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0. Summary. In the theory of phage reproduction, the methematical models con~
sidered thus far (see Gani [5])assume that the bacterial burst occurs a fixed time
after infection, or after a fixed number of generations of phage-multiplications,

or when the number of msture bacteriophages reaches a fixed threshold. In the pres-
ent paper, such hypotheses of fixed thresholds are abondoned in favour of a moye
realistic assumption: Given that until the time +t +the bacterial burst has not

yet taken place, the occurrence of the burst between + and t + At is treated as
a random event, the probability of which is f{+|t)at + o(At) , where £ is a non-
negative and nondecreasing function of the number X(t) of vegetative phages and of
Z(t), the number of mature bacteriophages at time t . More specifically it is
assumed that f = b(t) X(t) + c(t) 2(t) with b(t), c(t) >0 . Here X(t) is
assumed to be a linear birth and death process and 2Z{(t) corresponds to the number
of deaths until time +t . One of the problems considered here is the joint dis-
tribution of XT and Z

T
phages respectively. The distribution of ZT is then fitted to observed data due

; the numbers at burst of vegetstive and mgature bacterio-

to Delbriick [2].
1. Introduction. The present work has emerged as a result of inspiration and
stimulation the author received first from an interesting paper of Professor Gani

{5], where he gives an excellent account of various stochastic models for

*
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bacteriophege put forth thusfar; second from Professor Hirsch of Courant Institute
of Mathemsticsl Sciences who pointed out during the author's visit to the institute
sbout the possibility of using author's methods of [14] in developing an impreved
model of phage-reproduction. The author is indebted for this to both Professor
Gani and Professor Hirsch.

The aim of this paper is to develop a gtochastic model of the fairly well
known mechanism concerning the phage-reproduction and its parasitic.cyéle of growth
while feeding on the bacterium (see Gani [5]). A brief but simplified sketch of
the mechanism is desirable here. After the initial insertion of the DNA strand
(vegetative phage) into the bacterium, a period of length T (possibly random
but varying from seven to ten minutes), known as eclipse, follows. During this
period, the vegetative phage produces within the bacterium a random number of its
copies according to & birth process, and simultaneously the parts necessary fbr the
conversion of a vegetative phage to & mature phage are under production. Furthey-
more, the infected bacterium is no longer capable of reproduction and is considered
as dying immediately after infection until the lysis (burst) that occurs following
eclipsé. During the period between T and (T + T), the time of occurrence of the
lysis, while some vegetative phages produce more of their copies (births) there are
others which are rendered inactive after they emerge as mature phages: This latter
process between T and (T +T) has been studied as a birth and death process
X(t). (See Steinberg and Stahl [15] and Gani [4]). Here the death corresponds to
the conversion of a vegetative phage to a mature one; and X(t) stands for the
number of vegetative phages et time T .

One of the problems of interest is the study of distributions of the burst

time (T + 7) and the burst size 2, , that is, the number of mature phages released

T
at (T +7), the time of the lysis. These distributions have been studied by
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several research workers under different assumptions. Steinberg and Stahl [15]
and Gani [4] have investigated the distribution of 2Z; under the asswuption that
the burst time (T + 7) is fixed: Others (see Gani [5] for references) have studied
the distribution of burst time assuming that the burst takes place as soon as the
number of mature phages %(t) reaches a fixed threshold. Kimball [8] has considered
a discrete time model where he assumes that the phage reproduction takes place in
generations, that for k generstions after infection the phage remains vegetative,
and thereafter mutation odcurs at each subsequent generstion with probability half
until lysis at the (k + m)th generation; both k and m are assumed constant.
The problem of interest here is the burst size distribution. Kimball's model al-
though explains some aspects of the observed distribution but fails to explain
others. Unfortunately, most of the models proposed above have never been tried on
observed data. This may be attributed partly to the lack of reliable data and partly
to the algebraiecally messy form of the theoretical distributions obtained under
various models.s

We note that the hypothesis of existence of a fixed threshold of the number
of mature phages (burst size) or of a fixed burst time is a common feature of all
the models considered thus far. In the present paper this hypothesis is abandoned,
for it is well known that neither T nor ZT is fixed and that in reality they
appear to be random variables with some probability distribution: Instead, we
adopt here a more realistic assumption originally suggested by Professor LeCam and
used elsewhere by the author [14]:. Given that the bacterial burst has not taken
place during (0,t] , the occurrence of the burst between t and t + At is treat-
ed as a random event, the probability of which can be written as £(s]t)at + o(At) ,
where f is a nonnegative and nondecreasing function of X(t) and 2Z(t) s With

this treatment, both T and ZT become random variables; the deduction of their
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joint distribution is one of the problems treated in this paper. We shall also
see how the present model under certain conditions explains the observed phenomenon
(see Delbrtick [2]) of similarity of the burst size distribution in the case of

single infection to the one for the multiple infection case.

2. A Stochastic Model for fhgge Regroduction end the Bacterial Burst.

We assume the origin on the time scale to be the moment when the bacterium is
first infected. Let X(t) be the number of vegetative phages within the bacterium
at time t , with X(0) equal to m , the number of phages that infected the bacterium
at time zero. Although, in principle, the bacterium may get reinfected any number of
times during the eclipse period (O,T) after the initial infection, it is still
reasonable to assume that no further infection takes place after the initial one at
time zero. We also assume that the length T of the eclipse period is fixed. Let
(T +T) %be the moment of time when the lysis takes place. Foliowing Gani [5] the
process X(t) is considered here to be a linear birth and death process with birth

and death rates Mt) and p(t) given by

_ v(t) 0<t<T
At) = (1)
A(t) t>T
and
0 o<t<T
w(t) = ’ (2)
w(t) t >

respectively: Furthermore, let f£(X(t), Z(t), t) be the risk function for the

lysis of the bacterium so that



Prl1ysis takes place during (t,t + At)|X(t) = x, Z(t) =

=z, Y(t) = 1]
= [£(x,2,t)] &t + o(At) , (3)
where Z(t) is the number of mature phages (deaths) at time + , and
(l if lysis has not occurred until time t
Y(t) = <

\ | (k)
[ 0 otherwises

As a first attempt, we assume for the sake of simplicity, that

, 0 O<t<T
F{x,2,t) = (5)

b(t)x + c(t); , t>q

where b(t) and e(t) are arbitrary nonnegative bounded functions Again, since
p(t) = £(x,2,t) =0 for 0<t< T, we have ¥(tr) =1 and Z(1) =0 . Thus we
can conveniently consider to begin with, the process {X(t), 2z(t), ¥(t)} condition-

ally for t > 7, given X(7), 2(1) =0 and ¥(r) =1« Given X(7) =n , let

[ee] o0 .
Gl(u;,v; t|n) =2 W vt Px,z,l(tln); ful, Iv]l <1, (6)
x=0 z=0

for t > T, where for x,z = 0,1,2,...,

Py, g, 1(tl0) = PelX(t) =x, 2(t) =z, ¥(£) =1 | x(r)

n, z(t) =0, Y(r) =1] .
Following Puri [14], it can be shown that the probability generating function

(pigsf.) G (w,v,t) satisfies the partial differential equation

6= DA(EN® - (M(6)(8)u(e)umm(tIv] G- o(8) v &, (7)



subject to the initial condition
: n
Gy (w,v57) = u”, (8)

where Gt’ Gu and G# denote the corresponding first order partial derivatives of

Gl . Equation (7) appears difficult to solve in this generality. However, it can

be solved for the case analogous to the one considered by Gani and Yeo [6], where

we assume that for all t > 71,

%%%% =p, %%%% =5, %%%% =0, (9)

with p, 6 and @ as some nonnegative constants. Subject to (9), the equation (T)

becames

[h(t)]—l G, = [u?- (i+p+5) u + pvl G * eva= o . (10)

The eauxiliary equations associated with (10) are given by

aé
Medap = —He e S L (1)
(1+p+8 Ju-u-pv
from which we have,
av_ _
ral A(t) 0 v
whence
t t
V=0 exp{ © I A(s)ds} ; C, =v exp{ -0 j A(s)as]) , (12)
T T

where Cl is the constant of integration. Substituting for v from (12) in the

auxiliary equations, we have



QU _(1+p+8)u- 1 pC expltF], (23)
dt* 1

t
where t¥ =I A(s) ds . The problem here is to solve equation (13) which is
T

_similar to the one arose elsevhere (see Puri [13]) . Substituting & = u -3(1+p+5)

in (13), we have

MG 2| ) (1)
g(t¥) n(t")

say, where the functions h and g satisfy the relations

(k'(t*) -
g(t*)

) (15)
at(t7) | p C, exp[ot¥] (__g__l+ +6) .
h(t*) 1 )

Once (15) is solved for h and g , (14) immediately yields

* t* ' :
g(e*) = - &) L o | hi(s) 4oyt (16)
) n(t%)  BA(e%) 2 jo 2o )ale)

where 02 is the constant of integration. Eliminating g from (15) we have

B"(¢%) + [p ¢, exp(ot*) - (FERPp(+*) =0 . (17)



With change of variable from t* to w where

1 ot*
=5 (o 0))% explH1 (18)
(17) yields
2¢m ., dn, 2 2
WEF-FWE.‘-(W-I))}I:O’ (19)

where p =(1+0+6)/6 . ZEquation (19) is the well known Bessel equation and its

" solution is given by

z 2
NP 0 R o Dl 7. il (20)
P oo k! T(kwpHl)
Thus we have
n(t*) = Jp(% le C; exp(06*) 12) (21)
and
g(t*) = [p Clexp(et*)]% Jé(% Lo Clexp(et*)]%) . (22) |

Finally substituting these in (16) and using the fact that u = § + {(1+p+5) ,

we obtain solution of (13) as

[~ i _ L
t (= *3)12 *3y72
_aeers ., % (5 [e Cpexp(8t¥)]°) [p C exp(6t™)]

2 Jp(% lp C exp( et*)]%)

(23)

1 +* 1 -
¥ J,;)g (% Lp Clexp(et*)]z) e+ jo J.'-pz (% Le Clexp(es)]é)dsl E



Solving (23) for the constant 02 we have

*

t 1 1

_ -2 _2_ 5 1+p+b _2__ ¥yq2

6y - [, 57§ Tp cpexp(es)P)as + [(u- BF) & (5 o Cexn(e¥)%)
(2k)

[p C.exp(6t™) e (2 rp C.exp(6t¥) %) 71(2 [p C exp(6t¥) o
- [p Cjexp(0t™)1% g (5 lp Ciexp(66¥)]%) Ji(5 Lo Cpexp(Bt™)1%)} .
Again from the auxiliary equations (11), we have, for + > 1T ,

Gi(u,v;tln) = constant = H(C2) , (25)

say, wvhere H is an arbitrary function. Using the initial condition (8) for

determining the function H, we obtain after some manipulation

) _ rlips -1 -2 2 % % 12 -1,2 n
Gl(u,v,tln) =[=5— + ¢, I (G e CJ°) + o C] Jé(e[p ¢, Iy (5 e Cl])] ’

or, on substituting for C, and then for C, from (12) ,

6, (u,vstha) = £ Bwvm,t)T (26)

where ot*
ot* T2

— J'(x e )
~ ) 14p+b Ox 2
Bluvir,t) = (FF2) + G 2

Jﬁ(x e 2)

ot*
+ % e B) - ) 2 (o) - B 3x) 3017

t* S
- j J° (x e 2 ) ds]-l s (27)
0 p
and
* b 2
" = J AM(s) ds ; x = 3 Jov . (28)
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Again since X(t) for O <t < T is a simple birth process, we have

(see Kendall [7])

it

glw;T) = E(WX(T)) ThiwsT) T (29)

where

T T -1 ‘
h(w;T) = w exp(- j v(s)as) [1 - w {1 - exp(- JO v(s)as)}] . (30)
0

Thus on replacing n in (26) by X(v) and taking expectation over X(t) , we

finally have for t > T

Gl(u)V3T)t) = g(E(u,v;T,t) = [h(E(u,V;T,t);T)Tm ) (31)

where for €t > T

(32)

Gl(u,v;'r,t) Ez Xu"vz PriX(t) = x, 2(t) = z, ¥(t) = 1|X(0) =m, 2(0) = 0, ¥(0) =1].

x=0 z=0

Remark 1. In the above calculations, it was assumed that X(0) =m and that no

further infection takes place after the initial one at time zero. Instead, if we
let the origin of the time scale to be the moment when the bacterial suspension is
added to that of bacteriophages so that X(O) = 0, and if for the eclipse period
0<t<fT it is assumed that

Pr{the bacterium gets infected by a single bacteriophage during (t,t+h)]=L(t)h+o(h),

and

Pr{the bacterium gets infected by two or more bacteriophages during (t,t+7)]=o(h),
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where L(t) is a given nonnegative bounded function defined on O <t < T , then

it is easy to establish that

.
g(w;7) = expl- ‘Yo L(s) {1 - n(w;s,T)} as], (33)

where

T T
n(w;s,m) = w exp(~ [ v(t)at)(L - w1 - exp(- [ v(t)as)}] . (34)
) S

Using (33) in (31) one can easily obtain the expression for G. of (32) for this

1

case.

Remark 2. While taking account of the experimental evidence for linear growth of

the DNA content both during eclipse, and after, Ohlsen [9] has indicated the form

of the function A(t) of (1) to be

(e ,
ard)traTHL for t=>17;

Xt) = < . (35)

a

ey for 0<%t <171,

Furthermore, based on this evidence, he observes that the ratio p = u(t)/A(t) of

(9) should be constant for all t > T , and should approximately be equal to one.

That p ~ 1 is based on the observation that on the average the number of vegetative

phages does not change significantly after eclipse. (see Gani [5], pp. 232-33).
Also, it does not appear inappropriate to assume that ¢ , although is close to one,
is strictly less than one. The assumption that the other ratios of (9) are also

constant for t > T is made only to enable us to solve equation (7) more easily.
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Remark 3. Starting with X(t) = n , for a given realisation o of X(s) for

all s with 7 <s <t , it is easy to establish that the probabiliﬁy of no buist

during (1,t] is éiven by
T
expl- [ £(X(s,0), 2(s,0), s)as} . (36)
,.r lad L d

Maltiplying this by ux(s’g) vz(s’g) and taking expectétion of the pfodﬁct, over

all the realisations {X(s,0); T <s <t} , we have Gl of (6) as

‘ t .
¢ (w,vstln) = B (®) V) explo [ 2(x(e), 20),)a837 (37)
. _
For f(x,2;8) séiisfying (5), ﬁitﬁ b(s) ahd e(s) satisfying (95, (3#) can be

rewritten as
¢ (wvstln) = B0E() VHO8) el 6 [ a(e)x(e)as - 0 j: As)z(s)as}] . (38)
T .

Thus, as an interesting biproduct of the above theory, ene observes, by simply
treating & and © in (38) and (26) as nonnegative dummy véfiéﬁles, that the
expression (26) is hothing but the transform (38) for the conditional jeint

distribution of the process {X(t), Z(t), J A(s)X(s)as, j AMs)z(s)ds} for t>1T,
T T

given that X(7) =n and 2Z{7) =0 . The diStributioh problems cohcerniné éuéh
random variables as intégrals of certéin stochasiic processes héve been studied
elsewhere by Bartlett [1] and by the author (see [10,11,121]) .

Finaelly the distriﬁution of the time T , that tﬁé bacférium takes after the

eclipse until its burst, is given by

1 - Fp(t) = Pr(T > t) = Pf(y(tw) =1) = Gl(l;l;T,tﬂ) . (39)
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=]
Furthermore, if the function A(t) is such that I AM(s)ds = = , then we note
_ T

from (27) and (31) that if © >0,

lim G,(1,1;7,8) = 0, (k0)

oo

i

so that T i1s an honest random variable. The case with © = 0 , will be dealt

separately in some detail in the next section.

3. Burst Size Distribution. In this section we shall attempt to find the joint
Fatar ala o ot ot gt oW o o ¥ W N I W W )
distribution of the numbers of vegetative phages and mature bacteriphages at the

time of burst of the bacterium. For tl >t >1T, consider the p.g.f.

¢(u1v1 ul’vl;t) tl)

N\ x z X1 Zl
=222.Zu vty Prix(t) = x, Z(t) = z, X(tl) =Xy,
2, X7 X

Z(tl) = 2, Y(tl) = 1|x(0) =m, 2(0) =0, ¥(0) = 1], (¥1)

where Iul,lvl,lull, and Ivll are all less than or equal to one. Using (31), the

expression for (41) turns out to be
q)(u)viul:vlit,tl) = Gl(u g(ul’vl;t’tl)’v Vl§ T, t) ) ()‘"2)

where _E(ul,v t,tl) is given by (27) with (u,v,T,t) replaced by (ul,v t,tl) .

l; 1,
Again, let XT and ZlII denote respectively the numbers of vegetative and
mature bacteriophages at the burst of the bacterium without regard to when it occurs.

Also let



1k

1

Hy(u,v) = z Y v Br(Xy = x, 7y = 2) - (43)
x=0 z=0

Then following Puri [14], it can be easily shown that

w0

a
Hp(u,v) = - [ 2= blu,v,1,15t,5,) at. (k)
vp 4% t,=t

Furthermore, the joint distribution of X, Z, and T 1is given by

T T

Pr(XT= %X, 2=

=% T = t) = coefficient of W in[-ag— ¢(u,v,l;;t,tl)‘ 1, (45)
t.=t

tl
for x,z =0,1,2,40s &

Unfortunately, in view of (27) and (31), the expressions for (44) and (45)
become much too complicated. As such, we introduce at this point a simplifying
assumption, namely thet C(t) =0 or equivalently that & = O . This implies that
the risk of bacterial burst depends only on the number of vegetative phages and not
on the mature ones. Although, in reality, this may not be strictly true, we shall
see later that the simplified model based on this assumption does retain some of
the elements necessary for its compatability with the observations: Furthermore,
this may not appear unreasonable when one takes into account the fact that the
cell material (DNA etc.) is getting used up by vegetative phages which multiply
and-not by the mature ones which do not: As such, the vegetative phages appear
more important than the mature ones in weakening the bacterium and thereby lead-
ing eventually to a burst. Thus from hereon, it is assumed thét 6 =0.: Also

[«o]
we assume that J AM(s)as ==
T
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For the case with © = O , instead of simplifying the expression (27) , it

is easier to solve (7) directly for g(u,v;T,t) yielding

glu,vsm,t) = 6y (w,v5]X(r) = 1, 2(r) = 0, ¥(1) = 1)

t
i rl(u-rz)exp[—(rl-re) IT A(s)as] - re(u-rl) , (46)

(u-r,)expl- (r -r,) JJ: A(s)das] - (u—rl)

vhere r, = rl(v) and T, = r2(v) are, with positive and negative signs, respec-

tively,

M ep+6) 2 {@vo+6f - b v . (u7)

From (46) and (31) , one can easily obtain Gl(u,v;T,t) « Unfortunately with

® =0, T is not an honest random variable, since

lim g(u,v;T,t) = ry(v)

b g
so that
Lim P(T > t) = Lim G (1,1;7,%+7) = [n(z} , )P
£ £ 1 =
T .
r* e- JO v(s)ds
5 m
= - 1 (48)
1- r; {1 - exp(- J v(s)as)}
- ¢]
where rz = r2(l) . Thus there is a positive probability, howsocever small it

may be, that the bacterium never has a lysis after infection. This may very well

be true in reality, even though the author is not aware of any experimental
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evidence to this effect, except for a remark made by Delbriick ([2], see footnote
on page 131) , where he makes the following statement. 'We use the word 'infection'
of a bacterium by a virus to designate the fact that a bacterium has adsorbed a
virus particle. We do not imply that the infecting perticle necessarily grows...{"
From this remark, one gets the impression that it is not improbable for the virus
not to grow after infection and thereby leave the bacterium without a lysis. On

the ‘other hand, since the distribution of the burst size is meaningful only for

those bacteria which do have bursts, the appropriste distribution for us to study is

Pr(XT= X, Zog= z|T < ®) ; x,2 = 0,1,2,+- .

Let

H(u,v|m) =2 z 't Pr(XT= X, D= z|T <=); |ul,|v] <1, (49)

x=0 z=0

be the corresponding p.g.f.. Then following Puri [147], we have

(e o]
d
- f T ¢(u,v,1,1;t,tl)| at
T 1 t.=t

H(u,v|m) = 1 — . (50)

1- (=, O

The expression for ¢ , although easily obtainable using (42) and (46), is some-
what lengthy and will not be reproduced here. Substituting the expression for ¢

in (50) we obtain after some algebraic manipulation

(1-r¥)(2-r) n(wn) ¥ - (ne,;7)1"
B(u,vim) = ( ——22" ) [ kAL (51)
(u-rl)(u~r2) 1 - {h(r2;T)}
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By expanding (51) into a power series in u and v , one finds the individual

probabilities Pr(XT =X, 4, = le < ®) . Unfortunately, this process appears

T

cumbersome ; however, one can easily obtain moments of XT and ZT from (Sl),

for instance

m exp(j; v(s)ds)

g LB (52)
TS 1 - [a(z3sm) T
and
o -l T
ol 0, nln(rp; 17" el o "(Szds) . (53)
T8 () LIGHnPT e (e[ ve)a) T

In order to see how far the joint distribution of X; and Z; given by (51)
is compabtible with the‘observations, one would need for various bacterial bursts,
the observed number of both vegetative as well as the mature bacteriophagesi Un-
fortunately, the author was unable to obtain any such data, possibly because the
methods employed for bacteriophage counts (see Delbruck [2]) do not yield the
exact burst time or the number of vegetative bacteriophages at the burst. Ex-
perimental counts for the burst size of maturé bacteriophages are however possible
and are available. In the next section, an attempt is made to fit the theoretical
distribution of ZT to the data published in the form of a histogram by Delbruck

[2]. This is done after approximating the distribution of ZT for small o ,

under the seemingly appropriate assumption that p <1 .

k. The Fitting of the Theoretical Distribution of ZT to Delbriick's Datae

We assume hereafter that p ,valthough is close to one, is strictly less than

Onea
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One of the features of the distribution of (XT, ZT) , exhibited by (51), is
that whereas PT(XT= 0) is zero as expected, Pr(ZT= 0) is strictly positive

and is given by

_ _ 6 1 '
Pr(Zy= 0) = =55 Y . (5k)

This means that under the model with © = 0 , there is a positive probability for
a bacterial burst to yield no mature bacteriophage. This event appears highly
unlikely, even though there is availlable no definite experimental evidence to this
effect; the.latter possibly being due to the fact that the methods of phage counts
are such that they pick up only those bursts which have at least some mature bac-
teriophages present (see Delbriick [2]). How efficient these methods are partic-
ularly for bursts with very few mature phages is not clear to the author. Grant-
ing then, that the bursts with an absence of mature bacteriophages is a rare
phenomenon, we conclude from (54) that among all the parameters, & should be quite
small. Also, since the distribution of (X, ZT) as given by (51) appears rather
involved, it msy be relevant to approximate this for small values of the parameter
6§ «» To this end, our next step is to find the limiting distribution of

( & &

1-p XT ’ g

distribution is given by

ZT) as &6 -2 0 . The characteristic function (c.f.) of the limiting

1Wi§ lWéﬁ
- -1
limHe *P, e P fm) = [1- i)l . (55)
&0
From this we conclude that as 6 = 0,
(& %, % 20 % (x2) (56)
l-p T 2 ) T 44 2
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where the c.f. of (X,Z) is given by (55). .. Furthermore, since w, and W,

appear in (55) as (Wl+ w2) , we have X =2 , @.s.. Also the common distribution

of X or 2 is % xg , so that for small & , we have the desired approximation

1- 2 . P .2
5 Xo 5PNy ¥ (57)

k=

~
"~

X

n

One may, however, question the validity of the approximation (57), since the

fact X =2 , aess, yields for small b
Xp = %ZT . Bede, (58)

Equation (58) implies that if the observed points for (XT, ZT) are plotted for
various bacterial bursts, they should follow along a straight line rather closely.
This, although it cannot be checked experimentally, may very well be false. How-
ever, one of the interesting aspects of the above model is the fact that the
approximation (57) is indeperident of m , the number of bacteriophages that in-
fected the bacterium. This fact is compatible with the observations made by
Delbrick , where in cases such as virus alpha, he finds no significant difference
between the distributions of ZT for the single and multiple infection cases, This
also supports the general findings that the bacteria, which are simultaneously in-
fected with several virus particles of the same kind, react as if 6nly one of the
virus particles were effective. (See Delbriick and Luria [3]).

The exponential distribution of Z,, as given by (57) was fitted by the minimum

T
chi-square method to the data on burst size published by Delbriick [2] for the case
of single infection with virus alpha. The fit is indicated by the dotted curve A

in the figure. The estimate of 6/p turns out to be about 0.00415. The calculated

value of chi-square (25.4) is found highly significant. Also, the theoretical value
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of the coefficient of variation [var ZT]%/[E ZT] , as obtained by using (57),

is 100 percent; whereas its bbserved value is only 83.3 percent. Thus the distri-
bution of ZT as it stands fits the observations rather poorly. Sevéral}remarks
can be made at this point in search for a possible explanation:

(a) Tt is quite possible that in reality § is not as small as the above approx-
imation tends to assume, and as such one should try to fit the exact distribution
of Zj given by (51) rather then the one given by (57). This, unfortunately,
appears rather cumbersome.

(b) Another possibility is that the simplified model with © = O may be in-
appropriate, since it undermines the role of the mature bacteriophages in causing
the burst. As such, one needs to explore the formula (26) in conjunction with (LL).
This appears. intractable.

(¢) Hetrogeneity of bacteria. In the above model, it was tacetly assumed that

before infection all the bacteria are homogeneous with respect to all the factors
that may have any influence on their burst sizes. However, this may not be true.
For instance, it is known that, in general, the bacteria vary in their sizes
(volume). They also may be in differnet stages of their growth at the time of
infection. Unfortunately, how much these factors influence the burst size distri-
bution is not clear-cut. Further experimentation in this direction and the improve-
ment of the mathematical models based on this, are highly desirable.

(a) An alternative and somewhat convincing explanation comes from a remark made

by Delbruck (page 133,_[2]), where he states that a certain proportion of the
samples which showed bursts, must be ascribed to tubes in which two or more bacteris
were lysed. This certainly calls for a modification of (57) to give distribution
of the number of mature bacteriophages not for a bacterium but for a tube that con-
tains a nonzero random number M of bacterial bursts. Also, it appears reasonable

to agssume that M has a poisson distribution with parameter & , so that
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ko -%
S e’ —~ 5 k =1,2,400 & (59)
k}(l -e )

Pr(M =k|M>0) =
Let the random variable % denote the number of mature bacteriophages in a
tube, so that the conditional distribution of 7 given M =Xk , is that of
p xgk/26 . Here, we have assumed that the bacteria behave independently without
influencing their individual burst sizes, so that given M =k , E’ is the sum of
k independent random variables each distributed as p xg/E 6 « The distribution
of E’ is thus a mixture of chi~-square distributions with truncated Poisson weights.

Its density function is given by

© k -E
.Y Ee 28 28
vy (2) "gl a5 O fxgk(z o) (60)

where f 2(x) is the density function of central chi-square with r d.f.. The
X

density function (60) was fitted again by the minimum chi-square method to the data
of Delbruck [2]f The fit is exhibited by the curve B in the figure;. The estimétes
of the two parameters £ and (%) of (60) are 2.2 and O.QlO8 respéétively. The
calculated value of chi-gquare (5 d.f.) was aﬁout 10.8, which is siéﬁificanﬁ at

0.1 level of significance but not af 6.05 level. We note that the fit hés consider-
ably improved although still it is not as satisfactory as one may wish tb achieve.,
Also, the estimate % = 2,2 1is considered rather too high for the data predominantly
based on single infection. The following possibility appears to give some hope in

further improvement of the above model.
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(e) Various stages of growth from vegetative to mabture phage: Recently, the

author's attention was drawn to one of the important factors which the above model
has not taken into account, namely, the presence of a number of intermediate stages
of growth from vegetative phage to the mature one (see Wood [16]). It is through
these stages the assembly of a mature bacteriophage takes place starting with a
vegetative phage. The first intermediate stage is the one where the vegetative
phage gets covered with a prism -like protein coat that immediately renders it
incapable of multiplication. On the other hand, it reaches the final stage of
mature bacteriophage only after the attachment of the tail fibres, without which
it is not considered capable of infecting a bacterium. Thus a phage in an inter-
mediate stage differs both from vegetative and from mature bacteriophage, in that
it neither can multiply nor can infect a bacterium. At the burst of the bacterium,
along with the vegetative and mature bacteriophages, a certain random number of
phages in the intermediate stages are released. The standard technique of making
burst count, which is based on counting plagues on the agar-plate, only picks up
the mature bacteriophages, while the phages in the intermediate stages like
vegetative phages are considered lost.

The incorporation of the above consideration into the mathematical theory
appears essential in order to bring it closer to the reality. As a first approx-
imation if may be sufficient to assume the existence of g single intermediate
stage. It is clear, however, that this additional feature of an intermediate
stage makes the theory algebraically more involved. Further work in this direction

is underway and shall be reported elsevhere in a later communication.
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