced with such difficulty which is often greater for other
populations, research workers have (a) gone to very small samples, for example,
Bland, Gilbert, Kapadia and Owen [4] and Shone [L42]; or (b) sought asymptotic
results: Cadwell [8], Cox [9], Elving [15], Gumbel [18,19] often making restric-
tive assuﬁptions such as symmetry of f(x) or all moments finite; or (c) taken
rather specialized populations: Belz and Hooke [3], Cox [11], David [12],
Hyrenius [25]. Range distributions for discrete populations were considered by
Burr [6] and Leti [[28]. An extensive experimental approach was used by Niemann
{32] in which 4000 samples of four each were drawn from a gamma distribution of
skewness 1.15. Some inequalities for moments or probabilities making few restric=-
tions on f£(x) have also been developed: Barnard [2], Hartley and David [23],
Masuyama [29], Moriguti [31], Plackett [38] and Winsten [L6].

Applications to point estimates of ¢ or 02 are given in David [13], Davies
and Pearson [14], Godwin [16], Grubbs and Weaver [17] and King [26]. Applica-
tions to interval estimates of parameters and to tolerance limits appear in, for
example, Banerjee [1], Harter [21], Klerk-Grobben and Sandberg [27], Mitra [30],
Resnikoff [39] and Terpstra [43}. Rather than give references to the many inter~
esting tests of hypotheses involving the range, it seems best to mention only a

recent book by Sarhan and Greenberg [41] in which many references may be found.



Previous papers have not shed much light on the effects of ordinary departures
from normality, being largely confined to specialized non-normal curves, such as,
the exponential, rectangular, logistic, and log xz. Cox [ll] comes the closest
to generality, since he uses two normal distributions to obtain desired 350,
combinations, but the two normel distributions are taken to be so far apart as to
virtually not overlap, thus giving a bimodal population,

Using a general system of distributions, Burr [5] and Hatke [24], it was possible
to calculate the first four moments of the distribution of the range for 64 non-
normal populations, using sample sizes from n = 2 to 10, This sketches out a

picture of the effect of non-normality on the distribution of the range.

2, THE SYSTEM OF DISTRIBUTIONS
The simplest form of this system is the distribution function F(x) given by

Burr [5]:

1= (l+xc)'k x>0 (1)

F(x)

= 0 x<O0 R

where c¢ and k are positive real numbers, The values of ¢ and k readily
yield moments as beta functions. Then by a linear transformation on X, @ and
o and standardized moments a3 and @), may be fitted to data, As is shown in

a paper on medians, submitted to the Journal of the American Statistical Associa-

tion, the a3,ah combinations covered by (1) include a very large part of thet
for the main Pearson System Types IV and VI and an important part of that of the
other main Type I, that is the beta distribution. Also it includes the d3’“h
curve for bell shaped Type III (or gamma) distributions, and others,

Figure 1 shows the 0350, combinations for all but the last population of

Tables 1 to 3,
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3+ CAILCUIATION OF
THE DISTRIBUTION OF THE RANGE
The joint density function for the extreme variates Xy < X, of a random

sample of n from a population with continuous distribution funetion F(x) is

£0x1,%,) = n(a-1) £(x;) [P(x)) - F(x )12 £z ) . (2)

Since the range R = X - X a change of variable gives

l’
h(x;,R) = n(n-1) £(x)) [F(x+ R) = P )" 2 2(x+ B) . (3)

Then to obtain the density function of R, say g(R) one integrates out X
Thus distributions for which F(x) is explicit and not an integral are intrin-
sically easier to handle than are those like the normal where F(x). is an

integral,

Substituting (1) into (3) and letting X, be x:

h(x,R) = n(n-l)czk2 xc"l(x+R)c"l .

([1+°77F o 1 + (m)87H22 (4)

Integrating x from O to « would yield g(R). Then

“'".R = E[RJ] =J‘°°

&) n(R) 4R = fm ‘r r n(x,R) ax &R . (5)
J: o] o 0

Direct use of the last expression was made by substituting in h(x,R) from (k).
Since the integration was not tractable, the double integrals were evaluated by
approximation. Previous work Burr [5] sufficed to choose appropriate intervals

for x and R so that 200 increments in each direction gave adequate coverage,



Double precision on an IBM 7094 was used to minimize errors due to heavy cancel-
(=< I o <]

lation, and a check of f J h(x,R)dx dR against 1 was also used. Further
the results for a nearly gor;al case of 1 checked normal curve results very
closely. |

The cases of (1) calculated were the él combinations of ¢ and k running
2,35,+004,10 each, Since the sample sizes n were also 2 to 10, this gave
729 distributions of the range, For each of these, “R’GR’Q3:R and @,.g Were
found., Already available Burr [5] were By Oy s¥3. 0 and @, for the 81 popu-

lations, From the foregoing were found, for all cases, the following quantities

of interest:

dy =g / b, = standardized mean range ' (6)
dy = o / o, = standardized sigma for range (7)
vV =op / Wy = coefficient of variation of range (8)
d, / d2,normal = comparison of E(R) to normal value . (9)

Those in () and (7) are of much interest in qualitj control charts,

The results calculated for ¢ =2, k = 2 are somewhat unreliable, since the
check sum for the double integral with R® was not exactly 1, due probably to
the extreme tailing out. The total was only .9718 for n = 10. There was also

a very slight deficiency for ¢ =2, k=3 and ¢ = 3, k = 2 the lowest sum

being .9985,

L. CHARACTERISTICS OF THE DISTRIBUTION OF
THE RANGE
Figure 1 shows the collection of curve shape parameters a3,ah for the popula-

tion whose range distribution characteristics are given in Tables 1 to 3. As



may be seen quite a substantial path is sketched out in a3,au space, by the
collection.

Table 1 gives the standardized mean and standard deviation of the range, that
is, so that the population Oy is adjusted to unity. The _d2 and d3 values
are such that if multiplied by any desired Oy they would provide b and Ops
as for example in quality control work for the R chart with standard oy given.
It has been pointed out in the literature, for example Cox [11], that d, values
vary but little. Table 1 certainly confirms this. Moreover, d3 is also quite
stable, gradually increasing as the Population curve shapes become more non~normal,
while d2 is decreasing, Sample size has much less effect on d3 that is, Ops

than upon 4,, that is, E(R).

03
Table 2 presents a comparison of d2 values for the collection of populations
relative to the normal curve values of d, (often called d, in the literature).
There is high stability until the skewness reaches about 1.0, with most d2 values

below the normal dn.

The coefficient of variation VR of the range is quite important because it
indicates the relative variability of R's around their mean, Thus the VR's
indicate the relative error in estimating Oy for a population when using R/d2
as estimate, Such coefficients thus have a bearing on the efficiency of the point
estimate, The coefficienté tend to increase as the populations become more non-
normal, but decrease steadily as n increases to 10, See Table 2.

Table 3 presents the curve shape characteristics of the range distribution for
the collection of populations., For only slightly non-normal populations) a3 for
the range decreases as n increases from 2 to 10. But for moderately non-
normal populations there is a minimum o

3 at some n, beyond which o3 again

increases, The normal curve has the same trend, Harter and Clemm [22], with the



TABIE 1. VALUES OF STANDARDIZED MEAN bp / o, =d,
AND STANDARD DEVIATION oy / oy, = d3 FOR RANGES

FOR VARIOUS POPULATIONS, FOR n = 2,3,k4,5,8,10

Population d2 3

oy o, c k 2 3 Y 5 8 10 2 3 4 5 8 10
=01 3,01 5 6  1.13 1.6 2.06 2.33 2.85 3.08 B85 .89 .88 .87 .82 .80
.00 3.33 7 3 1.12 1,68 2,05 2,32 2,85 3,09 86 .91 ,91 .90 .88 .86
Ob 3,65 10 2 1.1l 1.67 2,0k 2,31 2.86 3.10 87 .93 9k .93 ,2 .01
.07 2,88 410 1,13 1.70 2,06 2,33 2.84 3.07 B85 .88 .87 .85 .19 .77
A1 3.67 9 2 1,14 1,67 2,0k 2,31 2,86 3.10 87 .93 94 .93 .92 .91
12 3,19 5 4 1.12 1,69 2,05 2,32 2,85 3,08 .86 .90 .90 ,88 .85 .83
8 3.05 4 6 1,13 1.69 2,06 2,32 2,84 3.07 B85 .89 .88 .86 .82 .80
19 3.7 8 2 1.11 1,67 2,04 2,31 2,85 3,10 87 .93 94 .9k 02 92
28 3,18 5 3 1,12 1.68 2,05 2,31 2.85 3,09 86 .91 .91 .91 .88 .87
29 3,86 7 2 1,11 1,67 2,04 2,31 2.85 3.10 87 .93 9k .9k ,93 .92
34 3.36 4 4 1,12 1.68 2,05 2,32 2.84 3.07 86 .90 .90 .89 .86 .8k
.35 3.0k 3 10 1,13 1.69 2,06 2,32 2,83 3.05 85 .89 .87 .86 .81 .78
43 k1 6 2 1,11 1,66 2.03 2,30 2,84 3,09 .88 .94 .95 .95 .ok .ok
A8 3.33 3 6 1,12 1,68 2,05 2,31 2.83 3.05 86 .90 .90 .88 .85 .83
51 3.87 4 3 1,11 1,67 2.04 2,30 2,83 3,07 87 .92 .93 .92 .91 .90
.56 3.60 3 5 1.12 1,68 2,04 2,30 2,82 3.05 L7 .91 .91 .90 .87 .86
b 463 5 2 1.10 1,66 2,02 2,29 2.83 3,08 88 .95 .96 .97 .97 .97
68 h.oh 3 L 1,11 1.67 2,03 2,29 2,82 3,05 .88 .93 .93 .93 .ol .90
.88 L,12 210  1.10 1,66 2,01 2.27 2,78 3,01° .88 9k Ok 93,90 .89
92 5.13 3 3 1,10 1.64 2,00 2,27 2,80 3,04 89 .96 .97 .98 .98 .98
.96 5,04 L 2 1,09 1,6k 2,00 2,26 2,80 3.05 .90 .97 1.00 1,01 1,03 1,03
1,01 471 2 7 1.09 1.6k 2,00 2,26 2,77 3.00 «90 97 97 9T .95 .95
1.09 5.12 2 6 1,09 1.63 1.99 2.25 2,76 3.00 .90 .97 .98 .99 .98 .08
l.22 5.83 2 5 1.08 1.62 1.97 2.23 2.75 2,99 .91 .99 1,01 1,02 1,02 1,03
1.3 7,36 2 L4 1.06 1,60 1,95 2,21 2.73 2,97 »93 1,01 1,04 1,06 1.09 1,10
1.59 10,81 3 2 1.06 1,58 1,93 2.19 2,73 2.97 .93 1,02 1,05 1.08 1,12 1,1k
1,91 12,46 2 3 1,03 1.55 1.89 2.15 2.67 2,91 .95 1.05 1.09 1.12 1,16 1.19
hiog =« 2 2 +92 1,37 1.66 1.89 2,33 2.53 .89 ,99 1.03 1.06 1,12 1.16
Normal 1,13 1.69 2,06 2,33 2,85 3.08 85 .89 .88 .86 .82 .80



Population

TABIE 2,

AND OF d2,;popn. / d2,normal

POPUIATIONS AND SAMPIE SIZES 2 TO 10

d2 ,PopN. / d2 ,hormal

Coeff. of Variation, V

VALUES OF COEFFICIENT OF VARIATION AND
FOR RANGES FOR VARIOQUS

ay o c k 2 L 5 10 2 3 Y 5 8 ! 10
-0l 3.00 5 6 1,000 1.C00 1,000 1,001 756 526 JL28 372 ,288 .259
00 3,33 7 3 «993 4995 L.99T 1,006 J769 541 b5 ,389 ,307 .278

Lk 3,6510 2 998 .990 .99% 1,009 781 .55k 459 Lhok .323 .20

07 2,88 L4 10 1.003 1,002 1,001 .997 .750 .518 .4k20 ,364 .280 ,250

JA1l 3,67 9 2 .988 .,990 ,994 1,008 .781 554 459 Lok 323 ,295
12 3.19 5 L 997 997 ,998 1,002 .763 .533 .L436 .381 .298 .269
18 3,05 L4 6 1.000 .999 .999 .998 .756 .525 ,L28 .372 .288 ,259
19 3.7k 8 2 987 .990 .993 1,008 .782 .555 460 .Lo5 324 ,296

28 3.8 5 3 0992 .993 .,995 1.003 L772 543 k7 (392 ,310 .282

29 3.86 T 2 .986 .989 ,992 1,007 785 .557 462 LOT7 326 ,298
34 3,36 4 4 <99k L1995 .996 .999 J767 537 Juko ,385 ,302 27k
.35 3.04 310 1.000 .999 .998 .993 .756 .523 k25 ,369 .285 ,256
A3 L1162 .983 .986 .989 1.00L .790 562 467 k12 ,332 304
A48 3.38 3 6 99k .99k ,993 ,992 768 .536 439 .383 .300 .272

D51 3.87 L 3 .987 .989 .990 ,998 .782 552 456 Lol ,320 .292
56 3,60 3 5 990 991 .991 ,992 J776 W54 Lh7 301 ,309 .281
B L6635 2 978 981 .98k 1,000 801 ,572 .L77 423 ,343 .316

68 L,oh 3 L4 .98L  ,985 ,986 ,991 .789 .557 k60 405 323 .295
88 k.12 210 978 978 .978 .979 802 ,566 467 410 ,325 294
.92 5,13 3 3 972 J9Th .976 .987 .81k ,582 486 431 .351 .324
.96 5.94 4 2 .966  .969 .973 .991 825 ,595 k99 .uh5 ,366 .339

1,01 Lk71 2 7 970 970 971 .975 .819 ,583 L84 428 .3hk4 .315
1.09 5.12 2 6 965 .966 .967 .973 .830 594 495 139 .355 .327
1.22 5,83 2 5 957 4959 .961 .970 846 609 .511 455 372 .3
1,43 7.36 2 4 Okl 9k6 99,96k 873 .635 ,536 480 ,398 .370
1.59 19,81 3 2 935 .938 .943 ,966 878 .6h2 545 h9o ko9 ,382
1,91 12,6 2 3 915 .918 ,923 ,9k5 918 677 .577 .520 ,L437 .LoB
4,09 = 2 2 812 ,808 .811 .823 O71 724 621 .56L4 482 456
Normal 756 .525 h27 .371 .288 .259



TABIE 3. THIRD AND FOURTH STANDARD MOMENTS 350,
FOR RANGE DISTRIBUTION FOR VARIOUS POPULATIONS
AND SAMPIE SIZES 2 TO 10

Population g o,
ag @ ¢ k 2 3 b 5 8 10 2 3 L 5 8 10
-0l 3.01 5 6 1.00 .65 .52 .46 kO .39 3.88 3.29 3.19 3.17 3.19 3.22
.00 3.33 7 3 1.08 .76 .65 .60 .56 .55 L.26 3,64 3,54 3.52 3.55 3.59
O 3.6510 2 1.17 .86 .76 .72 .68 .68 L4.65 4,00 3,89 3.87 3.91 3.95
07 2.88 k10 .96 .60 .47 M1 .34 .33 3,74 3,17 3.09 3.08 3.11 3.15
A1 3.67 9 2 1.17 .87 .77 .73 .70 W71 4,71 4,06 3.96 3.95 4,02 L4.07
12 3.19 5 & 1.05 .71 .60 .55 .51 .51 4,12 3.53 3.45 3.4k 3,51 3.56
28 3.05 4 6 1.01 .66 .54 .9 45 U5 3.95 3.38 3.30 3.30 3.37 3.h2
19 3.7 8 2 1.19 .88 .79 .76 .7h .75 L.82 4,18 4,10 4.10 4.21 4.28
28 3.48 5 3 1.13 .81 .71 .68 .67 .68 L4.54 3.9% 3.88 3.90 4.05 L4.15
29 3.86 7 2 1.22 ,92 .83 .80 .80 .8L 5,03 L.40 4.33 14.36 k.53 L.63
b 3.36 4k 1.09 .77 W67 63 .62 64k 14,39 3.80 3.7% 3.77 3.92 k.01
.35 3.0k 310 1.01 .66 .54 49 b5 46 3,95 3,38 3.31 3.32 3.40 3.1k6
WA3 k11 6 2 1,27 .99 .91 .89 .90 .93 5.43 4,79 L.76 L4.82 5.08 5.23
A8 3,38 3 6 1.10 .77 .67 .6k .63 .64 4,39 3,79 3.7% 3.76 3.91 L.01
51 3.87 k3 1,22 ,92 .84 .82 .84 .87 5.1 4,51 L4.48 k4,55 4,83 k.99
56 3,60 3 5 1.16 8% .75 .72 .73 .75 k.70 4,09 L.0k 4,08 4.28 L, ko
O 4,63 5 2 1,38 1,11 1.05 1.04 1.08 1,12  6.22 5.56 5.56 5.67 6.03 6.23
68 bk 3k 1.26 .96 .89 .87 .90 .93 5.30 h.66 h.6h b.71 499 5.16
.88 L.12 210 1.27 .96 .86 .84 .87 .9k 5,15 L.L0 %.30 4.30 L.LO kb1
.92 5.13 3 3 1.h8 1.21 1.15 1,15 1.20 1.24 6,77 6,02 6,01 6,11 6.45 6.63
.96 5.9 4 2 1,60 1.34 1,30 1.30 1.34 1.38 7.7k 6.91 6.88 6.96 7.23 7.36
1.01 471 2 7 1.40 1.10 1,02 1,00 1,02 1.06 5.91 5.09 4,99 5.02 5.19 5.29
1.09 5.12 2 6 1.48 1,19 1,11 1,10 1.12 1.16 6,45 5.59 5,49 5.52 5.73 5.86
1.22 5.83 2 5 1.61 1,32 1,26 1.2 1.27 1.31  7.36 6.40 6.29 6,33 6.56 6.70
1.43 7.36 2 4 1,81 1,53 1.47 1.45 1.47 1,49  8.85 7.65 T.hk 7.41 7.46 7450
1.59 10.81 3 2 1.93 1.65 1.57 1.53 L.48 1.45 9,62 8,11 7.67 7.k4 7.01 6.79
1,91 12,46 2 3 2.07 1,75 1.66 1,61 1.53 1.49 10,31 8,47 7.89 7.57 7.01 6.7k
ko9 =« 2 2 2,04 1,61 1,40 1.25 .90 .70 8.68 6.42 5,52 4,97 L.11 3.82
Normal 1,00 .65 .52 47 A1 b0 3.87 3.29 3.19 3.17 3.18 3.20
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minimum a3 occurring at n = 13. For the extremely non=-normal populations at
the bottom of Table 3, the leveling off, if it does occur is beyond n = 10,

The kurtosis o), for R shows a minimum between n =2 and 10 in all cases
but the most non-normal., Also it tends to increase with increasing non-normality.
For the smallest sample sizes the range is typically more non~normal than the
population,

The quantities tabulated in Tables 1 and 3 can be of direct use in problems

involving the distribution of R, since for k R's in R:

i

E(R) dy Oy og = og //E

3K T %y //E %r = 3t (@.p-3)/k

exactly as for x's .

5. SUMMARY
The results obtained show a considerable stability or robustness in the distri-
bution of the range from non-normal distributions. Thus normal curve constants
can be justifiably be used until non-normality becomes quite marked. In partic-

ular normal curve control chart constants appear to be quite generally applicable.
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