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CEAPTER I
SOME RESULTS ON THE CONVERGENCE OF

LINEAR COMBINATIONS OF IDEPENDENT RANDOM VARIABLES

1. Tntroduction

Throughout Chapter I, we let (Dk,k > 1) be a sequence of inde-

pendent random variables, 2 1 be a matrix of real numbers,

A = z;::l aik, T =% e, D and T, De the a.s. limit of T
as m = ® vyhenever it exists. Tn is said to converge completely to
zero in the sense of Hsu and Robbins [15] if i:=l P[[Tn| >¢] < for
all € > 0. The purpose here is to present various sets of conditions
for the complete or a.s. convergence oFf Tn to zero. It should be noted
that Tn converging completely to zero implies that Tn converges a.S.
to zero and that the two types of convergence are equivalent if the

Tn's form an independent sequence of random variables. The results
given below extend or immrove results given by Iisu and Robbins [15],
Erdos [10], Pruitt [24], and Chow [6]. Work done by Franck and Hanson
[11] and Chow [6] is closely related to that presented here. The double
truncation method of proof developed by Erdos [10] and improved by other
“authors ([6], [24], end [11]) is fundamental to the present investiga-
tion. _Theorems 1.1 and 1.2 give genéral sots of conditions to insure
the complete convergence of Tn to zero, Theorem 1.1 treating the in-
dependent identically distributed caze and Theorem 1.2 treating the

more gencral situation wkzre the assumption that the Dk's are identically
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distributed is dropped. Several important applications to more specific
situations are stated in Corollaries l.1 - 1.3. Corollary 1.4 is of
special interest since it shows that Frdos's double truncation method
used in [10] to get sharp results on complete convergence can sometimes

also be used to obtain sharp results on almost sure convergence.

2. Preparatory lLemmas

2

IEMMA 1.1, Let ED. < K<, ED ——O,a] >0, A <o and

o 1 -p
- © > 0. =

Py 1exp( t/A)< for all © 0 Let D] D] I[a] D <n ]

> 1 - ? . 1 .S
for some p >0 and Tnm 2;ﬂ=lanank Then Tnm converges a.s

to a random variable T;l as m=*® gnd
* 1
> < > .
(1) Zn=l P['I'n €] <o for all e >0

PROOF. According to the Kolmogorov convergence theorem, ([22], p.236)

. _ 2 2 . © '
II&_’]_EOI 'I'nm = 'I'n exists a.s. since Zk -1 Gk ED < ®, Since Zk=l P[Dk+an]

o< -0 s 20 . !
= > -
Ty D, >n"/a,] <KA 0" <®, it then follows that T = con
verges a.s. to a random variable Tr'1 as m—®, Fix ¢ > 0. Let

t = min(e/(zAn), n®). Since 8 Drllk t < 1, it then follows that

2 2 2
1 1 + l
E exp(ank an t) < exp(E & 1 an t +E ank 1 ) using the easily

established fact ([6], p. 1488) that E exp Y < exp(EY + EY2) for a

random variable Y < 1. Since E a'nk nk t < 0, we obtain

E exp(ank t) < exp(a 2 EDr'li). Assuming without loss of general-

ity that EDi

in k that E exp(tT!) < exp(teAn). By the Chebychev inequality,

< 1, it then follows by the independence of the Dr'lk's

PlT! > €] < exp(-et) B exP(tT;l) < exp(-et) exp(‘t,2An)- If e/(eAn) > 0P,
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we obtain PFT' >e] < exp(-en®/2). On the other hand, if e/(2A )< P,
then PLT! > ¢] < exp(-ee/(hA )). Hence % . P[T' >e¢] <o for all
n - n n=l1 n

e >0,
LEMMA 1.2. Iet (Zk’k > 1) be a sequence of independent random vari-
ables and |ank| <Kn® for some « > 0. ILet either

"o > "o > i
z' =% Mla, |l 2z >eM or 20, =2 Llay % | > e/N] for fixed

> . . . . 11 = 1"
e > 0 and positive integer N. ILet Tnm Zﬁ:l 8 e an and assume
T&m converges a.s. to a random variable TH as m -, TLet fn(j)
be the number of subécripts k such that Ia nkl > e/ (Nj) for integers
n>1 and j>1. Iet g, = [ (5x/e /%) imere [-] is the greatest

integer function. Then

[ae] [ss] g'
uf o~ J - - o
(2) T BTl > el <2 ) 29 (3) sup Pl-1 < |z, | < 3] end

(3) z P[IT"I > el < z

- n_l (¢, (3) - £,(3-1)) sup Pz | > 5-11.

PROCF. T; is well defined by hypothesis.

P[|T;‘ >e] <HIkd|a, 2| >¢e/N] < Z:=1 |z, | > ¢/(Nla_|)]
S By Ty (£.(3) - £ (3-1)) sup Pz, | >3-11 .
Now |a,| <™ implies that £ (j) =0 for n> g+ Thus

P[IT"‘>e]<Z (£ (3) - £ (3- l))sup lz | >3-11 .

&3
=1 n l
) - > oo l— - .
Similarly, PLIk3ala, Z | >e/N] < i SPR PL3-1 < |z, | <31 £ (3).

o<} g.
Hence ¥, PL|TN| >el <2l 2d 1 (3) swp PLg-1 < |7,] <91 .



IEMMA 1.3. ILet (Zk,k > 1) be a sequence of independent random vari-

ables with E|Z |” <1 for same v >0. Iet either

g =2 Ia /|, | <2z <e/(Way )] or 2 =2 L ™/le, | < 12,
< e/(l\Tlankl)] for p >0, ¢ >0, and positive integer N. Iet

Tm = Z{“z Z"'  and assume that T!'" converges a.s. to a random
nm nm

=1 nk nk

variable 'I'r'l" as m=—= o, Then
() iz | >e) < (5 1o, l" n i A

PROOF. Tlfl" is well defined by hypothesis.
- [oe)
iz > el <BHavk's 30z | >n™/(la, )] < (5 Hlz]

> 07 (a1 < (5 ey 10 =*0)"

using the fact that P[|z|” >x] <x™° for any x >0 .

IEMMA 1.b. Let E[D | <K <o for some 1<u<2, |a,|<m™

for some o > 0, and X I° < k™ for some A > 0. ILet

kl‘nk

DI'lk = 1) I[la | <n p] for some O < p < Min(o,r/v) and
1 = H R 5 T =
T ZE=1 2, Dl - Iet either uk=l|ank| <K and ED_=0or

oo
- — 1
Zk=l Iankt 0O as n— = . Then Tmn converges a.s. to a random
variable Tlr'l as m -« and Tr'l converges completely to zero.
o) «©
PROOF. Since Ekzllank|E|Dr'lk| < zk=l|ank|E}Dk| < ®, it follows that
Tl:lm converges a.s. to a random variable TI’1 SO0 m = o, E‘DklU <K

for v > 1 implies that the Dk's are uniformly integrable. Thus, if

ED, =0 and v >1, then [ED! | = |ED,I[|D,| >n""/]a |]

k
..p-l»o(

< E[|Dk|I[|Dk| >n " 7/K]] 20 as n- o uniformly in k. Thus



15, 8 4| <2 jla, [{ED! | -0 as n-e for the case D =

and v > l. BSince lEDékl < Ele| <K, it follows that
[=2] o]

LI - — - o ,
Zk=l & x Ean 0 as n -« for the case 2k=l'ank| 0 as n
Since these are the only two cases which may occur, it follows that

2 t o —- | S— _1 .=p
L,y 8, B! 20 as n-wo. Let Y, =Dy -ED, and t=n /2 .

Since EY'!, =0 and |a t| < 1, it follows by a lemma of Chow

1
nk X
([6], p. 1482) that E exp(a t) < exp(t a EY! ) We decompose
v F e V). 2 - u>o0
‘2 Ve ~-p(2-v) ey

exp(t a E(Y' ) ) = eXP(t |ank| Ela %1 Yok

t -p s 1
and |a Ynk' <2n together imply 'ank Y

nk
We assume without loss of generality that ElelU < 1. Then E|Dﬁk|
|U

> |ED£k| and the c. inequality ([22J, p. 155) yields E|Yr'1k < 2Y,

Combining the above yields exp(t a E(Y' ) ) < exp(tglanklu n-p(E—u)h).

k
v _-p(2-v)
Hence E exp(t Zk -1 nk ) < exp(t Zk l| nkl n L)
< exp(t n p(2-v)- =My K) . Fix e >0 . A Chebychev argument yields
o 2 -p(2-v)-2 X
1 = . .
P[lZ‘k=l & . Ynk‘ €] <2 exp( et)exp(t n LK) Since

t =nP/2 , it follows that Z l > e] <=, Since

P[‘ k=1 nk
(o]

1 e ) 1 1 > .
Tyoq @y DL 20 as n- @, it follows that £, BT >2¢] <o

3. Convergence in the Identically Distributed Case

THEOREM 1.1. Let lankl <kn"% for some o >0 and Ele|(1+“+B)/“< w

- where the Dk are identically distributed and B8 > -1 - « .

1) I (T4e)/e>2, A < KnB'“, 2;=1 exp(-t/An) <o for all
t > 0, EDi log+ \Dkl <® and ED =0, then T  converges completely
to zero.

ii) I (LtwB)/a =2, z;llankl6 < k@801 £ gome 0 < 5 <2

and EDk = 0, then Tn converges completely to zero.



111) I 1< (Lhplr <2, & < &P ® 0 la nkl(1+°‘+5)/°‘5Kn'Y

X
> i PN =
for some +v > O and either Y1 lankl <K and EDk O or

@

2k=l Iankl = 0 as n - ®, then 'I'n converges completely to zero.
. \ B-o =& (1+otB)/fo_ . -
iv) If 0 < (1+e#B)/a < 1, A <Ko, L, |ank| / < ¥Kn~ Y

for some vy >0, and a_. =0 for k> n® where { < vyo/(l4a+8), then

nk

Tn converges completely to zero.

PROOF. (i) and (ii). Fix e > 0. According to the Kolmogorov conver-

gence theorem, ([22], p. 236) Lim T =T exists a.s. since
m-m nm n

Zm 2 ED2< We may decompose T =3 _a' D ) " D

k=1 Znk . v 3 By B D m Ty e Dy
t

where a'\ >0 and a) >0, P[|T | >2¢] < Ptlzk 1 e Dyl > €]

+ . .
P':lf-k =1 k k' > e¢]. Hence, without loss of generality, we assume

a, > O throughout the remainder of the proof of (i) and (ii). Let

' = =P > i .
D e = D I[ank Dk <n "] where p >0 will be chosen later. Let

! = ! - . ! eSe
T -1 @k D ik By Lemma 1.1, T converges a.s. to a random
variable T' as m- o and % . P[T' > €] <o .
n n=1 n
" - > - . . .
Let an Dk Ifa e Dk ¢/N] where N is a positive integer to be
1 u o
. = = >
chosen later. Let Tnm Doy B Dmg ¢+ Tpop PN+ 0] =3 D

e/(l\Iank)] <C & An/ e < », Thus, by an application of the Borel
Cantelli lemma, it follows that Tx'l'm converges a.s. to a random vari-

able T" as m~— o, Applying (2) of Lemma 1.2 with 2, = D, vyields

k

HT! > e] <‘“ £ (3) B5-1 < | < 3] where £ (J) and

nl lznl

gJ. are defined in the statement of Lemma 1.2. We now consider (i).
By the definitions of A and £_(j), A_>£_(3) 2/(w5)% . Since
A < k"%, it follows that £ (3) <&’ ¥52/° . Thus

| Tl > el < (f/e?) 5 Se1 szl nB-ajeP[j—llek|<j] . Elementary

o B-a < K! j(B"Ol'I'l)/O‘

g
computation shows that Znil if B-ofl and
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znil nB o <K' log j for j=>2 if PB-o=l where X' is a fixed con-

+
stant independent of j. ED2 log |D | <= implies that

flagbgaﬂal<bl<al<w.Smnuw,EWM““ﬁV“<m

implies that ﬁm -1 J(lﬁy+8)/a PL3-1 < lD | <3j] <o . Hence
Zn 1 P[T" > ¢] <® in the case of (i). We now consider (ii). Since
‘6 (2 5)-1

, it follows that f (J) < Kn” o(2-8)- l(N /e)6

T Iy

g.
Thus % F[T" > e] < (k0 /e) 5P g 9 ple- 6) 1,8
n= - J=1 gn—l

Elementary computation shows that Z

Pl j- l<|Dki < 31 .

2-5

a(2-6)—l <K' j where X!

=1
is a fixed constant independent of j. EDi < ® implies Z§=l jEP[j-l

< |D | < 3] <o Thus, % P[T" > e] <= in the case of (i1)
- "k J ’ 7 “np=1 n ' )

LR - - D! . D" {.04 o =p <
Let Dit =D =~ Dl =-D., i.e., DIt =D In"fa , <D < e/(Nank)]

. "o 11 > " <5 > P
Let TM =% oa, D% . N FDR YOl <R, HD>n/ag]
<CA n2p < o , Thus, by an application of the Borel Cantelli lemma,
- n
it follows that Tﬁ; converges a.s. to a random variable TH' ags m = o,
+
|(LrrB)fe

Without loss of generality we assume Ele Then, apply-

ing Lemma 1.3 with Z,_=D, and v = (1+w+8)/a implies that
2 m| > u 2 (l+0/+6)/01 p (148 )/CY N
DRI > el <m L (e eyl n )

<s5® (n-l+p(l+a+B)/a xt )

<% 4 for some constant K'. By choosing p

sufficiently small and N sufficiently large, the preceding sum becomes

finite. Combining the above results for Té, Tﬁ, and Tg', it follows
R © . - i -

that Zn=l L N 3el< Replacing Dk by Dk in the above argu

ments yields Z:=l P[—Tn > 3e] < , This completes the proof of (i)

and (ii).

(iii). Since T Iank|E|Dk| <@ , it follows that T_  converges

2.8, to a random variable Tn as m—-o , Fix >0 . Let

Dﬂk = Dy I[‘ank Dkl < n Pl where 0 <p < min(a, vo/(l++8)). ILet



! = ! . . ! "D
T Z.J;:_l 8 Doy ¢ By Lemma 1 L, T}, converges a.s. to a random
variable Tr’l as m - o and T;l converges completely to zero.
1 - > . Iy . .
Iet DI =D [ |ank Dkl e/N] where N is a positive integer

1" — T . -
to be chosen later. Let Tnm Z:l':=l ank Dn Since

k
Sl -
Zk=l Iank[Elel < @, it follows that T;m converges a.s. to a random

variable T;l as m~— o. Applying (2) of Lemma 1.2 with Z =D

g.
. o " Sad J . . .
yields % . P[ITnl >e] < Zj:l T.01 fn(a) Plj-1 < |Dk| < j] where

fn(j) and gj are defined in the statement of Lemms 1.2. By the
definitions of A and fn(j), A > fn(j) 62/(Nj)2. Since A < KnB'“,
it follows that fn(j) < K o 32/e2. Thus j:=1 P[|T£] > ¢]

g. -
< (KNE/G:2 )2(3):1 Znil P O!j2 Plj-1 < |Dk| < j] . Elementary computation

B-or < J_([3—c1/+l)/cz

g.
shows that Zn-J—- where K' is a constant inde-

J(l"’(’)l"’B)/Q’ P[j-l

ln

pendent of . E|Dk|(l+°"+B)/a<oo implies that Z§=l

< IDkl < j] < ©»« Hence 'Z,Z=l PHT;,;I >e]l <o,

Iet DM =D _-D! -D, i.e., D =D In"?/|a | < |D,]

k
£ & - $1? t11?
< e/(N |ank|)] . et Tnm Z?{:l a . DIl . Tnm converges a.S. to a
random variable Tlfl” since zk=l |ank|E|Dk| <® , Without loss of
+
generality, we may assume E[Dkl(lm B)/ « <1l . Applying Lemma 1.3

with Zk = Dk and v = (l+o*tB)/o implies that PHT;;'I > ¢]

< (z;=llank|(l+a+8)/oz np(l+a/+B)/o,)N .

V2 +
it follows that B |T!"| > ¢] < (Kn yH{1H B)p/"’)N . By choosing p
sufficiently small and N sufficiently large, it follows that
x© [£21 > R - . . 1 n
2n=1 P[lTn | e | <o Combining the above results for Tn’ Tn and
Tr'l” » 1t follows that Tn converges completely to zero thus completing

the proof of (iii).
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. . - ~p
(iv). Fix ¢ > 0. Let Dl =D e, D | 0Pl for some >0 to

| I S 1 . o b4
be chosen later and let Tn Zk=l & an !Zk=l a anl <

Tie=1) 2 Pric
< %P . Hence 2;;1 P[|T£|,> ¢] < » by choosing 5 > . Iet

Hi - > . . - .
D =D, If|a, D] ¢/N] where N is a positive integer to be chosen

1" ” . .
later and let T Zk 1 2 Doy Applying (2) of Lemma 1.2 with

g
n
Zk D, yields 2 1 P[lT [ >e] <% _12 —l n(J)P[J -1l < ID | < 3] where
fn(J) and g; are defined in the statement of Lemms 1.2. By the def-
initions of A and fn(j), A > fn(j) e2/(Nj)2. Since A < Kb~ ,
it follows that £,(3) < ko® @ ¥°57/e® . mus 3= B|T"| > o

< (KNE/e ) £, =1 njl B~ cZJ PLJ-1 < leI < J] . Elementary computation

g -
shows that Znil B o < K"(B o l)/a where X' 1is a constant inde~
oyt -
pendent of j. E|D_ l(l otB)/e < » implies that Zs. (l Q+B)/QP[ -1

1 - "
< |D] < il <= . Hence znzlP[]Tnl > €] <o . Let Dr‘]’l; D, -Dy~Dry

ices, DU =D I[n-p/[ank| < IDkl < e/(NlankI)] . Without loss of

nk
Elel(l+u+B)/a

generality, we may assunme <1l Applying Lemms 1.3 with

Z, =D and y = (1+o4)/o yields P[['I‘r'l”l > el <

(ﬁ;=l|ankl(l+u+ﬂ/a np(l+a+B)/a)N < (Kh-y+p(1+a+3)/a)N

We now choose

p < (yo) / (1+o+g) such that p > ¢ is satisfied. Tt then follows
for sufficiently large N that g:j:l F[|T}'"| > ¢] <= . Combining the
above results for Tﬁ, TQ, and Té”, it follows that Tn converges com-
pletely to zero. The proof of (iv) and of the theorem is complete.

COROLLARY 1.l1. ILet Dk be identically distributed, EIDklg/a <o for

some o >0, BD =0 if O<qo < 1, |ank|5Kn"0’,a =0 for k>n,

k nk

and 2;=1 exp(-t/An) <o for all t>0. Then T  converges com-

pletely to zero.
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PROOF. Let O <o < 1. Then | < kn™® and a, =0 for k >n

lank nk
. K? 1-2¢ "
together imply that An <Kn . Thus for B = l-ov , the hypotheses

of Theorem 1.1(i) are satisfied. Let o =1 . Then for & = 1 the
hypotheses of Theorem l.l(ii) are satisfied. ILet 1 <o <2 . Then,
letting B = l-o, one set of hypotheses of Theorem 1.1(iii) are satis-
fied. Iet o >2. Then for B =1l-o and { =+vy = 1 , the hypotheses
of Theorem 1.1(iv) are satisfied.

REMARKS. The fundamentsl result of the above type on complete conver-

gence states that if the D, are identically distributed Elelg/a < ©

k

for some ®>q > 1/2, ED, =0 if 1>a>1/2, a. =n " for k <n,

‘ k nk
a, =0 for k>mn, then T = Zi=l D / n® converges completely to
zero. This result is due to Hsu and Robbins [15] for « =1 and Erdos
(10] for «o + 1 . Corollary 1.1 includes the above result and gener-
alizes it to a triangular matrix of coefficients satisfying certain
restrictions on the magnitude of its entries. Theorem l.l generalizes

this result still further by replacing the hypothesis of triangularity

by more general hypotheses on the ank’s. In [10] Erdos also proves

that if the Dk are a sequence of identically distributed random vari-

ables, EDi < o, and EDk = 0, then there exists an r > 0 such that

1
= 2 T
for a . 1/(n®(log n)" ) when k <n and a

1
follows that T = 2E=l D / (n%(1log n)*) converges completely to zero.

=0 for k>n, it

Corollary l.l and Theorem l.l generalize this result also. From Corol-
lary 1.1 it is easy to see that r =3 + 6 for & >0 works in the
statemeht of the Erdos result. Obviously the (log n) ‘term in the
denominator cannot be dropped entirely since Sn/n% obeys the central

limit theorem ([22], p. 247). This shows that the condition
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(o]

Tl exp(-t/An) <® for all t > 0 cannot be dropped from the state-

ments of Theorem 1.1(i) and Corollary 1.l. For, if it could be dropped,
1

Ent < ® ywould then imply Z;=l Dk/n2 converges completely to zero.

For use in applications of Theorem 1.1(i) and Corollary 1.1 it is

o ((log n)-l) implies that

interesting to note that A.n

Zi_l exp(—t/An) <@ for all t>0 and that A =0 ((1og n)-l) does

not imply that Zi: exp(~t/An) <o for all +t>0 . The condition

1

A =o ((1og n)-l) is easy to verify in practice and by the previous

remark only slightly stronger than ﬁ:z exp(-t/An) <o for all t > 0.

1

Recently, Chow ([6], p. 1&88) has proved that if the D, are a

k

sequence of identically distributed random variables with ED, = O,

k
2/a

Elel <w, 0<a<l, lankl < KAn for k <n, a =0 for k > n,

nk
A.n < Kh_a, then Tn converges completely to zero. It was this partic-
ular result which motivated the present work. Corollary 1.1 improves
and generalizes this result by replacing lankl < KAn for k<mn, and
An < Kn™¢ by weaker conditions on the & matrix and by extending
the result to the case where E[Dklz/a <« for some o > 1 but

EDk = ©, Theorem 1.1 generalizes this result still further by replacing

the hypothesis of triangularity by more general hypotheses on the ank's.

Erdos [10] has established that if the D, are identically dis-

k
tributed, then Z§=1 Dk/na converging completely to zero implies that

2/a
E|D, |

Hence Corollary 1.1 is sharp for o > %a Even for o < %, Corollary

<o if o >4 (and implies that ED =0 if

o~

<g<1l).

1.1 is rather sharp since it say~ that if the Dk
tributed with ED, = 0 eand EDA <o , then 5 D /(n%(log n)% * 5)
k - k ? 2k=l k

converges completely to zero for all & > 0 . RBut by the Hartman and

are identically dis-
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1 1
Wintner iterated logarithm [12], Z§=l Dk/(n2(log log n)2) does not

converge completely to zero.

+
COROLLARY 1.2. Let the D. be identically distributed, ElD 141/e < @

k

and |ank| < Kn " for some o >0 .

s

i) ¥ 0<a<l, B =0, ad A <Kn'°, then’ T con-

verges completely to O .
|6 < Knl"5 for some

ii) If o=1, BD =0, and

]

k Ty o
0< 8§ <2, then Tn converges completely to O .

s a v - m —

ii1) If o >1 and either T __, lankl <K and ED, =0 or
o0 .
Tl ‘ankl 0 as n-~®, then T converges completely to O .
PROOF. (i) is immediate from Theorem 1.1 (i) with B =0 . (ii) is
immediate from Theorem 1.1 (ii) with o =1 and B =0 . (iii) is
immediate from Theorem 1.1 (iii) with 8 =0 .

REMARKS. Pruitt [24] has proved that for matrix conditions somewhat

stronger than regularity, i.e. Z;=l 2, =1l as n-, i;=l !ank| <K

and ]ankl < kn * for some o > 0, it then follows for the Dk identi~
) +

cally distributed with EIDk|l Yo o et T converges campletely

to EDk « Corollary l.2 implies and generalizes this result by replac-

0
ing Zk=l |ank|'§ K by a weaker condition when o < ; . Pruitt gives
examples to show his results are sharp. Hence, Corollary 1.2 (i) and
(4ii) are sharp and Corollary 1.2 (ii) is sharp for & > 1 .

COROLLARY 1.3. ILet the D, be identically distributed and E|Dk|2/ﬂ<@_

2

i) If o<1N<1, ED, = 0, ED_

+ -
log ]Dk| <® , and An < Kn 1 B
then Tn converges completely to O .

ii) If M =1, ED_ =0, and 1° < ™82 for some

(o0}
k =1 |2
0<8 <2, then Tn converges completely to O .
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‘as - © 2 -

iii) If 1<mM<2,A <k L s Zk=llankl /1 <Kn Y for some
0 [ea]
vy > 0, and either 2k=l‘ank| <K and ED, =0 or T Iankl - 0 as
n—=-owo, then Tn converges completely to O .

. e 2 - -

iv) I m > 2, Zk=l ‘ankl /n < Kn Y for some vy >0, An < Kn n,
and a, =0 for k> n® for some ¢ <(My)/2 , then T~ converges
completely to O .

L .
PROOF. Iet 0<f<1. A < Kn™! implies that la | <K n /2,

Hence for B = -1/2 and o = 1/2 the hypotheses of Theorem 1.1 (i)

are satisfied and (L +o +B)/o =2/1 . Let M =1 . Choosing o = 3,
(ii) is then immediate from Theorem 1.1 (ii), noting that Z;=l|a nk|6
< Kn'a/g implies that |ank| < KL/ n—% . Let 1 <7 <2 . Then, as
above, Iank‘ < K%n-n/2 . Hence for B = -0/2 and o =T/2 the hy-
potheses of Theorem 1.1(iii)are satisfied and (1 + o + B8)/o =2/7 .
Iet T>2 . Again lankl < K% n-n/2 . Hence for B = -1/2 and

o = 1N/2, the hypotheses of Theorem 1.1(iv) are satisfied and

(L +a+8)a=2/1.

REMARK. If we assume that the D, 's are identically distributed,

k

8 = 1/nn/2 for some T >0, and a,

T =D /nn/2 converging completely (a.s.) to zero implies that

=0 for k §n, then

Ele|2/n <o since 2;;1 Plip, | > kﬂ/2] < ® is equivalent to
EIDk|2/ﬂ < , Thus Corollary 1.3 (i) is sharp for T < 1, Corollary

1.3 (iii) and (iv) are sharp for vy <1, and Corollary 1.3 (ii) is

sharp.

COROLIARY 1.k, ILet A < Kh-l a2 < K/k ED2 <®, gnd ED =20
n— 2 nk_ 2 k 2 k

where the Dk are identically distributed. Then Tn _CONVErges Q.S.

to zero.
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PROOF. Iet B = -2 and o =3 . Then all hypotheses of Theorem 1.1(1)
+

are satisfied except EDi log le! =® ig possible. An examination of

+
the proof of (i) shows that EDi log‘le| < ® is used only in estab-

lishing that j:=l P{T; > ¢] <, Hence we need only establish that

Tg converges a.s. to zero, where Dﬁk =D, I[anka > ¢/N] for some
positive integer N and € >0, T;m = Zi—l ok D;k , and Tg is the
almost sure limit of Tﬁm as m—® , In the above we take &g 0

without loss of generality.

By the Holder inequality, |T"|2 < An z;'; ¢

2
= > d
An Zk-l Dk I[D e/(Na )] < (k/n) = el Dk I[D > k/(NEK)] since
2
L ] > «© L] L[]
&, < K/k But X = zk 1 D I[D € k/(l\]EK):I < g.5. since
s, P0E > k/(¥K)] <= follows from the fact that the D, 's are

identically distributed with EDi <o , Thus |T£|2 <X/n a.s. and
hence Tg converges a.s. to zero.

REMARKS. Chow ([6], p. 1484) has recently proved that if the D, 's

. . . R . _ 2 ™ 2
are identically distributed with EDk =0, EDk < o, Zk=l & l/n
as k-o, and & T O for k >n , then Tn converges a.s. to

zero. Corollary 1.4 includes this result and generalizes it by replac~

ing the assumption of triangularity of the & Kk

condition. Unlike the proof given by Chow, the present proof makes no

matrix by a weaker

use of the strong law of large numbers.

It is interesting to compare corollaries 1.3 (i) and l.4. Corol-
lary 1.3 (i) does not imply Corollary 1.4. However if in Corollary 1.k
we were to assume the finiteness of a slightly higher moment than the

+
second, i.e., EDi log ‘Dkl < » , we could drop the assumption that

2

R < K/k and conclude that Tn converges completely to zero by
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Corollary 1.3 (i). Chow [6] has established that his result mentioned

above is sharp; hence, it follows that Corollary 1.4t is sharp also.

4. Convergence in the Non-identically Distributed Case

An examination of the proof of Theorem 1.l shows that the identi~
cally distributed hypotheses may be dropped by slightly strengthening
the moment condition assumed. This yields Theorem 1.2.

THEOREM 1.2. let |a | <Kn™® for some o >0 .

i) I EIDK](1+‘”+B)/"‘(1og+|13kl)1“”é <X for some E >0,
(1+a+8)a>2, m(lg'|D | <x, m,
f:zl exp (-t/An) <@ for all t >0, then T  converges completely

=0, A < knP%, and

to zero.

2

iy ) o 5 . a(2-§)-1-
i) If ED_ <K, BD =0, and T, |ankl < Kn

5 for
some 0<§ <2 and € >0, then Tn conﬁerges completely to zero.
+ 3
111) If EIDkl(lJ’O‘"LB)/Q'(log o, |)*™® <k for some £>0,
-y (L+o+g) /o -
l§(l+a+5)/oz<2,An§KnB ’z.k=l|ank| B)/ <KnY for
«© o]
> i = -
some +v > 0 and either Zk=l lankl < X and EDk 0 or Zk=llankl- 0
as n — «, then Tn converges completely to zero.
+ +
iv) If E}Dkl(lwﬁ)/a(log |Dk|)l <K for some E >0,
B-a (Lto#B) /o _ o -
0<(lL+a B)ao<i, An <K, g, |ank| / < Kn Y for some

v>0 and a. =0 for k >n® where ¢ <vy(l+a +B)a then T,

nk

converges completely to zero.

PROOF. (i) and (ii). Fix e > 0 and assume without loss of generality

>0 . L 1 = -P > i
that a, >0 Let D! =D I[anka <n'"] where p Q is chosen
. 1 = > . . .
later in the proof, D D, s 1Dxc ¢/N] where N is a positive
. e - - D! . D"
integer to be chosen later, and an Dk an an « Let
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T ™ Dot %k Do Tm " Tkl % i 0 T = Tewp % ik -

The proof of the facts that Tnm converges a.s. to Tn as m - @,
Tém converges a.s. to -Té as m— o, i:=l P[Té >e]l <@, Tgm and
Tg; each converge a.s. to random varigbles T; and TH' respectively
as m -, and that f;=l P[TH’ > ¢] <o used in the proof of Theorem
1.1 (i) and (ii) in no way depended on the additional assumption of the
random variables Dk being identically distributed. Thus the proof of
these facts is the same here and we therefore omit repeating their
proofs. We thus need only to establish Z§=l P[TS > ¢] < to complete
the proof of (i) and (ii). Applying (3) of Lemma 1.2 with Zk =D,

o o) g'
. LI J A s -
yields ¥ P[Tn e] < i1 Tamy (fn(J) fn(J 1)) s§p P[|Dk| >3 - 1)1,

n=1
where fn(j) and gj are defined in the statement of Lemma 1l.2. We
now consider (i). By the Chebychev inequality, P[[Dkl > j-1]

1y o + 1+ ] 1++8 o +, 1+
P[|Dk|( B (10 o )" > (3-1) B g0t 50y )17

<
< 1(3-2)" (B0 %(521)) (8 pitcevise |, | > 4-1]
< 200f (20", |28 > (3-1)P(208"(3-2))7"8) < k(3-1)"2 (106" (3-1))(B7E)"

To show that Em P[T" > ¢] <o, it is sufficient to show that
J—h n-l (f (3) - ¢ (J 1)) spp Pl |D | >j-1] <o since gJ <o for
j=1, 2, and 3.
We now consider two cases. First, if (1L + o + 8)/a =2, then
. 8. o 8-
j Sy . . j
Ziay Tnmy (Fl0)-fy (3-1)) swp FUID} 2§ - 1) < K2y, 2o
-(2+€) s
(f (5)-f (J -1 - l) (log(j - 1)) . By the definitions of
A and £ (3), it is clear that A >f (J) 62/(1\13)2 . Since

B-o

A < Kn by hypothesis, we conclude that fn(j) < (Khe-a Nejz)/e2 .

Inversion of the order of summation and summation by parts thus yields
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o

o 3 N . 22,2
B T (5,(0)-£,(5-1)) S P{|p, | > 3-1] <K /e
2 2 gy (24g) -2 -(2+E)y By B-o
2 £ (0o B 5P 5 ) 53, P
g- B"d 3. __l
Since Znil n =2 il n” <K' log j, where K' is independent of

J » it then follows by elementary computation that the preceding sum
is finite. Thus Zn PFT" > e] <o in Case 1. Secondly, if

(L+a +B)a>2, then . Y Zh 5 (f (J) f (J 1)) s;p P[|D | > 35-13
<wf, 3 (2 (-2, (3-1))(3-1)" (FB) e 0051y ()< 2 2

£, 87 () B0 g (5 (M) (M) g0 5)-(138),

€5 8~o . gj B—a

(B a‘l)/a
b Jd n . Since % !
n=1

, where K' is independent
of j, it then follows 7 elemontary comoudatlon that the preceding

sum is finite. Fence Zﬁ:l PT! > ¢] <@ in the case of (i).

We now consider (ii). By the Chebychev inequality,
. . -2 e : R
P[le| >3- 1] <X(j-1)" . To show that Sl P[Tﬁ >¢] <w, it
is sufficient to snow tuat L. je2 Zni (£ (')ufn(j«l)) sup P[IDkl > j-1] <
e J ~ _ s VY (s -2 T s
I T S (In(J) In(J 1))(j-1)"° <o . Since

«(2-68)-1-€

<Kn , it follows that £ (J) < Kh“(z'é)'l'g(Nj/e)o,

© o
D LN
Inversion of the ovder of sumnration and swmation by parts shows it is

na(2-6)-l—§ <

o - - g 3
sufficient to show Xf_g jé((j—lﬁ 2 -3 2) Znil © , Since
5= =

a(2—6) -~ 1-E 2-5-E/a

% Jl <TIt g , vhere X' is independent of J ,

it follows by clemesntary coampubation that the preca’:iw: sum is finite.

Combining the gbhove resulis yields fj_lP[Tn >3¢] < » » By symmetry
=

5 HIT | >3e] <.

(iii) and (iv). Fix =2 >0 . Ieb DY =D, I[|ank Dkl <0 Pl where

is + e onaten atoarm 1 = 7 *
p >0 1is ©vo be chacien lober, DI = Dk I[Iank Dkl > e/NJ. where N 1is
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a positive integer to be chosen later, and D!'=D - D! - D" Tlet

nk "k “nk “nk °

Trn = Bt % Dnc 2 Tam = Teed B Dm0 0 Ti = Ty e DY

The proof of the facts that Tnm converges a.s. to Tn as m- o ,
Tr'lm converges a.s. to Tr’1 as m- ® , 2:=l P[lTI’ll >e]l <™, T;leln and
T;];;l each converge a.s. to random variables Tr'i and T1'1“ respectively
as m— o , and 2:::1 P[|Tr’1”| > ¢l< @ used in the proof of Theorem 1.1
(iii) and (iv) in no way depended on the additional assumption of the
random variables being identically distributed. Thus the proofs of
these facts are the same here and we therefore omit them. We thus need
only to establish z‘r’l"‘:l PL |T;| > ¢] < ® to complete the proof of (iii)
and (iv). Applying (3) of ILemma 1.2 with 2 = D, yields

k

g,
o 1 0o J sy L . .
B BTl > el <2, ) 55 (£,05) - £ (5-1)) s P|p, | >3- 17,

where fn(j) and g;]. are defined in the statement of ILemma 1l.2. By

the Chebychev inequality, P[lel >35-1]1 < |Dkl(l+a'+8 )/"‘(1og*|Dk|)l+§
> (31 B0 (50) 18] < k(s - 1) (BN a6 7(50)) (1)

To show that Z;::l P[ITHI >¢] <o, it is sufficient to show that

8. 8.
& J . s s 1] *® dJ sy i
Zya Tnm (£,(3)-2,(3-1)) s BLID | > 5 - 2] s &2y 32 (7, ()£, (3-1))
(j-l)-(lmﬂa )/a(log'q(jﬂ))-(lﬁ) < ® gince &5 is finite. By the def-
. g . . 2 2 . -
initions of A and fn(,_]) ) A > fn(J) ¢ /(N3)° . Since A <K B
by hypothesis, we conclude that fn(j) < (Kn(:j-al\lejg)/e:2 . TInversion of

the order of sumation and summation by parts then show it is sufficient

’ RPN (R ~(1+ -
to show that 205:3 J ((J-l) (1 aﬂa)/c’(]_og(j_l)) (1 E)_J- (l+oz+B)/oz
~(1+ €. - g. _ 4
(log 3) (1 §)) %Y 2?2 o . since 5 d P o g j(l 8 )/ where
n=1 n=1 ~
K' is independent of j , it follows that the preceding sum is finite.

[0} [o ]
Hence % P[|Tr‘;| > ¢} <® and Zo1 P[ITnl >3 ¢] <», The result is

established.



REMARKS. The assumption of the Dk's being identically distributed

can obviously be dropped from the statement of Corollaries 1.1 ~ 1.3
in an analogous manner as done agbove in Theorem l.2. Statements of
these corollaries are therefore omitted. Theorem 1.2 was motivated
by a result given by Chow ([6], p. 1489) for the non-identically dis-
tributed case. His result states that if HED_ = O, Elel(lﬂ‘ o
(log+|Dk‘l <k, la ] <X A for k< nt a, =0 for k> nt,
and An < Kn © where A >1 and O<ao<l, then Tn converges
completely to zero. Theorem 1.2 extends this result by treating the
case where rows of the ank matrix may have infinitely many non-zero

entries and the case where the second moments of the Dk's may be

19

infinite. The moment condition given in Theorem 1.2 is sharper (except

for the special case o = )\ = 1 where the Chow result is sharper).
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CHAPTER 1T
SOME CONVERGENCE PROPERTIES OF

GENERALIZED GAUSSIAN RANDOM VARIABLES

1. Introduction

Throughout Chapter 1T, we let (Q,%,P) be a probability space with
F .,k > 1) an increasing sequence of g-fields for each fixed n > 1
nk’™" =~ 4 =
with Fox & & Let (an’wnk’k > 1) be a martingale difference sequence
ke S o measurable and
) =0 a.s. for all k >2 for each n > 1. Let (Dn,n > 1)

for each fixed n > 1, i.e., each D

Byl 1

be a sequence of independent random variables. et a and a, be a

matrix and a sequence of real numbers respectively. Let An = Z§=l a2 5

nk

Tom = Spel %k Do 204 Tn be the a.s. limit of T as m=- o wvhen-
ever it exists. As in Chapter I, Tn is said to converge completely to
zero in the sense of Hsu and Robbins [5] if zzzlp[lTni >¢] <o for
all ¢ > 0. According to Chow [6], a random variable D is generalized
Gaussian if there exists an g > O such that for every real t,

E exp (tD) < exp(t2 q2/2). The minimum of these numbers ¢ is denoted
by 1(D). Special cases of generalized Gaussian random variables include
normal and bounded random variables each with mean zero. (See [6],

p. 1482). We denote the variance of a random variable D by Var (D),
its symmetrized version by D° ([227, p. 245), the nth derivative of

a function f by f(n), and the indicator function of a set A by I[A].
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In this chapter, we prove a number of almost sure convergence
results concerning sums of generalized Gaussian random variables.

Lemmas 2.1 - 2.3 give some elementary properties of generalized Gaussian
random variables which are useful in studying their convergence prop-
erties,

In Chapter I, certain convergence results were established for
linear combinations of independent random variables. TIf in addition to
independence the random variables are assumed to be generalized Gaussian,
Chow ([67], p. 1483) has shown that a sharper analysis is possible. In
Theorem 2.1, we extend a result of Chow about the complete convergence
of linear combinations of generalized Gaussian random variables to the
martingale case. The heart of the proof of Theorem 2.1 is the establish-
ment of Lemma 2.4 which states that Tn is generalized Gaussian with

Te(Tn) < 2An when each Dn is generalized Gaussian in a certain condi-

k

tional sense with T(an) < 1.

Theorem 2.2 and Corollary 2.3 of Theorem 2.3 each give conditions

2

. o . . . o 2
under which Zn= a_ D converging a.s. implies that Zn=l a, EDn < o

1 n™n

where the Dn are each generalized Gaussian. Corollary 2.2 of

Theorem 2.3 gives conditions under which Z§=1 R

implies that .Z;—l Ri < » a.s. where the Dn are generalized Gaussian

D converging a.s.
n o n g1ng

and (Rn,n > 1) is a sequence of independent random variables independent
of the Dn also. Theorem 2,3 is related to a result of Marcinkiewicz

and Zygmund ([23], p. 72). Example 2.1 concluding the chapter indicates
that the restrictions on T(Dn) given in the hypotheses of Theorem 2.2

and Corollary 2.3 may not be dropped entirely, although these restric-

tions can possibly be relaxed somewhat,



22

2. Preparatory Lemmas and Elementary Properties

of Generalized Gaussian Random Variables

IEMMA 2.1. Let D be a generalized Gaussian random variable with

7(D) < . Then ED = O, ED° < dz, and [EDn! < n-n/gn! o exp(n/2).

PROOF. E exp(t D) < exp(t2 a2/2) implies that 1 + t ED + (t2/2!) ED +
.+ 1+ 1 a2/2 + (t2 0,2/2)2/2: + ... + . Subtracting 1 and div-

iding by t on both sides and then letting t ! 0 and t 4 O yields

ED = O. Dividing both sides again by t and letting t - 0 yields

ED° < &. Now |ED"| = | (& exp(tD))(n)lt=Ol

< (nlp / (2m)) IZH E|eXP(g+ile) D] dg since E exp(t D) is an eﬁtire
o

function of t by hypothesis. lexp(peieD)] = exp(p cos 9)D. Thus

E]exp(peie)D[=E exp(p cos gD) < exp (p2 cos® 9 q2/2) < exp (92 a2/2).

Thus ]EDnl < p-n n! exp(p2 u2/2) for all p > O, The optimum choice

of p 1is p = /h/a according to elementary calculus. Thus |

IEDnl < n"n/2 n! o exp (n/2).

IEMMA 2,2, Iet D Dbe a generalized Gaussian random variable with

(D) < ¢ and ED° = 52 . Then

2

(1) (87 - 267 - ba” exp(yC [ (2a7))) / (2y(y=e)) < B[|D| > €]

2 exp(-32 / (2a2)) for all constants y >e >0 .

1A

PROOF. The right hand side of the inequality follows easily by a

Chebychev argument and is stated in [6], p. 1L83. @2 = ED2 =

2 I:’x PL|D| > x] ax = 2[(}2 + j: + I:) x P[|D| > x] ax] < 26° +

2(y-e)y B[] > o1+ & [ x e / (26%)) ax = 262 + 2(y-c)y LD > ¢

Y
+ haz exp(—y2 / (2a2)) . Solving the inequality above for P[|D| > ¢]
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ILEMMA 2.3. E sup D2 < o if and only if z z P[D2 >kl< o
n>1 n=1 “k=1 n

2
PROOF. E[sup D ] < o if and only if Zk -1 P[sup D > k] <o if and

n>1 n>1
[oe] 2 =<} o
only if g . (1-1 P[D. <k])<e if and only it 1 I P[D < k]
- n=1 k=1 n=1

converges if and only if Z;=l Z;=l P[Di > k] < ». Here we use the fact
@
that ¥ . a_ converges if and only if I (l-a_) converges for a_ > 0
n=1 n n=1 n n -

([18], p. 220).

IEMMA 2.4, Iet E(exp(t D }E3 ) < exp(t2) a.e. for every constant
nk’/1¥n,k-1/ =

t and let A < w. Then T, is generalized Gaussian with T2(Tn) < 2A .

. _ m 2
PROOF. For fixed t and m, Ilet Yj = exp(t Tnj + Zk=j+l ank) for

J=12,..., my using the convention '2£#m+l (*) = 0. Choose j + 1.

2 _m
)= exp(t T, J l + % D=1 nk) E exp(t a_, D_.|F )
By induc-

nJ njt“n,j-1

+ gm = Yj-l a.e. Hence EY;j < EYj-l'
tion, EY < EYl, EY =E exp(t Tnm) and EY, =E exp(t 2 Dnl)
exp(t Zm k) < exp(t zk 1 ik) < exp(t2 An). Hence E exp(t Tnm)
< exp(t An). By Lemma 2,1, EDik < 2. (ElTnmI)2 <E Tim + 1 =

2k=l aik EDik + 1 S-EAn + 1. Hence Tnm converges a.s. to Tn as

m - o by the Doob martingale convergence theorem ({83, p. 319). It
then follows by an application of the Fatou lemma that

2
E exp(t Tn) < exp(t An).
REMARK. The manner of constructing the Yj's so that they form a super-
martingale was learned from a paper of Dubins and Freedman ([97, p. 8ok).

A slightly different proof can be given which does not use this technique.
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3. Convergence
THEOREM 2.1. ILet E(exp(t an)lgn,k-l) < exp(tg) a.e. for every con-
stant vt, A <, and Z;=l exp(-x/An) <o for all )\ > O. Then
Tn converges completely to zero.
PROOF. By Lemma 2.k, T is generalized Gaussian with T2(Tn) < 2A .
Thus, by Lemma 2.2, P[ITnl >e¢l<? exp(-€2 / (MAH)) for all ¢ > 0.
Thus 5 o PL|T | >el<o forall ¢>o.
REMARK., If (an,k > 1) is an independent sequence for each fixed n,
the result reduces to a theorem due to Chow ([6], p. 1483). The key
step in the proof of Theorem 2.1 is the establishment of Lemma 2.4,
After thét, the proof is almost identical to that given by Chow in the
independent case,
COROLLARY 2.1. Let |D .| < K a.e, for some K< o, A <=,
Z;=l exp(-A/An) <o for all ) > 0., Then T, converges completely to
Zero,
PROOF. Without loss of generality, we assume K = 1. Tt is sufficient
to show that E(exp(t an)|srn k_l) < exp(tz) a.e. for each t and

s ,

k>2 and n>1, Consider t>0. If t>1, then exp(t D,y )

IA

2 . ' @ n, ,
exp(t”) a.e. Consider 0 < t < 1. Exp@ an) <1+%D, + Spep b /n!

<1l+t Dy + £2 a.e. Hence E exp(t an) <1+ 2 < exp(tz) for

2

\

0<t< 1. Thus E(exp(t an/lgn,k-l) < exp (t7) a.e. for each t > 0,
for each t < 0 by symmetry, and for t =0 trivially.

REMARKS. As stated in Chapter I, it is easy to check that

A =o(log™ n) implies that £ ep(-\/A) <o for all ) >0. It

is also true that A = O(log"l n) does not in general imply that
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L1 exp(-A/An) < o for all ) > 0. The condition A, = o(log™™ n)
is easy to verify in practice and by the above remark only slightly
stronger than Z:=l exp(—A/An)< © for all )\ > 0. Corollary 2.1 has

been proved by Hill ([L4], p. 405) in the special case where (D .,k > 1)

nk?
are independent for each fixed n and P[an =17 = P[an = -1] = 1/2.
Even for this case, Erdos ([L4], p. 4O4) gives an example which shows
that Zz=l exp(—A/Ah) < o for all )\ > O cannot be replaced by

An = O(log-l n). Hence the statement of Theorem 1 is rather sharp. As
an example of the application of Theorem 1, one may take

8 = l/(nl/z(log n)l/2 T8) for k<n and a, =0 for k> n,

where ¢§ > O. Then it follows that E(exp(t an)lg ) < exp(te) a.e.

n,k-1
implies that T, = Z;=l Dpge / (nl/g(log n)l/2+5) converges completely
to zero, This example is given by Chow in the independent case ([l],
p. 148L). The papers by Hill [4] and Chow [1] mey be referred to for
other applications of Theorem 2.1 since the examples given there still

apply in the general martingale case.

THEQOREM 2.2. Let Dn be generalized Gaussian with T(Dn) < a < ® and

o 2 o) . .
En=l exp(-l/an) < . Then Zn=l Dn converges a.s. implies that
® 2

(o]

PROOF. According to a result of Doob ({87, p. 339), S-1 Dy conver=-

ges_ a.s.; E sup IDn|2 < o implies that Z:=l EDi < o, Hence it suffices

1
to show that E supIDnl2 < @, By Lemma 2,3, it suffices to show that
n>1 _
3 S 2 = . 2
Tpel Dp=1 P[Dn > k] < », According to Lemma 2.2, P[Dn > k] <

2 exp(-k/(2ai)), Hence it suffices to show that Zz=l Zz=l exp(-k/(2ai))

o] [os)

<o T T exp(-k/200)) = 55, exp(-1/207)) 1/(l-exp(-l/(2ai)))..
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But o, - O by hypothesis and hence l/(l-exp(-l/(Zai)))a 1. But
2;:1 exp(-l/(2ai)) < © by hypothesis,
REMARK. As remarked above, aﬁ = o(].og-l n) implies that
f;=l exp(—l/(2a§)) < @ . This condition is easier to verify in practice.
THEOREM 2.3. Let the Dn be symmetric with P[[Dn] > §] > p for some § >0
and p > 0. Let (Rn,n > 1) be a sequence of independent random vari-
ables independent of the Dn also. Then zzzl Rn Dn converging a.s.

implies that . Ri < @ a.s.

PROOF. It is easy to show that j;=l Ri Di < ® a.S. by the three series
theorem (See Section 3 Chapter III of thesis). Now Ri Di >

2 2 @ 2 .

6 B, I|D | >8] Thus 57 R I[|D | > sl <o a.s. Fix c > 0, By

. o 2 [ 2
the three series theorem o > T3 FLR. I[|Dn! >8] >c] =x _; AR >c,
o 2 [ 2
D] > 87 = Tpey FIR, >c] PL|D | > 8] > p Ty PR, > cl. By the three
. g 2 2
series theorem, o >3, E[R I[|D | > 5] IR, 1D, ] > 81 < c]] =

w 2 __ 2 P, 2 .2
Ty BLR, I[ID, | > 6] R, < ]l =g, B[R IR < cI] P[|D, | > 6]

v

o 2 2 .
p .7 B[R, IR < c]] . By the three series theorem,

8

e 2 o)
> Epy Ver R I0|D | > 61 IR I[|D | > 5] < 1]

® L 2 2 .2 o
= Zpay FOR, D) > 6] IR, < €1 - B[R] I[[D ] > 6] I[R] < <]}

® L2 © 2 2.2 2
%1 PLID,| > 6] B[R, IR < c] -5 ; PT|D.| >67E [R, I[R, < c7]

_ 2.2 2 2.2 2
>0 S E[(Rn) I[R, < c] - P[]Dnl > 6] B[R, I[R < c]]
> p z“zl E[(Ri)e I[Ri <cl - E2[R§ I[Ri <cll=p zzzl Var[Ri I[Ri < c1]l.
Hence by the three series theoren, Zz=l Ri < © 8.8.

REMARKS. We cannot drop the assumption of symmetry even with EDn =0
as the following simple example shows. Let (Dn,n > 1) be independent

with P[D, = (-1)%] = (0°-1)/n° ana PD_ = (-1)*"L(mP1)] = 1/n® .
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Let (Rn,n > 1) be independent with (Rn,n > 1) independent of the

D, also and with P[R = l/nl/2] = (n2 - l)/n2 and
o]

2 1/2 2 5
P[Rn=-(n —l)/n/]=l/n. Note EDn=ERn=O’ 5 Rn=°°’

n=1

@
P[an| > 1/2] > P[anlzlj > 1/2, and $,-1 D, R, converges a.s.

n

This establishes the example.
The following theorem is stated by Marcinkiewicz and Zygmund

(res}, ». 72) .

(2) Let ED =1, ED_ =0, P[IDnl > 81 > p

=]

for some § > 0 and p >0 and g D converge a.s. Then

n=1 an n
o
bR a.i<°°.
n=1

/

Theorem 2.3 is related to (2). The sequence of constants
_(an,n > 1) occurring in (2) is replaced by the sequence of independent
random variables (Rn,n > 1) occurring in Theorem 2.3. Also, the assump~
tion that EDi = 1 in (2).is replaced by the assumption that the random
variables (Dn,n > 1) are symmetric. As indicated, the example just
given shows that the assumption of symmetry in Theorem 2.3 is essential.
However, if we assume in addition in Theorem 2.3 that EDi = 1 then
even in the non-symmetric case, the result follows immediately from (2)
by a Fubini argument,
COROLLARY 2.2. TLet the D be generalized Gaussian with D )gc<e
and EDi = 1, Let (Rn,n > 1) be a sequence of independent random vari-
ables independent of the Dn also. Then ¥ _ R D converging a.s.

n=1l "n n
2

implies that Z§=l Rn <®» a,s.
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PROOF. It suffices to show that P[]Dil > §] > p for some positive
constants § and p by Theorem 2.3, But this follows immediately
from the left hand side of the inequality in Lemma 2.2 with 8 = 1,
€ = 1/2, and « chosen sufficiently large since (Ri,n Z’l) are
generalized Gaussian with T(Di) </Jac.
REMARK, The special case of Corollary 2.2 where the Dn's are coin
tossing random variables is well-known. Corollary 2.2 can also be
gotten directly from (2) using a Fubini argument.

COROLIARY 2.3, Let Dn be generalized Gaussian with EDE =1 and

. 2] - - -
T(Dn) < C < ®. Then Doy By Dn converges a.s. implies that
[o]
Tpe] @ <° -
PROOF. The result follows immediately from Corollary 2.2 with Rn =a,

REMARK. We may give an alternate proof of Corollary 2.3 by noting that

EDi < B <« for some constant B < ®» by Lemma 2.1 which implies that

(Di,n > 1) are uniformly integrable. The result then follows from a
theorem of Kac and Steinhaus [17].
COROLIARY 2.4, Iet D~ be generalized Gaussian with T(Dn) <c Jg;g
for some € < ®., Then 2221 an Dn converges a,s, implies that

2

o 2
o]
zn=l an EDn < .

PROOF. Corollary 2.4k is merely a restatement of Corollary 2.3. For,

E(Dn/ EDi)e =1, T(Dn/ 'EDi) % T(Dn)/ VQ;E-S C<o,

o 2 2 @
Toeq (an 'EDn)(Dn/"EDn) = %,.q &, D, converges a.s., and

S @ 22 _ & 2 2 . .
Tt (an EDn) = £,-1 &, ED_ . The result is established.

We now give an example related to Corollary 2.3 and Theorem 2.2.

Looked at from the viewpoint of Theorem 2.2, the example shows that Dn
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generalized Gaussian with T(Dn) <1l and Zz=l,Dn converging a.s.
does not imply that f:zl Di < ® a.,s. ILooked at from the viewpoint
of Corollary 2.3 the example shows that Dn generalized Gaussian,
EDi =1, T(Dn) </n log n and Z:=l a, D, converging a.s. does not
imply that i:=l ai < ®,
EXAMPIE 2.1, Let P[Dn = + log log n}] = P[Dn = - log log n] = p, and
P[Dn = 0] = l—2pn where p = 1/(n log n (log log n)3/2) for n > 2,
Fix ¢ > 0. Then zz=2 P, < ® . Hence 22;2 PL|D,] > c] < =,
22:2 ED, I[|D | < c] =0 by symmetry. Clearly o var(D, I(|p_|< c))
< , Thus i§;2 D, converges a.s, ZZ=2 EDE = z;=2 pn(log log n)2= ®,
We claim FE exp(t D) < exp(t2/2) for all constants t for n suffici-
ently large, i.e., that Dn is generalized Gaussian with T(Dn) <1
for n sufficiently large. E exp(t Dn) = 1-2p + pn(exp(t log log n) +
exp(-t log log n)). Consider the case t >2, Since 1< exp(tz/h),
exp(t2/2) - exp(ta/h) > exp(t2/h), and (log n)t > (log n)'t, it suffices
to prove that 2 exp(t log log n) < p = exp(t™/h), i.e., that
exp(t log log n - t2/h) < n log n(log log n)3/2/2. By differentiation,
it suffices to show that exp[ (log log n)2] < n log n(log log n)3/2/2,
i.e. that (log log n)2 < loé(n log n(log log n)3/2/2). This clearly
holds for n sufficiently large. Consider now the case O <t< 2,
1-2p  + 2pn(exp(t log log n) + exp(-t log log n))/2 < 1-p, +
2pn(exp(t2(log log n)z) since exp(x) + exp(-x) <2 éxp(xz) for all x,
Thus it suffices to show that f£(t) = 1-2p + 2pn(exp(t2(log log n)2) -
exp(t2/2) <0 for 0<t<2, f£(0)=0 f1(t)=
Lt pn(log log n)2 exp(tz(log log n)2) -t exp(t2/2). Thus f'(t) <O

if and only if hpn(log log n)2 exp(tg(log log n)z) < exp(t2/2), if and
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i 1/2 2 2
only if U(log log n) exp(t”((log log n)” - 1/2)) < n log n. Clearly,
t sufficiently small implies that £7(t) < 0. Let t be smallest pos-
itive value such that £'(t) = O. Then exp(tg((log log n)2 - 1/2))
=n logn / (4(log log n)l/z), i.e., t2(log log n)2 - 1/2 =
log (n log n / (4(1log log n)l/2))) which implies that

1/2))) / (108 10g 0)% > b 1og n /

2 > log(n log n / (4(log log n)
(Log log n)2 for n sufficiently large. Thus, for sufficiently large
n, f£'(t) <0 for O0<t<2 and hence f(t) <0 for 0<t<2 for
sufficiently large n. Hence E exp(t Dn) < exp(t2/2) for all t >0
for sufficiently large n. By symmetry, the result holds for all +.

2 [ 2 1/2
Tet Drl:Dn/'\/'EDn' Then T(Dr'l)_<_l/ EDn=(nlogn)/

(log log n)-l/h < (n log n)l/2 for sufficiently large n. Iet

_ 2 o) ' . 2 _
&, =VED, . Then g . a D! converges a.s., E(Dn) =1 and
T(Dr'l) <J/n log n for sufficiently large n and ZZ=1 a‘r21 = oo , Thus

the example is completed.
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CHAPTER ITI

SOME MARTINGALE CONVERGENCE RESULTS

1. Introduction

Throughout Chapter I we let (Q,%,P) be a probability space and
(%h,n > 0) be an increasing sequence of o-fields contained in ¥
with 7 = (¢,0). We call (Xﬁ,?n,n > 1) a stochastic sequence pro-
vided each Xn is a random variable measurable with respect to ?n.
Given a martingale (Xn,f/«'n,n > 1) we let D) =Xy, Dy =X, = X5eee,

D =X -X . We then call (Dn,? ,0 > 1) a martingale differ-
n

n n n-17°°"°
ence seguence. Alternately any stochastic sequence (Dn,%n, n > 1)
with E(Dn‘gn-l) =0 for n >2 is a martingale difference sequence.
By a stopping variable t is meant an extended positive integer valued
random varigble such that the set [t =n]e F, foreach n>1. We
let I(A) denote the characteristic function of a given set A and A!
denote the compliment of A.

In Chapter II, where the emphasis was on the geéneralized Gaussian
structure, one martingale convergence result was established. In Chapter
I the main emphasis 1s on the martingale structure and several martin-
gale convergence results are established.

Recently Szynal [25] (See also Levy'é transmittal remarks [20])

has considered the relationship between the condition that

(1) i E(Dfl / (bfl + Di)) <
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and the a.s. convergence of Z§=l Dn / bm to zero where (Dn’ n > 1)
is a sequence of independent random variables with EDn =0 and
(bn,n > 1) is a sequence of positive constants increasing to infinity.
(1) should be viewed as a weakening of the well known Kolmogorov con-
dition that Z§=i EDi / bi < , i.e., that the sum of the variances
be finite. After stating an example (Example 3.1) which indicates an
error in the results given in [25], we prove a martingale convergence
theorem (Theorem 3.1) which when specialized yields a corrected ver-
sion of the resuits giveh in [25]. In particular, Corollary 3.1 states
that if (D sFom > 1) is a stochastic sequence with
n—l E(|D |2r / (|D |2r+ bgr)|% ) < © 8.5. on g set A for some
1/2 <r <1 and positive constants (bn’ n > 1), it follows that
fb_l ( - a ) / b converges a.s. to a random variable on A vwhere
a = E(Dn (o, | < bn)|5cn_l) .

Recently Chow ([4],[2]) has established with the use of an ine-
quality of Burkholder [1] that (Dn,%h{n > 1) a martingale difference
sequence such that j:=l Eanlgr / ¥ < e for some r > 1 implies
that 2§=1 Dn/m converges a.s. tO zero as m - o . Related to this,
Corollary 3.2 of Theorem 3.1 states that if (Dn,szn,n >1) is a
stochastic sequence such that z§=l E(anlgr/(nr+l+]Dn|2r)) <o for
some r > 1 then z% / m converges a.s. to zero where
a =E(D_ I( |Dn|2 <n r+l)l9’ .

In the case where (Dn,n > 1) is a sequence of independent random
variables and (bn,n > 1) is a sequence of positive constants, the

easily established Proposition 3.2 characterizes condition (1) as be-

ing equivalent to the a.s. finiteness of the sum of squares Zn /b .
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Corollary 3.6 and Propesition 3.3 then give relationships between the

a.s. convergence of jm D and m; D2 in the independent case.
~Tn=l Tn i Zp=1 “n

1l if O<«r 5’1}
Let fn(r) =f = { lr. where (cn,n >1) is a
c if r>1 .
n
sequence of positive constants such that j:zl c;l < o and let
(Dn,gn,n > 1) be a martingale difference sequence. It is known that

o]

Z§=l E[Dn|2r / £ <o for some r >0 implies that Sy D, converges
a.s. The result is due to Levy ([19], Theorem 68) for r = 1, due to
Loeve ([21], p. 286) for 1/2 <r < 1, due to Chow ([3], p. 555) for
r>1, and is trivial for O <r < 1/2 . Recently Burkholder [1] has
proved that E(i:=l Di)l/2 < o implies that E§=l Dn converges a.S.
This is an essential improvement of the Levy (r = 1) result mentioned
above. Theorem 3.2 states that if E(zi=l an‘er / fn)l/2r < o for
some r > 0, then i:=l Dn converges a.s. Since the result for
0<r<lf2 is trivial, for 1/2 <r <1 follows immediately from
the Burkholder result, and coincides with the Burkholder result for
r = 1, Theorem 3.2 really only treats the case r > l. For the case
r > 1, Theorem 3.2 sharpens the Chow result mentioned above. Corollary
3.8 gives a local version of Theorem 3.2.

ht4 (Dn,n > 1) is a sequence of independent random variables with
ED =0 and E|Dn|2r(log+|Dnl)l+e <M for constants M<w, ¢ >0,
ml/(2r)

and 1/2 <r < 1, then 22=l D, / converges a.s. to zero

according to a result of Chung [T7]. Theorem 3.4 and Corollary 3.10

provide an extension of this result to the martingale case.
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Given a sequence of random varisbles (Dn,n >1), let X =%, D
define an associated sequence (Xﬁ, n>1). Tt is known that if
(Dn,n > 1) is a sequence of independent symmetric random variables with

supanl < ® B.S., then Xn converges a.s. to a random variable as
n>1

n - o ([8], p. 121). According to Corollary 3.1l of Theorem 3.5, if
(Dn,?n,n > 1) is a martingale difference sequence then Xn converges
a.s. to a random variable as n - o on the set where sup thl < ® GeSs

and
(2) ey B0, (D | > K|z )

converges a.s. for all integers K > N for scme integer N. This is a
martingale version of the aforementioned result with condition (2)
playing the role of symmetry.

Given a stochastic sequence (Dn,gh,n > 1) and a sequence of
positive constants (an,nz 1) we may form the truncated random variables
Dé = Dn I(|Dn[ < an). Then the sequence (Dé - E(Dé' gn-l)’ Foon 2 1)
is a martingale difference sequence. ILet Xm = Z$=l Dn ?HQN
x& = 2?21 (Dﬁ - E(Dﬁlyn-l))° Then we may investigate the convergence
properties of the martingale (Xﬁ,%n,n > 1) and thereby deduce con-
vergence properties for (Xn,yn,n > l); This simple technique was
found to be very useful in developing proofs for the results stated in

this chapter.
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2. The Relationship of Conditions of the Form

[oo]

z

2 2 2
+ [ee) ! ] . .
1 E(Dn / (bn Dn)) < to a.s. Convergence

In a recent note by Szynal [25] transmitted with remarks by Levy
[20], two results pertaining to the strong law of large numbers for
independent random variasbles are stated:

(3) Iet (Dn,n > 1) be a sequence of independent random variables
with mean zero, Xn = Z§=l Dm for n>1, (bn,n > 1) be a sequence of
positive constants with b t = and i:=l E[Di / (bi + Di)] < ©. Then
X / b~ converges a.s. to zero as n -« .

() Let (Dn,n > 1) be a sequence of independent random variables
with mean zero, Xﬁ = ;§=l Dm for n>1, and

Ez=l E[|Dn|2r / (nr+l + |Dn]2r)] <o for some r > 1. Then Xn/n
converges 8.8. Lo zero as n — o .

The following example shows that the above two results are in-
correct as stated.

EXAMPLE 3.1. Let (Dn,n > 3) be a sequence of independent random vari-
gbles such that P[D = n9/h] = l/n2 and P[D = —ng/LL / (n® - 1)]
= (s - 1) /o° . Note that ED_ =0 and that £ 5BL 2, 17/ (&

+ 0, P01 = 52, B, P / (a7 o P a(f, | > )
£ 1P| <) <5, (LDl > 67 + 1/ (1 aF T RGR )R o

for r>1. Since Z:=3 P[IDn‘ > n2] < ®, 1it follows that there exists
an integer valued random variable N such that n > N implies that
D = -n9/u/ (n2 - 1) a.s.  Hence D, and therefore X / n diverges to

- o . Setting r =1, it is clear that the hypotheses of (3) are sat-

isfied for the case b =n. The hypotheses of (4) are satisfied for
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all r > l. Thus the example is established.

The following easily established result for martingales allows us
to give corrected versions of (3) and (4) as well as state some other
related results.

THEOREM 3.1.

i} Given constants b >0, f >0, > 1/2, and s > 0, suppose.
it is known for any martingale difference sequence (Dn,gzn,n > 1) that
Z‘m_l E( IDnlzr / (fn bi)) < o implies 2 . n / b converges a.s. to
a random variable. Then it follows for any stochastic sequence

o

o 2r 2r s . .
(Dn,gn,a. > 1) that 20 B( |Dn| / (|Dn| +E bn)) < o implies

<O .
that ¥ 5 (Dn - an) / b~ converges a.s. to a random variable, where
- 2r s
a, =B, (o | <£ )7 ) -
ii) Given constants b >0, f >0, r> 1/2 and s > 0, suppose
it is known for any mertingale difference sequence (Dn,sﬁn,n > 1)

2r
that 2;=l E([Dnl / (fn b:)lgzn_l) <o a.S..on a set B implies that

~_1 n / b converges a.s. to a random variable on B. Then it follows

. o 2 21‘
for any stochastic sequence (Dn,scn,n > 1) that a1 E( {Dn] 7(|Dn|
Sy ] . foe)
+ 'bn)l‘fn_l) < ® as8. on a set A implies that 2h=1(Dn - a.n)/bn con-

verges a.s. to a random variable on A, vwhere a, = E(Dn I( [Dn|2r
s .
= fn bn)"?n-l) *
iii) Given comstants O < b -, £ >0, 1> 1/2, and s >0,
suppose it is known for any martingale difference sequence (Dn,"jn,n >1)
© 2r S . . b}
that 3 . !Dn[ / (fn bn)] < implies that 3 _, D / b con~
verges a.s. to zero as m — . Then it follows for any stochastic

2 2 .
sequence (Dn,gn,n > 1) that Z::=1 E['Dn' * / (|Dn| Y4 f, bi)] < @
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implies that 2 - a, )/ b~ converges a.s. to zero as m- o
vhere a = E(Dn I(|Dn| <f, bn)t?n_l) .
iv) @iven constants O < b »w, £ >0, r> 1/2, and s > 0,
suppose 1t is known for any martingale difference sequence (Dn,gn,n >1)

that 55 B(|D_ | / (r, B%)|%, ;) < a.s. on a set B implies that

22=l Dn / bm converges a.s. to zero on Bas m- o . Then it follows

for any stochastic sequence (Dn,gn, n>1) that

o or
2 E(|Dn|2r /(|7 + £ )| ) < aws. onaset A implies

m
that 3 . (Dn - an) / b~ converges a.s. t0 zero as m -« on A,

_ 2r S ter
where a = E(Dn I(|Dn[ bn)lwn—l) .
PROOF. We establish (ii) only since the proofs of (i) and (iii) and
(iv) are very similar to that of (ii). Assume
2
5 E(|Dn|gr [ (P v 2 15)|5, 1) <> onaset A Let
_ 2r s © ' - 2r ]
Dj = Dy I('Dn| st bn) R | P(Dn T Dnlgn—l) = Tpe1 P(anl > Ty
F01) = S BT/ (|77 + 2 650300 P + 2 v%) / b |
n-1 Zn=l n n n n n n n n
2r 2r 2r s
» (D |7 > £ ® 2 1Fng) <230 BOP |7/ (p [T 2, v )
on A. Now (I(Dn + DA) - P(Dn + Délgn-l)’ Fpo B2 1) is a sequence of
uniformly bounded martingale differences. Thus by a result of Doob
([8], p. 320) it follows that P[D, } D} i.0., A] = 0.
(2§=1(Dé - E(Dﬁlgn-l))’gm’ m> 1) is a mertingale.
o : 2r o 8\ 2r er
T B(D) - E(D1;|szn;_l)| /(e o )e, p) <27 5 B(RETY/(2 0005,y

2r o

=2 52 E([Ip, * £ b0+ |Dn|2r)][(fn b7+ IDnlgr)/(fn b)]

2r s 2r+1 2r 2r s
: I(IDn| < fn b )‘?n-l) <2 z;0=1E(anl /(anl +-fn bn)'?n l) <@
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a.s. on A using the c_ inequality ([227, p. 155) and the fact that

B(|D! 1|7, _,) = |B@! |5, )|7" a.s. If the hypotheses of (ii) hold,

it follows that 2':;:1(Dr'1 - E(D;l‘gzn_l)) / b~ converges a.s. fo & random
variable on A. Since P[D! fDn i.0., A] =0, (ii) is established.
This completes the proof.

We now apply Theorem 3.1 to state several a.s. convergence results,
each result corresponding to g known convergence result.
COROLIARY 3.1. ILet (Dn,ztn,n >1) bea stochasti’c sequence, b >0,
and Z;.;:l E(‘Dnler / (anlgr + bir)lgn_l) <o onaset A for some
1/2 <r <1 . Then T§=l (Dn - an) /bn converges a.g. to a random
varisble on A vhere a = E(Dn I(an[ < bn)lfy:n_l) .
PROCOF., If (Dn/bn, %n,n > 1) is a martingale difference sequence, it
follows by results of levy for the case r =1 ([19], Theorem 68) and
Chow for the case 1/2 <r < 1 ([3], p. 554) that
E:=l E(anlEr / bir.‘?'n-l) < o a.S. on a set B implies that );:___an/bn
converges a.s. to a random variable on B. Thus Theorem 3¢1(ii) applies
with 1/2 <r <1, s =2r, and £fo=1.
REMARK. In the special case where (Dn,n > 1) is an independent
sequence of random variables, Corollary 3.l also follows from a theorem
of Ioeve ([21], p. 286).
COROLLARY 3.2. Iet (Dn,f;n, n > l) be a stochastic sequence with

© 2r r+l 2r
Soap B, |IT /(a7 D, 177)) <= for some r.>1 . Then

Z?ll:l (Dn - an) / m converges a.s. to zero as m - o, where

_ 2r r+l
a, = E(Dn I(!Dn[ <n 1g;n_l) .
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PROOF. If (Dn,ﬁn,n > 1) is a martingale difference sequence with
&) 2r r+l m
So=p ELID, | /0 7] <o for some T >1, then £ne1 Py / m con
verges a.s. tO Zero as m - o , by a result of Chow ([47,[2]). Thus
Theorem 3.1 (iii) applies with s = r+l, f, =1, r>1, and b =n.

COROLIARY 3.3. Iet (Dn,f-,’:n, n > 1) be a stochastic sequence with

g':=l E( !Dn'Er / (cr];_r + anIEr)) <o for some r > 1 and positive

0 (o]
constants c = such that ¥, 1/ c <«. Then 2n=l(Dn - a.n) con-

; _ er 1I-ry..
verges a.s. to a random variable where a = E(Dn I( anl <c, )]Jen_l).
PROOF., If (Dn,s%n,n > 1) is a martingale difference sequence with

o 2r l-r -
Th=1 Eanl / ¢, <=, forsome r>1, andpositive constants c_

© [ .
such that z‘n=ll/ c, < then o1 Dn converges a.s. to a random vari-

able by a result of Chow ([37, p. 555). Thus Theorem 3.1 (1) applies

1-r
c

with b =1, r>1 and f =
n n n

COROLLARY 3.L. Let (Dn,grn,n_>_ 1) be a martingale difference sequence,

o er er 2r
b, >0, B sup (o} /v)) <= and 5P E[|D |=/(|D,] th )] <

for some 1/2 <r < 1. Then 2:=l E((Dn/bn)I(anl < bn)lszn_:‘_) = z';=l an/bn
' cohverges a.5.

PROOF. By Corollary 3.1 , z‘;;l (Dn - an)/ bn CONVErges 8.S.

2r 2r, . 2r . . 2 2
2‘;=l E[anl /(|Dn| t b )] < implies that Z:=l D / b <@ a.s..
According to a result of Burkholder ([1], p. 1498), E sup (anl/bn) <
: n>1

and 2:=l Di / bi < © a.s. together imply that E:=l D, / b~ converges

a.s.. Hence gz a /b converges a.s.. The result is established.
=l n mn
Ir 'bn t » , we can deduce stability results from Corollary 3.1
by applying the Kronecker lemma in the well-known manner. ([12], pp.

238 - 9) . The stability result corresponding to Corollary 3.1
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(22=l (Dn - an) / b~ converges a.s. to zero as m - o if the hypoth-
eses of Corollary 3.1 are satisfied and bn t ) applied in the special
case where the random variable Dn are independent and r = 1 gives
a corrected version of (3).,l Corollary 3.2 applied in the special case
where the random variables Dn are independent gives a corrected ver-
sion of (4). IFf the hypotheses of Corollary 3.1 hold, it is clear that
S Dy / b~ converges a.s. to a random variable on the set A if and
only if Z§=l a, / bn converges a.s. to a random variable on A. Sim-
ilar statements can of course be made about Corollaries 3.2 and 3.3 and
- are omitted. If in the statement of the theorem or in the statement of
any of the corollaries, the random varisbles Dn are assumed to be
independent, it should be noted that the a, gin each case do indeed
become constants as the notation suggests. If further the random vari-
ables are assumed to be symmetrical as well as independent, then a = 0.
Thus under the additional assumption of symmetry, (3) and (4) are valid
as stated. In the independent, symmetric case a converse to Corollary
3.1 can be stated.
PROPOSITION 3.1. ILet (Dn, n > 1) be a sequence of independent sym-
metric random variables and (bn,n > 1) a sequence of positive con-
stants. If Z§=l Dn/ bn converges a.s. to a random variable then

) 2 2 2
To=1 E[Dn / (bn * Dn)] <%

1 In & research report done concurrently with the present work,

Heyde [13] states in a theorem that if (Dn’ n>1) is a sequence of
R . . m
independent random variables with O < bn + o, then 2n=l(Dn" an)/bm

converges a.s. £O zero as m - = where a = E[DnI(‘Dnl < bn)]. This
is also the result we refer to here.
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PROCF., We may assume bn = 1 without loss of generality.

) B[ (0 / (1 + ENKD: > 1)] <55 B[DC > 1] <= by the three

. 2 2 2
series theorem, ([22], p. 237). Z§=IE[(Dn/(1+ Dn))I(Dn < 1)]
2 ) .
< 2:=l EDn I(an‘ < 1) < » by the three series theorem.
COROLLARY 3.5? Iet (Dn,n > 1) be a sequence of independent symmetric

random variables and (bn,n > 1) a sequence of positive constants,

Then Zi=l Dn / bn converges a.s. to a random variable if and only if

g:=l E[Di / (bi + Dfl)] <o .

PROOF. Immediate from Proposition 3.1 and Corollary 3.1.

3. Relationship of the a.s. Convergence of z =1 n

and iizl Di in the Independent Case

PROPOSITION 3.2. Iet (Dn,n > 1) be a sequence of independent random

variables with (bn,n > 1) a sequence of positive constants. Then
® 2.2 2 © 2 2
+. - 0 .
zn=lE[Dn/ (bn Dn)] <@ if and only if % _, D / b <o
PROOF. The sufficiency is obvious since 3. D2 / (b2 + Dg) < ®
Zn=l n n n

implies that z - D / b < ©, To establish the necessity assume

o)
X

=1 O / b < » By the three series theorem 3 . E[ (0% /b )I(D b )<

and Z:=1P[Di > bi] <® . But ):z=l E[Drz1 / (bi + Di):{: =
E[(D / (b +D ))(I(D <b ) + I(D S B ))J<Z 1 (E[(Di/bi)

- 2 _ .2
I <b )] +ED >b] )<=,

2
Szynal [26] has also recently made the same observation.
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COROLIARY 3.6. ILet (Dn,n > l) be a sequence of independent random
varisbles and (bn,n > l) a sequence of positive constants with
S D / b <o a.s. Then Sy E[(Dn / bn) I(anl.S bn)] converges
if and only if zﬁ D /b converges a.s. to a random variable.
=l "n n
FROOF. We may assume bn =1 for all n > 1 without loss of generality.

The necessity is well-known. To establish the sufficiency, assume

zi=l Di < ® a.s. and 2;=l E[D_ I('Dﬁl < 1)] converges. By Proposi-

s

tion 3.2, Zn=l

ﬁ:=l (Dn - E([Dn I([Dnl < 1)1)) converges a.s. to a random varisble.

E[Dfl /(1 + Di)] < ® . By Corollary 3.1,

Hence 2§=l Dn converges &a.s. to a random varisgble.

PROPCSITION 3.3. Iet (Dn,n > 1) Dbe a sequence of independent random
variables such that i:=l Dn converges a.s. to a random variable and

(Rn,n > 1) be an independent sequence of random variables independent

of the D =~ also with P[R =1] =P[R =-1] =1/2 . Then (i)

5 Di < a.s. if and only if (ii) 5 ; E2[|Dn|1(|Dn| <cll<w

for some ¢ > 0 if and only if (iii) z‘;l":l Eg[DnI(IDnl < ¢l <o for
Y [

some ¢ > O if and only if (iv) %=y D, B, converges a.s. to a

random variable.

PROOF. We show that (iii) implies (i) implies (ii) implies (iii)

implies (iv). (iii) implies (i): By the three series theorem,

(o]

. R . © 2 2
Sy=1 Dy B, converging a.s. implies that N I(Dn <1l) <o and

o @ 2
that 5, P[IDn] >1] <o . Hence Ty Dy < aes.

1) implies (11): x_, Dfl < o implies that z‘;::lE[Di (o |< e)l< =
for all c > 0 by the three series theorem. But E2[ anlI([Dn l< e

2 o 2 . ;
< B[D_ I(|Dn| < ¢)] and hence Yoeg B[D, WD Jgc)]<o
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ii) implies (iii): Trivial.

iii) implies (iv): We establish the a.s. convergence of %

En=l Dn Rn

Yy verifying the conditions of the three series theorem.
- =) . ©
T 1D, Rn[ >c] =% o B ]Dn| >c¢]<w since 3, D converges

. o _
a.s. D R are symmetric and hence %, B DanI(anRhl <c)]=0.

.. E[(0, R I(|D_R | <c)) 1= Sneg B I(D | < e))e 50 D con-

n
verges a.s. implies that )::z:lE[Di (jp | < c)] - EE[DnI( Pl <se)l<e .

By hypothesis, Z§=l E2[Dn I(|Dn, < ¢)] < » and hence

Z§=l E[Di I(IDnl < c)} < ® . Thus by the three series theorem,

Z§=1 Dn Rn converges aeSe..

REMARK. Consider the special case where Dn =W, Yn where (wn,n > 1)
is a sequence of positive constants such that i:=l Wh = o and

(Yn,n > 1) is a sequence of independent identically distributed random
variables with distribution function F. Define, for each x > 0, N(x)
as the number of integers for which bn / W, < x Tfor a given sequence
of positive constants (bn,n > 1) with bn t+ » , Jamison, Orey, and

Pruitt [167 introduce the condition

(5) x2 = Ny) dy dF(x) < » in order to study the a.s.
- x|y

convergence of zgzl Dn / bN to zero in the case that bN = Z§=l W o

Heyde [137 generalizes their work to the following: If O < bn 4 @

and r 2 r %3’—) dy 4 Fx) <a then 3 (D - E[D_I( o | <2 )1)/%,

-0 lx

converges a.s. to zero as m - «. This result is established by showing
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that (5) is equivalent to the condition that ﬁ:ziE(Di/(bi + Di)) <o .

Hence by Proposition 3.2, it follows that s Dfl /¥ <o 1s equiv-
alent to the condition (5), i.e. that the condition (5) of Jamison,
Orey, and ’Pruitt is equivalent to the 8.8. convergence of the appro-

priate sum of squares.

o 2 2 .
b, E(En=lanl */ fn)l/( r) <o Implies a.s.

Convergence of 2:‘—-1 Dn and Related Results

if 0<rc<1l

Let fn(r) =f_ = {cl'r } where (cn,n >1) isa

if r>1

sequence of positive constants such that ):'; 1 c;l <o and let

(Dn,gzn,ng 1) be a martingsle difference sequence. Without loss ef
generality in the sequel, we assume c,21 forall nx>1,

THEOREM 3.2, If E(zzzlpnfr / fn)l/ Y ¢ w for some r > O, then

(v}
o 8 .
I.s1 D, converge BeSee

FROOFe As & first sten.ye estsblish a mumerical. ingquality which is.
statéd as a .Lennna.: | ‘.

~ IEMMA. Iet (cn,n > 1) be a sequence of non-negative constants and
r > 1, Then there exists a constant M > 0 independent of the

values of the ¢ such that c /((2m=lcn)l-l/(2r)+ (Z:-lc )l-lllzr),

< M((Z;Ll Cn)l/(Er) (Em,_l n)l/(2r)) for all m> 2.,

FROCF OF LEMMA. The above inequality holds if and only if
e, s e+ (Pt o V@) m o /) e )i/ (er)

"

n=1 n n=1

(rm' )1/(21«)) for all m > 2 which holds if and only if (1 - M)

n=1 ‘n
e, < M(zx:::l cn)l/(Er)(erxll;i )l/(2r)[(2m_l n)l-l/r (= n)]_.l/r

n=1
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for all m > 2 . Thus it suffices to show the existence of an M > 0
such that for all a >0 and b >0, (MLMT a > (at0) (27)

(b)l/(gr)((a+b)l'l/r - bl'l/r) which holds if and only if
1M Ha/b) > (afor1 )Y BF)((afprn) Y7 | 1) o (afprr)t-2/ (2r)

- (a/b+l)l/ (2r) . Let g = (M~1)M'l and x = a/b+l . Then it suffices
to show the existence of a 8 < 1 such that -g + Bx > xl-l/(Qr)_xl/(Qr)
for all x> 1. let f£(x) =px - x= 7@  WE) o0y o,
Hence it suffices to show that f'(x) >0 for all x > 1 and some
B<l. £1(x)=p+(20)t M/ B)1 g oy ly, -3/ (2r)

>p -1+ (Er)~l . Thus it suffices to choose g = 1 - (2:r)'l to

establish the lemms.

Without loss of generality, we assume Dl = 1 a.s8. . By hypotheses

[ee]
2n=l |Dn

For r =1, the result is an exact restatement of a result of Burkholder

l21‘ <w for O <r < 1/2 and hence )j:::l D~ converges a.s..

. o 2r\1/(2r) o . 2,1/2
([1], p. 2497). Since (5 o 17) > (s D) for
/2 <r <1, the result for 1/2 <r <1 follows immedistely from
Burkholder's result.
For an integer K> 1 and r >1 let

8(K) = t = inf {m:K(zg=l|Dnl2r/ fn)l/(EI‘) < z;;l . IDn|2r/(fn+|Dn|2r)} .

m Xm irf t >
let X = Y= D and X! ={ "l} s lees
m =L "n m .
Xt if t <m

it

2§=l lel o Then

't—l '2:' 2 2 2

' =
X! ﬁ;‘:l D, I(t >n)

P 2r 2r
Zn=l‘D131I /<|D1:1! +fn) -

© 2r 2r .
T Pl /(R |7 e ) if b = e
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Noting that |Dt|2"’/(|nt|2r +1,) < (|p 2""/f,c)l/‘?r_ it follows that

e

E >:;°=1|Drfl|2r/(|pr'l|2r +1) < (k1) B(s_ |Dn|2r/fn)l/2r <o . Then
by Corollary 3.3, it follows that Z:=l (DI;l - an) CONVerges a.s. With
&, = E[D] I(|0:[* < £ )5 ). Ve now establish that

E:=l E(Dr'l I( |Dr'1|2r < fn)lgr'n-l) = 2;;1 a =~ converges a.s. on the set

[t ==]. For n>2, on the set [t =w], ]E(Dr'lI( ]D;frs fn)|3:n_l)|

= |E(®, I(t > n) I(|Dn|2r tzn)<t) [ 7,_,)]

- [B, ™ e 20) <2) )|

=|E(D_ I(|Dn|2r .I(t zn)>f |7 )] < E(!DnII(IDnlgr > )7, 1)

using the fact that E(D) | % _,) =0 a.s. Let A  be the set
[IDnler-l - (l/(f;l ) fr(ll-er)/(zr)))(Zg;th'ar/'fm)(zr-l)/(er)] .

B(Io| T ([ >2) | 5, ;) = B(|p_| x4 )x(|D_|?* >1) | 5,

+ E('Dnl I(Ar!l) I(‘Dn|2r > fn) [ ‘“xn-l) . We estimate each term separately.
B2, 1) T0, 1 > 2.) | 5, 1) < B((1/ (et - £{180)/(Br)y 1/ (Br-2)
(T;.:_ileI&/fm)l/erI(|Dn|2r >5) |5, ) < c.(Z:;:lIDm|2r/fm>1/(2r)
P(|I)n|2r > £ | %n-l) for some constant ¢ > 0, noting that

l/(f;l -fil-er)/(at‘)) ~+ 0 since fn -0 as n- o . Thus

<o

0, T XD, 17 > 2 ), 1) < o2y o, P/e ) Y2F 52
2r 2
PRI > 2,17, 1)e Wote that () I(jp_|** > £ )

- P(|Dn|2.r > fn[ %n_l) > Foom>1 ) is a martingale

with uniformly bounded martingale differences. Tt then follows by a
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. o~} 21‘ .

result of Doob ([87, p. 320) that Yoq I(an| > :E'n) < ® 8.s. if

. 2r -
and only if Z:=l P( ]Dn[ > fn!""n—l) < ® a.S.. But we know that
il I(|D |2r >f ) <o a.s. since 3= |D |2r/f < ® a.s8. by
n=1 n n n=1"n n

. o 2r o
hypothesis. Thus Znil P( |Dn| > fnl‘ﬁn-l) < a.s. and therefore

2r
Tpep E([D, (A ) (D |7 > £ g, 1) <= a.s..

By definition of A1;1 , on Al;l we have

2r—l/f - 'D

- m|2r-lfxgl-2r)/(2r) > (Zﬁ;]]: an|2r/fn)(2r—l)/(2r)

[P

which implies that

2|Dm|2r-1/fm > (Z;u—lIDnIQr/fn)(er-l)/(Er)+ (zg;i_ !Dn'2r/fn}(2r-l)/(21-)
using the inequality |a+b|s < la{s + |b|s for 0<s <1 . Hence

on Ax;l’ 1/2 = leIQr-—l fx; /(IDmIEr-l f;ll + le'21'-1 f;;ll) < ‘Dm'.?r-l fz;l/
((2]:11=1 |Dnl2r/fn)l—l/(2r) N (2:;;: !Dler/fn)l-l/(Er)) for m>2 .
Tous, 57 5(1/2) B([D | Ta1) (o | > £ )|z )

< E(IDnﬁzr Y o fn)l-l/(Qr)

R e Y ) e o

Bl /Ty IR/, R o e ) 00y
<B T, W anlzr/fn)l/(er)_ (Zn;i an|2r/fn)l/(2r)]
<EM(E leler/fm)l/er < ® , using the lemma with

1

2r - 2r
= 10]7 £, - E[D;| <o . Taus 57_E(|D_|I(a)I(|D_|7"> tNF, 1) <o

a.s. Combining, it follows that Z‘f:;:lE(DI’1 I(]Dr’llar < fn)l %n—l) con-

verges a.s. on the set [t = «7. Since the a.s. convergence of
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(o0}

2r
| S, 4 ! o s . o
5 (Dn E(Dn I(|Dn| <f )lun_l)) is already established, it

1

follows that z§=l Dn converges a.s. on the set [t =7, where we

use the fact that Dn = Dﬁ for all n > 1 on the set [t = »], But

m‘ . (e} 2r 2r
a=u [6(K) = =] since 3° . |D |77/ (£, + |D ™) <= a.s. Thus

° D converges @.s
Zp-1 Yn € it

teyl-
COROLLARY 3.7, Iet f_ = (n(log n)'"®) for n>3 and some r>1

and ¢ >0, If E(z§=3|Dn|2r / fn)l/Er <w for some r > 1, then

@

En=3 Dn
PROOF, Immediate from Theorem 3.2 since Zz=3 (n(log n)l+€)"l <o .

CONVErges 84Se..

REMARK. Corollary 3.7 sharpens a result of Chow ([3], De 555) which

states that i:=l E|Dn|Er (n(1og n)l+e)r'l <o for some r > 1 and

¢ > 0 implies that 2:=l Dn CONVErges asSee

Corollary 3.7 is sharp in the sense that ¢ > 0 may not be dropped.
The following example shows this even in the case that (Dn,n >1) is
a sequence of independent random variables with mean zero.
EXAMPIE 3,2. Let (Dn,n > 3) be a sequence of independent symmetric
random variables with [Dn| = (n log n log log n)'l/e a+Se and
g, = (n log n)l-r for some r > 1.

ﬁ:=3 IDnlzr/gn = i;=3 (n log n(log log n)*)™ <o . Tus

E(Z:=3 IDnIQI‘ / gn)l/(2r) <o . But Z:=3 E'Di I(‘Dnl < 1)

- -l - oo .
= T (n log n log log n)™" = « and hence T3 D, @iverges a.s. by
the three series theorem,

COROLLARY 3.8. Ir (6) E|D,| I(t < m)f;l/(gr) <w for some 1 > 1

e

and for all stopping variables +t, then Z§=1 Dn converges &.8. on
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© ar
the set [3 [P I7/f <=7.

PROOF. For an integer K > 1, let t(M)

i
,é;

m: (9 o |7 e g L ret x =5 D ana

[xm if t > o :
! = i 1 = = LI
X :} , dees X! p. It >n)= zi‘zl L

mox, i < “n=l

B(sS_, “D'r'ller/fn‘)l/(gr) <M+ D] It <) -fi_zl/(Qr) e

(Xg,%n,n > l) is a martingale according to a well known result of

Doob ([8], p. 300). Thus izzl Dé converges a.s. by Theorem 3.2,

Thus on the set U [t(M) = =] = [Zz=l an|2r / f <o, it follows
M=1 )

that z§=l Dn CONVErges &e+Ses

REMARKS. Without the validity of Theorem 3.2, (6) would have to be re-
placed by the much stronger condition that E[‘Dtlzr I(t < w) f;l] <o
for some r > 1 and all stopping times t in order that Corollary 3ﬂ8
remain valid.

Burkholder proves that if E sup IDnl < », then the set
nzl

I 2 ©
[2n=l Dn <ol = [Zn=l Dn converges ] a:8+« In view of Corollary

3.8 and the fact that E sup ]Dn| < o implies that EIDt|I(t < ®) <o

n>1
for all stopping times t one might expect some sort of converse to

Corollary 3.8 to hold, for example that if E sup (|Dn|/(gn)l/(2r)) <
n>1

2r -1
l

then the set [Z;=l Dn converges a.s.7 c:[z? g, < »7 where

n=l|Dn

g, = (n log n)l—r for some r >1 or some similar choice for g -

However, the following example shows that this statement fails, even

for g = ntT
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EXAMPIE 3.3. Iet £, = (n (log n)l e)l ¥ for some ¢ > 0, r>1

and n>2.

frll/ (er) with probability p_
let D = gt/ (@r) with probability p
n n n

0 with probability 1-2pn

: +
where p = 1/(n(log n)l g)l/r and (Dn, n>1) is assumed to be s
sequence of independent random variables. Computing,

2 _ 1tg =1 © 2 . .
ED = (n(log n)~ €)™~ . Hence Spep BD, <= . Since D is sym-

metric and Dn converges to zero a.s. as n - o it follows by the

1/(2r)

three series theorem that Z?=l Dn converges 8.S. |Dn|/fn

. s1

and hence E sup (|Dn|/(fn)l/(2r)) < o holds and thus
n>2

E sup (anl/(gn)l/(2r))< o holds. Since ]Dn|2r nr-l <1 and
n>2

2r I‘-l)

Var (anl n = , it follows by a result of Kolmogorov

[ee]
2n=2
([227, p. 236) that 2222 anI2r 7t s e a.s.. Thus the example is
established.

Based upon Chow's result that E Z§=l |Dn|2r / oL

< o for some
r > 1 implies that Z§=l Dn/m converges a.s. to zero, we use the
approach of Theorem 3.2 to state the following theorem.

THEOREM 3.3. If E(z‘;’:l an[er / nr+l)l/2r < ® for some r > 1

m
then Zn=l (Dn - an)/m converges a.s. to zero where

_ 2r r+ly e
a, = E(Dn I(|Dn| <n )|gn_l)
PROCF. The details are omitted. One defines a stopping rule analogous
to that defined in the proof of Theorem 3.2 and uses Corollary 3.2 to

complete the proof.
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COROLLARY 3.9. If E(;Dt| I(t < oo)t'(r+l)/(2r)) < o for all stopping

variables +t, then 22=l (Dn - an) / m converges a.s. to zero on the

set where 3__|D 'Qr/nr+l <w for some r > 1 where

n=1l1"n
_ 2r r+l
a, = E(Dn I(anI <n )lscn_l) .
PROOF. For an integer K > 1, let
e s . 2r , r+l1\1/(2r) _

o) = ¢ = sat {n: P 17/ 2 >M} . Let X =%, D

X if t>m . u
L le@e To= = ! .

and X1 ={" boteex =l Dt zn) =50 o

Xt if t<m

n(” (o[ /Y ) e m(py ) a(s < @) o@D
n=1

(Xﬂ,?n,n > 1) is a martingale according to a well known result of

|2r < nr+l)[

t . ? H ar
Doob. Thus i§=l(Dn E(Dn I(|Dn }) / m converges a.s.

“n-1

to zero as m - » by Theorem 3.3. On the set [t = aj,Dn = Dﬁ and

B(D! I( |D1’1|2r < nr+l)|3;n_l) = -B(D! I(|Dr’l‘2r > nr+l)|$n_l)

r+l

= -E(0_ (|p_|* > n r+l

) I(t > n)lgn_l) = E(DnI(anIQr <n

Igﬁ-l) ’

r+l

Thus on the set U [t(M) = o] = [j§=l |Dn|2r / 0 T < ], the desired

=1
result follows.

<K n(r+1)/(2r)

REMARK. Obviously if 'Dnl <

for some constant K or
it (Dn,n > l) is an independent symmetric sequence of random varia-

bles, we may conclude that zm D /m converges a.s. to zero if the
n=1 "n

hypotheses of Corollary 3.9 hold.
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5. E[D_ i (log+(|D e < u

implies a.s. convergence of Zﬁ D / 1/(2r)

to zero in the martingale case for 1/2 <r <1

Let (Dn,gn,n > 1) be a stochastic sequence and (an,n >1) be
a sequence of positive constants.
THEOREM 3.4. Let ¢(x) be a positive even function which is non-de-
creasing for x > O . Suppose either

i) ¢(x) / x is non-increasing for x >0 or

ii) #(x) / x is non-decreasing and y(x) / < is
non-increasing for x > 0 and (D g2 TR > 1) is a martingale differ-

©

ence sequence. Then on the set where Z . E(v(D ) 4(a )lwn 1
it follows that 2 1D, / a = converges a.s..

PROOF. ILet DI'1 =D, I(|Dn| < an) . We establish the result under (ii)
first. According to a result of Chow ([3], p. 554), it suffices to

show that z:ng((Di/ai)I(anl < an) + (|Dn|/an)I(|Dn| > an)lﬁn_l) <

a.s. on the set where T E(w(Dn)/w(an)lﬂn_l) <o .
5o B0E/e2) 1D | < 8 )|z, 1) < 55, B(4(0 )/y(a )|5, ) since
n=2 n “n nl S 8/ 1% 17 = Bpp BAWPWa IR 4

p(x) / X < y(y) / y'2 for x >y >0 by (ii) .
Zaep BC(D1/(a)) T(D,| > 2 )7, 1) <55, B(y(0,)/ y(a )|%_,) since

4(x) /x> 4(y) /vy for x2y>0.
Thus the result is established for case (ii). To prove the result
under (i), we must make only minor modifications in the proof of Chow's

result in [3] referred to above in the proof.
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lE(DI‘1 / an[?n-l)l = lE(Dn / a.n)I(|Dn| < an)]{*;n_l)l
< E((Ip | /a) T(p, | <& )|, 1) < B(y()) / y(a )5 ;) since
$(x) /xgq,(y)/y» for x >y > O. 2:22 P(Dn+D1; [ gn_l)

=i Bl >a |7, _,)<5 5 E(y( )/y(a )|z, ;) since y(x) is

non decreasing in x . Thus, on the set where

SooB(@ )y(a )7, ;) <= , it follows that SR > 8 |7 ) <.
Note that (212:1 (10, $ D7) - PO, $ D! |7 1)), % m > 1) is & nar-
tingale with uniformly bounded martingale differences. It then follows
by a result of Doob ({81, p. 320) that 5, I(|D | $D!) <= a.s. on
the set where 2:1:2 E(¢(Dn)/¢(an)’$€n_l) < ® .

Let X =DI / 2 * D} / a, * ... +D! / a - E(DE', / aglszl)

- E(D?; / a3 3?2) - eee = E(Dr'1 / anlﬁn_l) and X - X .= Sn for n > 2.
B 5, 1) - %o g< B0/ s, 1) = B(0R/a2) T(|p_| < & )|, _,)

< E(ﬁ(Dn)/\y(an)Wn_l) since y(x)/x" > y(y) / ¥° for O<x<y by
(1). Thus (Xn,:’-ﬁn,n > 1) is a martingale with

22;2 E((Xﬁ'gn_l) - Xi_l) = 2:;:2 E((sn)glgn_l) < o on the set where
2:=2 E(\p(Dn) / \y(an)lszn_l) < @ . Hence by a martingale convergence

theorem of Doob ([8], p. 320) it follows that X~ converges a.s. to

a random variable as n — o on the set where 2:=2E(¢(Dn)/¢(an)|$€n_l) < .

m .
Thus on the set where b3 2E(¢(Dn)/¢(an)]zzn_l) < o , it follows that

5. . D / a converges a.s
n= n n g L] *
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REMARK. In the special case where (Dn,n > 1) 1is a sequence of in-
dependent random variables, Theorem 3.k reduces to a result of Chung
{7]. The same remark applies to Corollary 3.10 given below.
COROLLARY 3.10. Let (Dn,ﬁn,n > 1) be a martingale difference se-
. 2r + l+€
guence with Eanl (1log 'Dnl) < M for comstants ¢ > 0,1/2 <r < 1,

and M« o . Then ﬁ:zl Dn / ml/2r converges a.s. to zero as m ~ o .

+ +
PROOF. Iet y(x) = |x|2r (1log |x|)1 € and a = nl/(gr) in Theorem
3.4 and note that y(x) satisfies the hypotheses of Theorem 3.4 under
condition (ii).

Z;=2 E(¢(Dn) / ¢(an))5 Z§=2 M/(n(10g+n1/2r)l+e) < o

Hence 2:=l Dn / nl/(Er) converges a.s. and the result follows by

an application of the Kronecker Lemma.

6. A Martingale Convergence Theorem

Related to the Concept of Symmetry

Let (Xn,gn,n > 1) be a stochastic sequence and (Dn,ﬁn,n >1)
be the difference sequence associated with it, i.e. Dn = Xﬁ - Xn—l

for n>2 and Dl = Xl .

‘ @
THEOREM 3.5. Iet A = [sup X, < sup |Dn| < o, zh=lE(DnI(|Dn| > K)I.?:n_l)é
converges for all integers K > N for some integer N]. Then Xn '
converges a.s. on A.
. . r_ M '

PROOF. Fix an integer K >N . Let X! s;n=l(Dn1(]Dn| < X)
- i an . H ar > . . -

E(DnIQ‘Dnl < K)l“n-l) Then (Xn’“n’n > 1) is a martingale with
its martingale differences uniformly bounded by 2K. Thus Xg con-

verges a.s. to a random variable on the set sup Xé < @ 'by a result of

Doob ([8], p. 320). Let A(K) = [|Dn| <K for all n>1]. On
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I - o = - 1 .
A(x), Xm gn=l(Dn E(Dn:[(IDnI S K)|“n-l)) Xm Tn=1 E(DnI(IDnI = K)Wn-l?
Thus on AA(K) it follows that sup X! <o . Hence X' converges a.s.

[ee]
on the set AA(X). But e E(DnI(anl < K)lgn—l) converges a.s. on

[20]
AA(K) by hypotheses. Hence X~ converges on | AA(K) .
K=

Sup !Dnl <o a.s. on A implies that K§N AA(K) = A. The result is
established. )
COROLLARY 3.11. Iet A =[sup |X | <@, z‘z:l E(D I1(|p | > K)|z_ ;)
converges a.s. for all integers K >N for some integer NJ. Then Xn
converges on A.
PROOF. sup |Xn| < o implies sup anl < o . Hence Theorem 3.5 applies.
REMARK. We cannot drop sup |Dn] < o as a restrictive condition on the
set A in the statement of Theorem 3.5 as the following example shows.
EXAMPLE 3.4, fIet (Dn,n > 1) be a sequence of independent random vari-
~ ables defined as follows:

- log n with probability 1/n
D = n with probability (log n)/n2 .

0] otherwise

© ’ )
We note that sup Xn < ® a.s. and that 2n=lE(DnI(|Dn| > K)) converges

for all integers X > 1. But Z§=l Dn clearly diverges a.s. to - o .
REMARK., Originally Theorem 3.1 and Corollaries 3.1 - 3.3 were stated
for independent random variables. The author wishes to thank Y.S. Chow
for pointing out that these results could be stated in the martingale

case without essential modification of their proofs and also for point-

ing out Corollary 3.k.
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CHAPTER IV
AN EXTENSION OF THE KOLMOGOROV LAW

OF THE ITERATED LOGARITHM TO THE MARTINGALE CASE

1. Introduction

Thfoughout Chapter IV, we let (Xn,?n,n > 1) be a martingale defined
on a probability space (Q,%,P) where %n is the ¢g-field generated by
(Xl,..., Xn). Throughout, we limit consideration to g-fields which are
generated by countable families of random variables. Let Dn= Xn- Xn-l
for n>1 where X = 0. We call (Dn,?n,n > 1) a martingale differ-
ence sequence., Given a set A, let I(A) be the indicator function of
A and A' be the compliment of A. By a, N}bn, ‘We mean Lim an/bn = 1.

-0

Logarithms are always to the base g. Let ot si = 2?=l ED? s

tn = J; log log Si, and (Kﬁ,n > 1) be a sequence of constants converw

ging to zero, If (Dn,n > 1) is in particular a sequence of independent
random variables with ED_ =0 and |D |/s_ <K t-1 a.s., then
: , n n'/"n = %n"n

Lim sup Xn/(sntn) = 1 a.s., according to the well known Kolmogorov law
o

of the iterated logarithm ([22], pp. 260-3). Theorems 4.1 and 4.2 below
generalize this result to the martingale case. Assuming that

. . . -1
(Dn,?n,n > 1) is a martingale difference sequence, |Dn|/sn <K t,
a.s.,, and E(Dil?n_l) < ngDi a.s. for n>1 and some constant b > O,
Theorem 4.1 states that ILim sup Xn/(sntn) <Db, a.s. If in addition

e
2 2 .

lE(DHI?n_l)/EDn— 1|< r, @a.s. where (rn,n > 1) is a sequence of

constants converging to zero, Theorem 4.2 states that the conclusion

of the iterated logarithm holds in full strength; i.e.,



that Lim sup Xn/(.sn tn) = 1 a.S. As in the independent case, expon-
D00
ential inequalities provide the computational backbone of the proofs

of these two theorems.

2, Generalization of the Iterated Logarithm

to the Martingale Case

Throughout, since we deal only with a countable family of random
variables and g~-fields generated by countable families of random vari-
ables, we may without loss of generality assume that the conditional
probabilities considered are regular, (See [22], pp. 358-65 for a
treatment of Doob's work on the existence of regular conditional
probabilities, )

LEMMA L,1, Iet (Dk,%k,l < k <n) be a sequence of martingale dif=-

ferences with cho c &, a ¢g-field, not necessarily trivial. ILet

1
¢c> Max [D.|/s ~a.s. where c¢ is a constant. Assume there
L<k<n 2 2 2
exists a constant b >0 such that E(Di|%_,) <b” ED_ a.s. for
1<k<n, Fix ¢ > 0. Then a,s.,
2 .
exp(~(e~/2)(1=ec/(2b))) if ¢ c¢/D <1
(1) B(X/(bs)) > el%.) <
exp (-eb/(ke)) if e c/b>1

REMARK. Except for martingale considerations, the proof of Lemma 4,1
follows closely the proof of the corresponding result for independent
random variables given in [22], pp. 254 -7,

PROOF. Consider a random variable D and a o-field & such that
|| <ct, E(D|F) =0, and E(DEI?) < b2 ED° a.s. for constants c!

and b > 0, Choose t >0 such that t c¢' < 1. Computing,

o7
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E(exp (t D)|%) = 1 + /2 E(Dz!?) + £3/31 E(D3!3) Toe.od <1+

t2/2 2 EDF + t3/3: c'b® EDC + t“/u: A IS

£2 12 ED2/2 (L+tc'/3 + £2 c'2/(3-h) oo <1+ 2 p? ED2/2
(1 +1tc'/2) <exp (t2 e ED2/2 (L +tc*/2)). Hence
2b2 2 .
(2) E(exp(tD)|7F) < exp(t ED"/2 (1L +t c'/2)) a.s. if t c' < 1.

E eXP(tXh/(snb)lﬁn_l) =lexp(tXn_l/(snb)) . E(exp(tDn/(snb)!gn_l)
< exp(tXn_l/(snb)) exp ((t2/2)(l + te/(2v)) EDi/si) a.s,

for tec/b<1

by (2) with D = Dn/(snb) and c¢' = ¢/b. Taking conditional expecta-

tions on both sides of the above inequality with respect to %n-2

yields E(exp(txn/(snp)ggn_2) < exp(tXn_E/(snb)) exp((t2/2)(l + te/(2b))
2

(EDn_l

+ EDi) / si) a.S, Induction yields
(3) E(exp(tXh/(snb))l%O) S_exp((tz/E)(l + te/(2p))) a.s. for t ¢/b < 1.

R(exp(tX/(s,0)|%.) = | exp(t x)ap(x /(s p) < x| ) a.s. ([22],
p. 360) using the fact that P(Xn/(snb) < x|F_) is a regular condi-
tional probability. Hence it follows by (3) that P(Xn/(sﬁb) > elF,)
< exp(-ct)E(exp(tX,/ (s, b)) |5, ) < exp(-et) exp((t7/2)(L + te/(2b))) a.s.
if t c¢/b< 1. Thus

/ exp (-(62/2)(1 - ec/(2b))) a.s. if ¢ c/b< 1
P(x,/(s,p) > elF ) < |

exp (-¢ b/(ke)) a.s. if e c/b>1

follows by setting t = ¢, t = b/c respectively.
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\0

THEOREM 4.1. ILet (D k > 1) be a martingale difference sequence

ey

where %k is the o-~field gcrerated by (Dl’D oy Dk) and such that

o3e
-1 2 2. o 2 B
Dn/sn <Kt~ a.s. and st . Let E(D|F ) <P ED a.s. fox

all n>1 and some constenat b > 0. Then ILim sup Xn/<sntn) <Dba.s.
TE-r 0
PROOF. We proceed ac in the proof of the Kolmogorov iterated logarithm

. . 2 2 2 . . .
given in [22]. s, 1 o, $n+l / s, 1l implies for every p > 1, there
exists a sequence of integers o t nr(p) =0y such that Sn ~ pk .

Choose § > 0. Te show thav BY > (L+5) 8 tb i.0.] =0. Let

T nn
* /- *
X =Max X_ . o Tag) st b odilol] < PIX
n i n : nn - n,
k ngn, , k
- i
> (L + 5)31 v, D i.o.l. Iicting that (1 + 5)sn b, =
el Tkl -l Tk-1

((1 + 8)/p)s,

tn , Wwe chooze O < ' <§ and p>1 such that
= 'k

.

3
(L+§)/ p>1+¢g'. Then for k sufficiently large, P[Xn >

k
*
(L+epe, t, J<ilX >(@+s")bs, t 1. Clearly it
N R “k k 'k
D .
guffices Lo oromc s % o> (L+gt)e e b ] .
Ry “]_ I ¢
K nk nk nk
We now derive a Levy typz inegmality. Lev Bn = [Xn. - Xn +

(o]
J%be E(X_ - XM)2)> 0] for n<mn,_, x'=Mx (X, ~ ngz B(X, - X_ )7
n 41 - -k J J nk

k 1 j<n
for n<n and A =1X' | <¢g, X - Jébz E(X - X )2 > ¢] for
="k 77 "a n-l T 7 m ‘n m=
n<aowmlouer oo 00 te e onomn loter,
21,
j((in - Xn) !J‘k)
PE |7 ] < K o X
nlfpl = T z S5



2 "y 2 2
since E((X_ - X,) ]%n) =E( ¥ Dj|$n) = E(E(D, |3n )|%n) +

Pk j=n+1 k k-1

E(E(D ]y MNE )+ +E(D +1|* )<b gk ED> = b° E(X, -X )2 .

M1 P2 B J=n+l J k 1
"
Note that [Xn >e]l DU A B, . Hence P[Xn
k n=1 k

[

v

e} >

n n
k - 1. R R 7 N
E ¥ 1 E(I(An I(B B ) >5E 1 I(Ah) =5 P[Xnk >el . Let ¢ =

b(l + §') s b, - /2 v S, » Then 2 P[X >Db(l+sg'") s, bt -
s Tk k M k

/2b s, 1 > P[Max xn - Vébe E(Xh - X, )2)2 b(1 + §') s, t, -/2bs ]
k n<n, k k Pk “x

1 71
> P[Max X >Db(1+5") Sy Tp 3. Also P[X >Db(l+ ") S, th 12>

n<n, M Bx k k "k

PIX >b(L+g")s t =~-~/2bs_] for O<§" <s' and k suffi-
e e P "
) *
ciently large., Thus 2P[X >Db(l+ ") st 7] >pPX >
n, = n, no = n =

b(l +8') st 7. Now, according to Lemma 4.1, 2P[X > b(1+s")
"k Pk M T

1 2 2 " .
snk tnkq < 2 exp[-(1 + §") tn /2 (L - (1 + ") tnk ck/(2b))] where ¢,

is minimum constant such that c) > Max ID | / Sy @.s. and F = (Q,0)
=y, "k
Here we have used the fact that Cy tn - 0 which is a consequence of
k

the hypothesis that |D | / s <Kt7" a.s. Givenany ¢ >0,

2 2

exp[ - (1+5")7( / 2)(1-(1+s") t, - ¢, / (2p))] < exp(-(1+s") - (1-¢)/2)

for k sufficiently large.

Choose ¢ > O such that 7= (1 + §")° (l1-e) > 1. Then

)

exp(-1) t /2) 1/(2x log p)" . Thus Tep PLX, >Db(1+s") st ]

e T Ty

< o and the desired result follows.
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LEMMA 4.2, Iet (Dk?gk’l < k <n) Dbe a sequence of martingale differ-

ences with ?O c &, a g-field, not necessarily trivial. Let

1
¢ > Max ]Dkl/sn a.s. where c is a constant. Assume there exists
1<k<n
constants a > O and b > O such that a- ED- < E(D2|g ) < = ED2
k= k'"k-1/ = k

a.8. Then for a constant vy > 0, there exists a function g(y) < 1

with Lim g(y) =1 3 such that a/b > g(y), <
YAO
small and ¢ = ¢(y) sufficiently large implies that P[Xn/(sna) > el%o]

c(y) sufficiently

> exp(—32/2 (1+y)) a.s.

REMARK. Except for martingale considerations similar to those used in
the préof of Lemma 4.1, the proof of Lemma 4.2 follows closely the proof
of the corresponding result for independent random variables given in
[22], pp. 254-7.

PROOF. Consider an arbitrary t > O, random variable D, and a
o-field & such that |D| <c', E(D|F) =0, and E(D2|3) > a® m° a.s.

for positive constants a and c'. Computation shows that

(k) E(exp(tD)|F) > 1 + t°a®ED"/2 (1 - t ct/2)
%) >

> exp(tgazEDz(l-tc‘)/E) a.s. for 0<tec'<1.

B(exp(tX,/ (5,2))]%, ;) = exp(t,_/(s,2)) Blexp(tD,/ (s,2)|5, ;) >
2 2 2
exp(txn_l/(sna)) exp((t /2)EDn(l-t c/a)/sn) a.s. for t c/a<l by
(4) with D = Dj/(a s,) and c' =c/a. Induction yields
2
E exp(t Xh/(sna)]ﬁo) > exp((t7/2)(1-t ¢/a)) a.s. for t c/a < 1.
3 The actual form of g 1is somewhat complicated and unimportant.

Choose 1 > 8 > O such that (l+32/2+23)/(l—{3)2 < l+y. Then

2 2 2 2
1> g(y) >0 and g°(y) > Max(1+2348°/1.5)/(1+5)", (1-28+8/1.5)/(1-p)7)
are a pair of conditions sufficient to determine an acceptable g.




Thus given any t and > O we can choose c¢ sufficiently small so

that

(5) E(exp(t X /(s 2)]5) > exp((:7/2)(1-0))  aus.

Using the regularity of the conditional probabilities involved, we may

write

00

E(exp(tXn/(sna))'ﬁo) = -f exp(t x) 4 P(Xn/(a sn) > x!?o) a.S.

-0

t Jm P(Xn/(a sn) > x‘%o) exp(t x) dx a.s.

t(1-8) t(1+3) 8tb2/a2 o

i [ J-m : Jo ' jt(l-g) ' Jt(1+g) : j8tb2/a2]

P(X /(a s ) > x|F ) exp (¢ x) ax = Ty eee + 7

]

We estimate the five integrals separately.
o] o
Ji: t f_m P(Xn/(a Sn) > x[go) exp(t x)dx < t j exp(t x) dx =1 a.s.
-c0

JS: By Lemma 4.1, P(Xh/(b sn) > x a/b’?o) < exp(-x af(be)) < exp(-2t x)
a.s. if x a c/b2 > 1 where ¢ is chosen such that c < a/(8t). By

, 22 2 2
Lemma 4.1, P(Xﬁ/(b s,) > X a/bl?o) <exp((-x"a"/(207) )(1~x a c¢/(2v7))) <
exp(-x2 az/(hbe)) a.s. if x a c/b2 < 1. Since x > 8t b2/a2 for I
it follows that P(X /(b s ) > x a/b|$§) < exp(-2t x) a.s. when

<o
X a c/b2 < 1. Thus J. < I e Tdx<l a.s,
2 <Yy b2/a2 B

J, and J): We choose c sufficiently small such that (8t b2/a2)

(a c/b2) < 1. Since x< 8t b2/a2 for J, and J), it follows that

2
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X a c/b2 < 1. Thus by Lemma 4.1, exp(t x) P(Xn/(b s)) > a x/b[?o) <
exp(tx-ax"/(2b°) (1-ke t/a)) a.s. Tet h(x) =t x -(a2/(2b%))
(1-be t/a) =, h(x) is maximized at x' = t/((az/bg)(lfhct/a)). Now
we choose c¢ sufficiently small so that x' 1lies in the interval
[t(1-8), t(1+p)] of Jg3- This is possible since b2/a2 <1+8 by
definition of g. Then h(x) < h(t(1-8)) for x lying in interval
[0,t(1-g)] of J, and h(x) < h(t(1+g)) for x Llying in interval
[6(1+p), BEb /a1 of 3. B(t(1-8))=(+%/2)(1-p)[2-(a"/b7)(1-p) +
he £(a/b°)(1-8)]. By definition of g, a/b> > (1-2p+8°/1.5)/(1-8)
and hence 2 - ag/bz(l-g) < (1-32/1.5) / (1-3). Now we choose c
sufficiently small so that h(t(1-8)) < (t2/2)(l-32/2). Combining,

t(1-8)
I

I,<t exp(n(x))ax < t° exp((t°/2)(1-3%/2)) a.s. Similarly,

o
for gy, B(t(1p)) = (£7/2)(1+8)[2-(a%/07)(140) + (he © a/b%)(1+0)] .
By definition of g, a~/b° > (1+2p+3°/1.5) / (145)° and hence
2—(a2/b2)(l+5) < (1-52/1.5) / (1+3). Now we choose c¢ sufficiently
small so that h(t(1+3)) < (t2/2)(l-32/2). Combining,

8tb2/a2

g, <t I exp(h(x))dx < 1647 exp((t2/2)(l-32/2)) .
t(1+p3)
Here we use the fact that b?/a?s 2 which follows by the definition of g,
We now choose c¢ sufficiently small so that (5) holds with o = gz/h.
Then, it follows that J, + J) < 17t2 exp((t2/2)(l—q)) exp(-t2 of2) <

l7t2 E{exp(t Xh/(sna))[ﬁo) exp(—t2 of2) a.s,

t(1+8)
I3 tj exp(tx) P[Xn/(sn a) > x!%o]dx

t(1-8)

< t2(2B) exp(t2(148)) P(X /(s,a) > t(1-8)|F, ) .
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Let ¢ = t(1-3). Combining the above, it follows for t chosen suffi-
ciently large and ¢ chosen sufficiently small that

gy * Jﬁ‘S 1/4 E(exp(t Xn / (sn a)) l%o) ¢S and

Jl + J5 <2 < 1/ E(exp(t Xh / (sn a)) I?O) BeSe o

Thus, for c¢ sufficiently small and ¢ sufficiently large,

1/2 exp (£ / 2)(1 - o)) < 1/2 Blexp(t X_ / (s_ a))|7,)

<3y <2 p exp(t(199)) BX / (s, @) > cl5) aes. s

ieee, P(X [(s_a) > e|5,) 2 1/ (4657 exp(-(+7/2) (1467 /42p))
> exp(- ©/(2(1-8)°)(145° / 2428)) a.s.

But (1+;32/2+2g3) / (1-3)2 <1+ Y by hypothesis and hence
P[Xn / (sn a) > elﬁo) > exp(— 62 / 2 (1+v)) a.s. for c sufficiently
small and ¢ sufficiently large. The result is established.

THEOREM 4.2. ILet (Dk,g k > 1) be a martingale difference sequence

k’
vhere g  is the o - field generated by (Dl,Dg,...,Dk) and such
1 2

that D /s <K t a.s. and s_ t o . Assume there exists a
n’ "n ="mn n

sequence of constants (rn,n > 1) converging to 0O such that

2 ar
[ (B[, |#,,

-JJ / EDi) -1] < r, a.s.. Then Lim sup Xn/ (sn tn) = 1 a.s.

n - o

%3¢ '
PROOF. We again proceed as in the proof of the Kolmogorov iterated
logarithm given in [22]. By hypothesis, there exists constants

fa, sk > 1} and {bk,kzl} with 1>a -1 and l<b -1 such

k
2 2 G a2 2 . .
L < E[Dk | Frq] < by ED a.sS. o Fix an integer N .

2
that ak ED K k

, 2 2 2 2 %
By Theorem 4.1, Lim sup((Xn- XN)/JE(SH- SN) log log (sn- sN))s sup b= by .

n — k.ZN

*
But b
Oy

converges to 1 as N approaches o« by hypothesis.
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Since XN/ «/2(5?1- sﬁ) log log (si- sﬁ) converges to zero as n
approaches « with N fixed, it follows that Lim sup xn/ (sn tn) <1l
8eSee e

To complete the preof, it is sufficient to show for § > O that
(1-45)5n t ~ belongs to the lower class of X, l.e. that
P[Xn > (1--8,)5n t 1.0.] =1 . We choose a sequence of integers
® ¢ nk(p) =n, such that snkz pk for p>1 to be chosen later.

It is sufficient to show P[X > (1-§) s_ t_  i.0.]. Let
M e Pk
2 _2 2 2 1 2\1/2
=5 - s ~s_ (1~ =) and v, = (2 log log u") ~t . Iet
T Ty T ey e k x c

the event Ak(a") = [Xn - Xnk > (1-8") W vy a.f:] where 0 < §" < §

k -1
and &) = Min 2, + We claim that F[A (6") 1.0.] =1 . Since
I N
ZI;:l(I(Aj(.a"))-P(Aj(s")lscn_ l)') » s-*enk, k > 1) 1is a martingale, it
. J-

Tollows easily by a result of Doob ([8], p. 320), that

2;=1 P(Ak(a",)lzznk ) = o a.s. implies that P[Ak(s") ie0.] =1 . ILet
-1

e = (l-a)vk, ¢, be the minimum constant such that
ey 2 Mixn.< o, | /uk, and 1 +y = 1/(1-§") define y . Since
Pg-p <l Ty

e @ s & ~ 0, and l>ak/bk—»l as k= o , we may apply Lemma
4.2 to obtain

B0 =% 7 Gy m) > e vl ) > exnl-(-6"3E @ )/2) aus.

"
for k sufficiently large. Since exp(-(l-a")2vi(l+5 )2/ (2k log p)l"6 ,
it follows that % P(Ak(f;”)!gznk ) == a.s. and hence that
-1

P[Ak(s") i.0e] = 1.
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*
Choosing 6' ® 6§ > 6' > 8" and noting that oy las kK=o, it is

clear that FX - X > (L~5") i.0.] =1 . Let the event
M Py ®

B = {|X | <2s 4 } . Without loss of generality we can and

k D1 T Pgel Pkl

do assume b = sup 'bk < 3/2 « Then, applying Theorem k4.1, P(B]; i.0.) = O.

Thus P[{th- X, > (1-8")y w2} B, i-0.] - 1.

X > (1-8") w v} B < {Xnk > (1-8") Vi W 28

3
m “k- Me-1 M1

and (1-5')ukvk- 2snk-ltnk_l'~{(l-5 M1-1/p )1/2- 2/;p)snk tnk . We now

1/2

 choose p sufficiently large so that (1-g')(1- l/p ) -2/p>1-5 .

Then [{Xnk.- X > (1-g? )ukv )} B :L.o.] c [Xnk> (1-5)s i.o.]

nk-l

and hence the result is established.

'Y nk
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