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§1, Introduction

Iet f = (fo, PR fn) be a vector of linearly independent continuous
functions on a closed interval [a,bl. For each x or "level" in [a,b] an

experiment can be performed whose outcome is a random variable Y(x) with

mean value

it Ms

Bifi(x) and variance 02, independent of x. The Ffunctions

i=0

f., £

02 Lyseves fn are called the regression functions and assumed known te the

experimenter while the vector of parameters 0 = (GO, el,.,.,_en) and 02 are
unknown., One of the main problems in the above setup is the estimétion of func-
tions of the vector 6 by means of a finite number N of uncorrelated obser-
vations {Y(Xi>}§=l . Given a specific function of © and a criterion of
what a good estimate is, the design problem is one of selecting the xi’s at
which tb experiment. In the present paper an exverimental design is a proﬁ—
ability measufe p on [a,bl. The experimenter then takes his ebservations

at the different levels proportional to the measure p., For a more cemplete

discussion of the above model see Kiefer (1959) or Karlin and Studden (1966a).

¥*
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mitted for any purposes of the United States Government.



For estimating linear functions of 0, minimaxity problems, etc,, the
information matrix of | plays an important role. For an arbitrary prob-
ability measure on [a,b}, the information matrix M{p) 1is the matrix with

elements

m,. =m_(u) = f f,f.du i, = 0,1,...,n . .
13 ij [a,b] *

For two probability measures p and v-on [a,b] we say v > or
M(v) > M(p) if the matrix M(v) - M(p) is non-negative definite and unequal

to the zero matrix.

Definition 1: A probability measure or design u is said %o bé admissible

if there is no design v such that v > . Otherwise y is inadmissible.

For the case of ordinary polynomial regression vhere f = (fO’fl""’ fﬁ)
= (1,%,..., x') Kiefer (1959, p. 291) has shown that p is admissible if
and énly if the spectrum of u, S(p), has at most n-1 points in the opgn.
interval (a,b). In this paper wve shall generalize the above result to spline
polynomial regression functions. We consider the interval [a,b] and choose’
h fixed points or "knots" 13855 0ens €, such that a< 1< Ep een <-gn< b.
The type of regression function under consideration will be a polynomial of
degree (at most) n on each of the h+l intervals (Ei, Ei+l) i=0,1,...,h
(go =a and g . = b) and will have n -k, -1 continuous derivatives at
gig i=1,..., h., The integers ki are assumed to satisfy O < ki <n-l1 so
that the reg;ession function is always at least continuous. The following

lemma gives a characterization of the type of regression function we are




interested in, The function xi used below and throughout the paper is de-

fined by
xd x>0
X‘l = { Jj=1,2,...

Lemma 1.1, A function P(x) on [a,b] can be expressed in the form

n h kl
= v i, v Oy n-j
(1.1) P(x) = Lo 4 ) bij(x - gi)+
i=0 i=1 j=0

if and only if

(1). P is an ordinary polynomial of degree n in each of the intervals
(8,5 €.q) i=0,1,,.., h and

(2) P has n - k;, -~ 1 continuous derivatives at £, i = 1,2,..., h.

2

Proof: See Karlin and Ziegler (1966, p, 518).

We shall assume that our vector of regression functions consists of the

functions
(1.2) 1, x, x2, e, X0
' n-ki n—ki+l n
(Xwgi>+ > (X-Ei)+ P ] (X'Ei)+ i = 152,I9l, h L[]

Kiefer's result mentioned above was generalized by D. VanArman (1968)
who considered the cases h =1 and ki = n-1 or n-2 for general h; The

present paper is devoted to proving the following result.



Theorem 1.1: Let f consist of the vector of functions in (1.2). Then a
design p is admissiblé if and only if the spectrum of p,S(p), has less

than or equal to

i,\:f' n+k7,+l—
(1-3) . n-1 + ., [ 2 ]
J=i+d

points on the open interval (gi,g ) for i=0,1,...,h=4, & = 0,1,...,h.

it+g+l

(Here we let €y =2, § ., =D and [x] denotes the greatest integer in x.)

Special Cases:

(1) If each 'kj is equal to its maximal value n~l, then the require-
ments on our regression function are that it be continuous and a polynomial of
degree n on each interval (§i,§i+l) i=0,1,...,h. In this case p 1is
admissible if and only if S(u) has < n-1 + gn points on (gi,gi+z+l).

This is equivalent to S(u) having < n-1 points on each (gi’§i+l)’
i=20,1,..., h. This is a more or lesé direct extension of Kiefer's result.,

(2) For n=1 and k, =0, j =1,2,..., h the regression function is
linear on (gj’€j+l) j=0,1,...,h, and continuous at gj, j = 1,2,..., h.
By (1) above a design p is admissible if and only if S(u) © {a,gl,ge,...,gh,b}.

(3) The first "non-trivial" case is probably n = 2 and kj = 0,
J=1,2,..., h, Here we have a quadratic on each interval (gi’€i+l) and
the regression function is required to have a continuous derivative at each E..
A design pu is admissible if and only if there are at most g+1 points of
S(p) in (gi,gi+£+l), i=0,1,..., h=4, £ =0,1,..., h.

(L) Specific design problems are usually easier to analyse when the
maximal number of points in any admissible design, say A, is equal to

B = the number of regression functions. If the regression functions are



linearly independent then A > B. 1In the spline situation an admissible design

h n+k.+1
may have A =n+l + I [—-f%-— points in S(u). The nunber of regression
J=1 .
- h n+k +1- n-k -1
functions is B = n+l + £ (k.+ 1). Since [ 23 J= k.+l+[ 3 ] > k+ 1
j=1 J J 5 J

for all j the situation A = B arises if and only if n—kj =1 or 2,

j=1,2,..., h. (Note that by assumption n-kJ. > 1.)

In_Section 2 ve give some necéssary and sufficient conditions for admissi-
bility in terms of the elements or moments in the information matrix. The
proof of Theorem lfl is given in Section U4 after we first prove a number of
preliminary lemmas which are given in Section 3.

The authors wish to thank Professors John R. Rice and Carl deBoor for a

number of extremely helpful discussions concerning spline functions.



92, Moment Conditions For Admissibility.

The prool for the ordinary polynomiel case uses the fact that if
2n 1

£(x) = (1,x,..., x7) and g(x) = (1,%,..., ) then M{v) > M(p) if

and only if Jg(x)'d(v—u) = 0 and J d(v-p) > 0 (all integrals in the
following will be over [a,b] unless specified othervise), Thus p 1is admiss-
ible if and only if the moments of 1, up to order 2n-1 uniquely determine
or among those measures v vwhose moments up to 2n-1 agree with fhose of u,
the measure y maximizes the 2nth moment, ' The remainder of the argument then
uses known moment space results which show that these latter conditions on 1
are equivalent to S(p) having at most n-1 points in (a,b), The idea behind
the proof of Theorem 1.1 will bte to follow the above line of>argument. The

moment conditions for the spline polynomials are contained in Theorem 2.1 below.

We let g consist of the vector of functions

(2,1) 1, X, see, X

<x-€i)+ -D l,z,soog 11 .

un
+
s
H

Theorem 2.1: Let I congist of the vector of regression functions in (1.2)

and let g be defined as above. Then v >y (or M(v) > M(u)) if and only if
(l) Yg(X) d(v-u) = 0 and |
(2) o4 JVXEn d(v-p) > f(x-gl)fn d(v-p) > ... > j‘(x—gh N d(vvm > 0.

If condition (1) holds then condition (2) is equivalent to
(') J[ (g - (-2, )2 avp) 20, 1 =0,0,000, 0

and at least one of these inequalities is strict.



then those involving £, etc. We let M= M(v) - M(p), Since v and y

are both probability measures the first row (and columm) of M has zero elements,i.e.

From (a) with i = 2,- the 2nd row is also zero. I'inally we obtain

J X" d(v=p) = 0, i=0,1,..., 2n-1 ,

i
@]
jr

v
A¥)
=

1
=t

j xl(x—gp)i A(v-p) = 0, i

It
[
L
P
jni

-J

- Now for r < n-1 and any p =1,2,..., h,

J G VT atow) = [ (8 )F (x5 ) a(ep)

N

a; [ (eeg )T alvn)

i
O



Therefore I g(x) d(v-p) = 0, 1i.e. condition (1) holds. Now observe that M

has all diagonal elements equal to zero except the elements
2n 2n
j x= A(v-p) and I (x-gp)+ a(v-p), p=1,..., h ,

and M has zero elements except for the corresponding rows and columns, Ve
now show that the resulting submatrix has the form (2.2), The element
A, = J x20 d(v-p). The element A, in the first row is
.n n . \2n
[ g ) alvp) = | (52 Av-s)
Similarly the element, say, in the 2nd row and 3rd column is

Jeg ) (eg)® alv-n) = [ (x8)%a(vep)

To complete the proof we apply Lemma 2,2, Assuming condition (1) we see that

M> 0 if and only if (2) holds.

' For a design to be admissible a trivial necessary condition is that given
any subset I of [a,b] the design p, normalized on I, is admissible on
I relative to the same fegression vector, An explicit definition and lemma
in this regard is given below.

Definition 2.1: A design u 1is said to be admissible on [gi,a

L
Cipers

(normalized on this interval) is admissible there relative to the functions
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(2.3) - 1, %,..., X

itl,..., i+4 .

.
1]

" J .
(k-gj> g0 (h Ej +

A design y 1is said to be subadmissible (h) if it is admissible on every

subinterval [€, ’§1+z+1] i=20,1,..., h-¢, £ =0,1,..., h-1 .

Lemma 2.3: If p is admissible for h knots then p is subadmissible.

Proof: By the remarks preceding Definition 2.1 the measure p must be admis-

sible on [b LE relative to the functions (1.2) restricted to this in-

1+z+1]
terval. Admissibility if independent of the basis used for the linear qpace
spanned by the funétions By Lemma 1.1 the functions (2. 3) are a ba51s for

the linear space spanned by the functions (1.2) restricted to [‘i’€i+£+lj .
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§3. . Some Preliminary Lemmas.
In this section we present a number of lemmas which will be used in the *
proof of Theorem 1.1. These lemmas deal with the construction of some spline

polynomials having specified zeros.

First we paraphrase an important result of Karlin and Ziegler (1966,

s , s
pp. 519-22). (See also Karlin (1968).) Let @S(ci,uj) = (ti-uj>+ , 8 = 1,2,...

and let ti’uj’ i,j = 1,2,..., r satisfy the following conditions:

t
r

t.
i

(1) ¢

C

tA
(AN
(A
AN

o

A

u, < ... <u <4
1 - - 1 -

(2) « +8 < s+2 (s> 1) vhenever o(> 1) of the uj's coincide, say
equal to g, and 3(> 1) of the t.'s agree with the same point g.

D2

(3)  No more than s+l consecutive ti's (or uj's) coincide.

Let Ms(t,u) be defined as follows: if t, < t,< ... <t  and
. < . . | r o
w <u, < ... <u, M(t,u) is the matrix =!ms(ti’uj)!!i,j=l . If
u, <u, =u; = ... =1, < u, ve replace the j + ith column
Jo 1 g JO-!-]_ Jo+h—l JO+h 0
T di
vector, 1< i<h-1, of !!ws(ti’uj)!!i,j—l by g;; ms(tv,u)luzu_ v=Ll,...,T.

Jo

A similar adjustment is used on the rows of the matrix when ti values coincide,
any sth derivative being taken from the right, We let Ds(t,u) be the deter—
minant of Ms(t,u). The result of Karlin and Ziégler is that under conditions

(1), (2) and (3), Ds(t,u) > 0 alvays and

(3.1) D (t,u) >0 e by g Suy <ty i=12,.0., 07
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where for 1 < s+l only the right hand inequality is relevant. For any vector
of functions f£(x) = (fl(x),,.., fh(x)) and vector of constants t = (tl,...,th)
vhere tl <t < t, ve let M(t,f) be the matrix with the vector f(ti)

in the ith row. If ti values coincide then the successive rows are replaced

by derivatives as in the definition of Ms(t,u).

Lemma 3.1: ILet f denote the vector of Tunctions

(3.2) ) 1, X, vou, X
g8~
i s .
(X'gi)+ 3o (X“€1>+ i=1,...,h
h
Let t = (t;,..., t ) where r = s+l+h+ ¥ A, no more than (s-A.+1) t.
1 T =1 3 i J

values are E., and no more than (s+l1) tj values coincide. Then M(t,f)

is non~singular if and only if

(3.3) tY <E <t

5 s+2+yi_l i=1,2,..., h 0

where Yi =

i M}-’-.

) (Aj+1).

J
Proof: The result is an application of the Karlin-Ziegler result with ¢ = a - ¢,
d = b, where for the uj values we choose s#l equal to ¢ and Ai+ 1
equal to Ei, i=1,..., h.

It is then seen that the matrices Ms(t,u) and M(t,f) are non-singular

together. The inequalities (3.3) are equivalent to those in (3.1).
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The proof of our main theorem will require a somewhat delicate analysis
of the zeros of polynomials constructed using Lemma 3.1. This is due mainly
to the faqt that spline polynomials are not infinitely differentiable and
non-trivial spline polynomials may vanish iaentically on intervals between
knots., All systems of functions we shall use will be linearly independent so
that a linear combination of these functions will be trivial or identicallyb
zero on (=%, ©) if and only if all the coefficients vanish.

We shall use the following conventions when counting the zeros of a spline
polynomial P(x). (See Karlin and Schumaker (1967))

0 there,

il

(a) no zeros are counted on any open interval (gi,gj) if P(x)
(p) the multiplicity of a zero =z # Fi» 1= 1,2,..., h is counted in the

usual manner, i.e., z is a zero of order r if
P<J)(z) =0, 3=0,1,..., r-1, P(r)(z) o

(c) if P(x) =0 on (gi_l,ii) and % O on (Ei’gi+l) the zero at €.
is counted as in (b) using right hand derivatives. Similarly we use left hand
: 3 1 :1: = = =
derivatives for P(x) = 0 on (‘i~l’°i) and =0 on (gi,§i+l).

(d) If P(x) %20 on (gi_l,gi)- or (gi,§i+l) and

(3.4) P(j)(gi-) =VP(3)(gi+) j=0,1,..., r-1

a=2 oy =2y o g

then §i is & zero of order
(i) r if AB> 0

(i) r+1 if AB<O

0 and B - A>» 0

It

(iii) -~ r+1 if A B

r4+2 if AB=0 and B - A< O .

1]



1k

It is eskly seen. that a zero of order r of P(x) is a zero of order
r-1 of P'.Fe let . Z(P) denote the number of zeros of P according to the .

above convemgns,

Lemma 3.2: & A non-triviel polynomial P in the functions

s
(3.5) ‘ 1, X, v.., X
D, . ,
(o), s (€8, 3= L2,
h
vhere 1 <pgs®, has z(P) < s+ T (s-pi+ 1),
e J____l

(8" For any fixed i = 0,1,..., h a non-trivial polynomial P

. ) S - P e ySTL s+1 L op
in the functir‘ln»(3.5) and Li( ) = (x gi)+ - (X—Ei+l)+ satisfies

Zeros.
=
(Note ti in each case the maximal number of zeros is one less than num-

- of funciims used.)

Proof: (i) Be proof will proceed using an induction on h and P and an
applicationé%ﬁolleszheorem. Tor h = 0, when no spline parts are present,
we are in tkordinary polynomial case and the result is immediate., For h.= 1

we consider®rst the case Py = 1, vhere only continuity of P is required

i

at g . 1rxx) =0 on (a,§)) or (g,,0) then Z(P) < s. If P(x) % 0
on (a,§1)~@v (El’h){ and P(gl) £ 0 then Z(P) < 2s. Moreover if (3.k)
holds and #+ O then P has at most r+l zeros at £,, and at most s-r
on each sidmf £ so z(P) < 2(s-r) + r-1 = 2s+l-r < 2s. If A B =0 then

» has at mé r+2 zeros at g, ¢nd at most (s-r) + (s-r-1) =zeros not equal

to g so #t again. z(P) < 2s.
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-We.now-assume the result true for any s and Py = 1,2,..., i-1 and
consider the case Py = i. If Z(P) > 2s-i+l then by Rolles Theorem
Z(P') > 2s-i. To deduce this, care must be taken with the intervals on vhich
P or P' venishes. Tor example if P £ 0 on (a,€,) or (§),b) but

P'=0 on (a,El) or (El,b) then P is constant on the corresponding in-

1

terval. The induction hypothesis now furnishes a contradiction since .
Z(P') < 2s-i.
We now apply an induction on h and %j = min pj . We first observe
(see proof of Lemma 2.3) that a basis for theolinear space spanned by the func-
tions (3.5) restricted to (giyaj) is the system (3.5) omitting the spline
If p. =1 we proceed as in

J
0
the case h = 1, Py = 1 using the induction on h. We then suppose the

3 3 o e la
parts involving yrees gi_l, S54100000 S

result true for all s,h and p, = 1,2,..., i-1 and deduce the result for
J
0
gi = 1 again using Rolles Theorem.
0 .

(ii) The arguments used here are similar to those used in part (i).

The induction steps are carried out in the same order and will be omitted.

Lemma 3.3: Consider the functions (3.5) where s = 2n and for i = 1,..., h,

(3.6) | p. = { no i

n - k. + 1 n - k. even
i i

Let Ki = 2n-pi, assume P, > 3 and consider a set of t values
h :
2n + ¥ (A.+ 1) and at
j=1 7 |

a = tl < t2 < t3 < ... < tm_l < tm = b vwvhere m

most two of the ti values are equal to any given point. If

(3.7) ty. < gi < t2n+l+yi‘l

i=1,2,..., h
1 .
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vhere V. =
Yy

(Kj+l) then there exists a polynomial P(x) in the functions
5 ,

1t U g

1
(3.5) such that

(i) P(ti) =0, i=1,2,..., m with double zeros at t, if &, =1

(ii) P(x) # O on any subinterval
(iii) P(p+1) = - 1
2n

(iv) if bj’ j=0,1,..., h denotes the coefficient of x on

(gj,gj+l) then bj <0 .
(Wote that since (ii) holds all of the ti values may be counted as zeros of

P, i.e. Z(P) =m.)

Proof: The polynomial is constructed using Lemma 3.1. The mn tj values and
tm+l = b+l are used so that the r in Lemma 3.1 is mt+l., We set up the
gystem of equations for P by requiring that P(ti) =0 i=1,..., nm
(appropriate derivatives if t, values coincide) and P(b+l) = -1. By Lemma
3.1 the resulting system.of equations has a non-vanishing determinant. There-
fore the polynomial P exists and conditions (i) and (iii) are satisfied. 1In
order to prove (ii) it suffices to show that P cannot vanish at a value to
distinet from the tl, i=1,..., m. If P did vanish at some other point

we consider the set to, tl""’ tm in non-decreasing order., If we renumber

this set the new subscripts can be increased by at most one. Thus for the new
system the inequalities (3.3) hold since we have shifted the value s+2 in
(3.3) to 2n+l = s+l in (3.7). Therefore the polynomial P is identically
zero which is a contradiction,
Now consider part (iv). Let p = p, = min p; -and consider the polynomial
° h

P<P-l)(x) whose highest coefficient is 2n-(p-1). P(x) has 2n+ Z (xi+1)
i=1

i+1
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' h

zeros o that P(P-l)(x) has at least 2n + ¥ (ki+l) - (p-1) distinet
h i=1

zeros. Since P(x) does not vanish on any subinterval we may assume that

none of these zeros are counted in any open interval on which P(p-l)(x)

vanishes identically, Applying Lemma 3.2 e see that P(p"l)(x) has

i -1
Q
'S
(3.8) < 2n-p, + 1+ % (\A,*1) =zeros on [a,g, 1
lo ..ax d 10
J=1
and
. h
(3.9) < 2n-p, + 1+ ZZ (X,+1) zeros on [£, ,b]
' o SRS J *o
J—lo
. h
Adding these two numbers we find their sum to be exactly 2n+ & ()\J.+l)-(p:.L -1)
Jg=1 - o]

so that equality must occur in (3.8) and (3.9). Moreover these are all distinct

zeros so that if gi is a zero it can be counted in only one of the intervals
o

fa,€. ] and g, »b]. In this case (3.8) and (3.9) may be written using
O o .

[aagi ) and (§i D] .
o o
If b >0, then P(x)~ +® as x - +», Since P(b+l) = -1, the poly-

h
nomial P then has a zero above b+l. However P has a maximal number of
zeros on [a,b]. Therefore b, £ 0. Since the number m is even, P(a-1) < O,
so that we also have bO < 0. Using the maximal number of zeros of each deriva-

tive we see that P(p*l>(x) < 0 to the right of its largest zero on (a,b).

Since the number of zeros of P(p"l)(x) on (Ei ,0) given by (3.9) is even
o

we conclude that P(p'l)(gi ) < 0. We extend P(p—l)(x) to the left of
o o
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using its expression on (Si ’Ei +l)' Since this new polynomial already has a

maximal number of zeros on (gi ,b) it follows that b, .4 < 0. Similarly
o o

bi < 0 . We now consider the new polynomial and differentiate up to the -
¢
value min p., thus deducing, as above, that additional b, values for
i <j<h- J
o 9=

io <J<£h are < 0. Continuing in this manner on both sides of Ei we may
' o)

conclude that bj <0, 0<j<h.

h n+k.+l.1
Lemma 3.4, Tet S(u) consist of n+ T [-~%——J
j=1

points in the open interval

i+f ~ntk.+1
(a,b) and suppose S{p) has less than or equal to n-1 + % L——f}»{] points
| j=i+l

—

on the open interval ) for i=0,1,..., h~g, 1 = 0,1,..., h-1.

Then there exists a set of polynomials {Pi(x)}?*o (one for each interval)

where Pi is a polynomial in the functions

(3.10) 1, %, .., x07t
q.
2n-1
(Xjﬁj)+‘],---; ( E-) = 1529'- > h
Where
( n-kj—l n—kj odd
4= j=12,..., b
n-k, n-k. even
J J
and the function
2n en
fi<X) = (x—.;ui)_J{_ (X-El_}_l)_{_
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such thgt
(l)‘ the coefficient of f, is one ,
(2) Pi(x) =0 for xe S(p) ,
(3) Py(x) 20 forall x

(4) P (x)>0 for xelE .6 7, x¢S(u) .

Remark. It can readily be seen that the conditions on S(p) are'incompatible
if kj = n-1 for some j. In this case qj 3‘2 for all j. Further, if

kj.= n-2 for some j then ?j e Sk;). The polynomial we construct is actually
unique go that if kj = n-2 then Pi(x) =0 for x» ﬁj if j» i+l  and
Pi(x) =0 for x< sj if j<1i . For example if kj = n-2 for all j then
S(j¢) must have n-1 points in (a,il) and '(Eh’b) n-2 points in each

(Ej’aj+l) q = 1,..., h=1 and one point at each Ej. The polynomial Pi(x>

. 3 . '1 C
in this case vanishes on Tla,b] N (Ei’§i+l)
Proof: We consider a sequence tl,..., t in non-decreasing order, where
e m
h n+kj+l
= -+ i — = = i i i = = 1
m=2n+2 % [ 5—, end t, = t, = lst point in S(u), tq t), = 2nd point

3=1

etc. We construct the polynomial by taking a linear combination of the func-
tions (3.10) and equate it and its derivative to -f, at the points in S{p).
We let A, = 2n-l-q;, § = 1,2,..., h. The conditions of the lemma guarantee
that (3.3) holds with & = 2n-1 . Therefore the determinant of the resulting |
system of equations is non-zero by Lemma 3.1. ‘Thus a polynomial Pi in the
functions (3.10) and f, exists satisfying (1) and (2). Moreover it is unique
and has at least a double zero at each point in S(pu).

Suppose that Pi(x) =0 for X e [gj,gj+l] vhere h > j > i+l. If we set
{ Pi(x) x < gj

Q(x) = :
0 x > gj



20

then @Q satisfies (1) and (2) and is a linear combination of (5.10) and £, .
Since P, is unique Pi(x) =0 for all x> §j. A similar result holds for
j*1 < i, Thus there is a maximal interval [ga,gB} < [a,b?, which contains
[gi,gi+l],v such that P, £ 0 on any subinterval.

We now proceed as in the proof of Lemma 3.3 confining ourselves to the

subinterval [gu,gql. Observe that if o« > 1 (7 < h) then Pi(x) has a zero

o

Fa F *
of order q (qB) at g ( B)
o

We shall suppose that = 0 and 5 < hj the other cases may be treated

B8
in a similar manner. Since (3.3) holds P, has at least T (N.+1) =zeros
j=1 7
on (a,gq) and Qg zeros at g,. Moreover A, *+q, = 2n so that P, has at
. oor !
least 2n+l+ % (Kj+l) zeros which is the maximal number allowed by Lemma 3.2.
J=1
Therefore Pi(x) £0 on [a,r,) for x % tj. Now if €, ¢ S(u) then there
i) 27
: h
are at most A = 2n-2+ 51 (A,+1) t. values in (£,,b) and hence P, has
. J 13 i
Jj=3+1
h 3
at least 2n+ ¥ (A.+l) - A =2+ % (A.+l) =zeros in (a,gg). In this case
g=1 Y j=1 Y '
B-1 :
P, has 2n43+ % (xj+l) zeros in (ajig] contradicting Lemma 3.2. Thus
J=1 ‘

Pi(x) £ .0 on the closed interval [a,gB] provided x 4 tj. Therefore condi-
tion (h) is true provided we can show that (3) holds.

We modify the polynomial Pi by'omitting the spline parts (X'Sj)i .fof
J = 8. Suppose 3 = i+l. Since q.r3 is even and the coefficient of fi is
one the polynomial Pi must be non-negative; otherwise the modified Pi would
have an additional zero on [gB,w), Therefore assume % > 1+l and leﬁ

4=4g, = min g.. As in Lemma 3.3 we may deduce‘that the number of zeros
Jo  1<i<p

of qu_l)(x) on each of the intervals (a,gj ) and let (gj ,gg) is the
(@] ' 9] ’
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maximal number allowed by Lemma 3.2. Continuing up to the next smallest

-1
value of 4 - 1, etc, we finally conclude that Pgr _)(x) (r = qG—l) has a

. . e s 2n-1
maximal number of zeros on (Er3 l,&g]. Therefore the coefficient of x
0-

in Pi(x) on (gB 1,gq) cannot be zero. If Pi(x) < 0 this coefficient must

be < O since, as above, qB is even and the modified Pi already has a

maximal number of zeros on (a,E.]. Now consider q =g, = min q. again.
8 J "
o] 1<3<6
If (Ei,§i+l) c (a,Ej ) then P(q_l) has an even number of zeros on (gj ,b)
o _ o
and is < 0 for x> gy if Pi(x) < 0. In this case

L (q—l> >
’i”‘i+l) c (gj ,b) then P (x) < 0 for x Ey-

f(q'l)(g. y<o. If (E.,E
Jo ’ o]

We take qu—l) on vhichever subinterval contains <Ei’gi+l)' In either case
qu-l)(x) < 0 to the right of the endpoint. Now if jo = i+l we obtain a

1'

contradiction since extended to the right of Ei+l has a highest

coefficient which is even and positive. If jo %'i+l we continue differen-

fiating on the subinterval containing <Ei’a4+l)' Eventually we arrive at a

contradiction as above,.

Lerma 3.5: Let S(u) satisfy the hypothesis of Lemma 3.4 with kj < n-2

(or % > 2) and let g denote the vector of functions (3.10). Then there
exists a measure v such that J gd(v-pp) = 0 and S(v) & s(u).

Prooft The proof proceeds along the lines of the proof in Karlin and Studden
(1966b, p.138-9) and we shall be brief. The system of functions (3.10) is a
WT-system. A perturbation of the vector with a gaussian kernel produces a
T-system. The measure  1s a "upper principal representation" of the corres-

ponding moment vector and the measure v is a limit of measures with mass



: h n+k.+1
at the endpoints & and b and n-1 + % [———2—Q-—-J points of (a,b).
= i '
Thus v § . Moreover S(v) < S(p) 1is readily seen to imply that

since f gd(v-p) = O .

Vo= |

22
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&W, Proof of Theorem 1.1.

The proof of Theorem 1.1 is a combination of the following two lemmas.

Lemma 4.1: A design p  is admissible if

{;@ ntl 41,
(1) sw) mas <ml+ ) [—d—] poines on (8,.8,,,.)
j=i+1

Prooft Since a subspectrum of an admissible gpectrum is admissible it suffices:
to consider the case where 5(u) satisfies (L4.1) for £ = 0,1,..., h-1, equal-

ity holds for 4 = h and both of the endpoints are in S(w).

h n+k‘+lW
We consider a sequence of points +t..t.,..., t , (m = 2n+2 ¥ [-—Q-J)
17722 m =1 2
vhere t, =a, t, = t3 = 1st point of S(u) in (a,b),..., t =D, ILet
n+k.+1
Kj +1=2 ———%r——], J=1,2,..., h. By condition (4.1) there are
i-1 h
<@en-2 + ¥ (A+1) t values in (a,§,) and <2n-2 + ¥ (A.+1) t values
j=1 Y * j=itl '
. i
in (€.,b). Therefore if vy, = % (A.+1) then
i 1 . J
J=1
(k.2) E. < . = ¢
i 2n+yi_l 2n+l+~(i_l
" ‘and
L, =
(3 By T ey, S8
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If equg}lty occurs in (4.,2) we shift the odd numbered point t2n+l+yi;1

so that it is > Ei. Similarly we shift the even numbered point so that

t, <§; if equality occurs in (4.3). We shall assume for the moment that

Y.

ki < n-2, In this case 8(u) 1is contained in the new sequence of points

since in order to shift a double t wvalue both right and left we need

= = 0 o - Soital < 1N
Y; = 2nty, , or A;*tl = 2n. Howeve: AL < n+k,+1 < 2n-1 (provided k< n 2).
The new t <equence satisfies

b, <E <t

Y3

2l i=1,2,..., h

Then, by Lemma 3.3, there exist a polynomial P(x) in the functions

where

n-k. n-k. odd
[ 1 i
Pi = »
n-k.+1 n-~k. even
i i

such that (i) P(x) vanishes only on the modified set of tj values,
(ii) P(x) » 0 on (a,b) except between modified t values,

(iii) the coefficient of % on each (€,,8,,,) is <O.

i+l

If k, =n-1 for some i the conditions (k.1) imply that "S(w) has

i-1 n+k . +1 % h n+k +1 _
n-1 + 3 [ g ~] points in (a,Ei) and n-1 + % [—-%——] points in
,j=l j:i+l

(gi,b) and a point at §,- We then use the above result to construct the
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polynomial P on the segments where kj # n-2 separately. The "combined"
polynomial satisfies (i), (ii) and (iii) above.

Now condition (iii) allows us to write

h
(b.4) P(x) = ;2 (xe8,)5% ¢ Bi(x)
j=0
h
= ) (agt ...+ 2;) (-2 03" - (-8, )2 + Py (x)

‘vhere ao + .00 4 aj < 0. The part involving Pl(x) involves powers < 2n-1

so that if v >y then by Theorem 2.1, part 1, IPld(v—p) = 0. Also P(x)
vanishes on S(u) so° j Pdy = O. Therefore if v > part 2 of Theorem 2.1
r
and the expression (k.l4)implies that j Pdv £ 0. Now we may assume that the
tj values vere modified so that P(x) > 0 on S(v). Since P(x) vanishes

2

only on the modified tj set this implies that S(v) © modified tj set

vhich, in turn, implies that v = pu by Lemma 3.1. Thus (4 1is admissible.

h _n+k_ +1
Lemma 4.2: A design u such that S(u) has >n+ T [——Eﬂ—~l points in
J=1
(a,b) 1is inadmissible.
C hontk +lq
Proof: Ve may assume that S(u) consists solely of exactly n + 3 t_ﬁfl_fj
J=1

points in (a,b). We proceed by induction on h. Note the result is trﬁe for
h = 0. If wve assume the result value for O, 1, ..y D=1, Then we may also
assume that S(y) satisfies (4.1) for £.= 0,1,..., h-1; otherwise u is not
subadmissible and hence not admissible by Lemma 2.3. Let g(x) consist of

the vector with component functions
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2n-1

1, Y;a reey X
P.
i 2n~-1 .
(x“gi)_,. 5 sy (X‘Ei)+ i=1,2,..., N
where
n=k, n-k. even
- { i i
pi - .
n-k, -1 n-k. odd
i i

If k, =n-1 for some i, the conditions (k.1) for £ =0,..., h-1 and the

h entk,+1 :
fact that S(u) has n+ ¥ |——g—| points in (a,b), imply that g; € S(1)
5=1 -

and p is inadmissible on (a,§;) or (£,,b). Thus ve asswme k, >n-2 so
p; 2 2. Consider the v of Lemma 3.5 and the polynomials {Pi(x)}?;o of
Lemma 3.4, Then f Pid(v—p) ='I fi(x) d{v-p) >0, i =0,.,., h, -and

f fi(x) d{v-p) » 0 for some i.. Also f g d{v-p) = 0. The conditions of

Theorem 2.1 are satisfied and thus v > u.
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