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1. Introduction

This paper is a sequel to "A Priority Rule Based on the Ranking of the
Service Times for the MIGIl Queue" which appeared in Operations Research,

Vol. 17, 1969, 466-477. We use the notation and concepts defined there with-
out repeating their formal definitions.

Informally summarized, we are considering the classical M]G[l queue with
Poisson input. of rate A and service time distribution H(:) and we distinguish
between successive "generations" of customers as in Kendall [1] and Neuts [3].
The customers present at t = O form the first generation; the new arrivals
during the total time required to process them form the second generation, the
third generation consists of those arriving during the service of those in the
second generation and so on. This continues until the initial busy period
comes to an end and starts over (regeneratively) with the arrival of the first
customer in the next busy period.

The priority rules discussed in [2] consist of serving within each genera-

tion the customers in the order of shortest (SPT) or longest(LPT) service times

first.
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The research of the author was partly supported by the Office of Naval Research
Contract NONR 1100 (26) at Purdue University.

Distribution of this document is unlimited.



In [2] a number of comparisons between these two rules and the first come,
first served (FCFS) discipline in regards to expected waitingtimes in the
equilibrium state were carried out.

Many questions involving more than the expected values can be asked. In

order to answer them an exact comparison of the waitingtimes as random varia-

bles needs to be made. For example, a referee of [2], asked for the (limiting)
probability that a customer "does better" under one priority rule than under

each of the other two. We attempt to answer such questions in the oresent paper.

We denote by N (t) the virtual waitingtime at time t, i.e. the waiting-
time of a (virtual) customer joining the queue at time t. By T (t,x) we mean
the virtual waitingtime under the LPT priority rule of a customer, arriving at
t whose service time is x. Likewise il (t,x) is the waitingtime of this customer
under the SPT rule. Clearly under the FCFS rule the waitingtime of a customer
does not depend on the amount of service he requests, but it does under the

other two disciplines.

In this paper we discuss the joint distribution of the random variables
N (t), T (t,x), T (t,x) and their limiting joint distribution as t = o.

We can "visualize" the definition of these three random variables on a
common probability space as follows. Imagine that a customer Jjoining the queue
at time t consists of three identical parts 1, 2, 3 each requiring a processing
time x > 0. Part 1 waits in front of a server operating under the FCFS rule,
part 2 in front of a server operating under the LPT rule and finally part 3
waits in front of a unit governed by the SPT rule. Then N (t), T (t,x) and
M (t,x) are the waitingtimes of parts 1, 2 and 3 respectively.

2. An Auxiliary Calculation

Consider the time points t and t + t', t > 0, t' > 0. The probability that

during the interval (o, t), jlcustomers arrive whose service times are less than



X, j, vwhose service times are greater than x and that during (t, t + t'), i3
and jh arrive with service times respectively less and greater than x is given

by:
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We assume that x is a point of continuity of H(*) so that the probability
that one or more customers have service times exactly equal to x is zero.

The distributions ¥ (-) and T (+) are defined by:
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H (-) and H (-) are clearly the conditional service time distributions given

the information that the required processing time of a customer is respectively

less or greater than x.

Next, let Ui and Ué be the total service time of all customers in (C,t)

with service time respectively less and greater than x. Similarly U'! and Uﬁ are

3

the corresponding quantities for the customers arriving in (t, t + t').
The following auxiliary probability mass function is of importance in the
sequel. We define W (t, t'; Xy X5 x3, Xh) as the probability that for given

t >0 and t' > 0, the random variables Ui, ul, Ué, and U& satisfy:

(3) U <x, Uy<x
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It follows readily, using (1), that:
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where H (xl) is the qfth convolution power of H () evaluated at x,. Simi-

lar interpretations are given to the other factors.
This expression does not simplify directly. As many formulae in applied

probability it involves series in the convolution powers of distribution

functions. Upon taking Laplace-Stieltjes transforms:
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we obtain a more familiar series.
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where h (s) and & (s) are the L. S. transforms of H (-) and ¥ (-) .

Surming we obtain:
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We now return to the M]Gll queue, which we consider at time t. We define
the following five random variables. UO is the length of time beyond t until
the generation of customers in service at time t cpmpletes its service. Ul and
U2 are respectively the total service times of the customers with processing
times less than and greater than x, who joined the queue between the beginning
of the service of the current generation but before t. U3 and Uh are respec-
tively the total service times of the customers with processing times less
than ond greater than x, who join the queue during the time interval (t, t + Uo)'

If at time t the server is idle all five variables are zero.

We express the joint distribution of the waitingtimes T (t,x), T (+) and

T (t,x) in terms of the joint distribution of the random variables Uj’

i=0,..., 4.



3. The Joint Distribution of the Uj, j=0,..., 4.
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Rg (t, X5 X35 %55 %5, X)) is the probability that in (0,t) the queue has
never become empty and the variables Uj, j =0,..., 4 associated with the
timepoint t satisfy Uﬁ < Xj’ j=0,..., 4, given that at t = 0 i 2 1 customers
were in the queue, one beginning service at that time.

This probabllity is given by:
o] -
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by the following argument. At some time T prior to t, the generation in service
at t enters service. There are some number v # 1 customers in it, so that the
duration of the total service time distribution of these v customers is the
v-fold convolution H(v) (+) of H (+). If U, € x_ must hold, the total service
time of these v customers cannot exceed t + X The other requirements

< < - t.
U, €%, Uy € xp, U3 < %3, Gy < x), account for the factor W(t-T, t ,xl,xe,x3,xh).

The probabilities ong) (+) were defined in [2].
Taking Laplace-Stieltjes transforms in (8), i.e. evaluating:
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and recalling (7) we obtain:
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in terms of the functions CH - (g, 2) defined in [3] .



Next, let R, {t, Xos Xp5 Xgs Xg xh) be the probability that at time t,
the random variables Uﬁ associated with t satisfy Uj < xj, j=0,1,2, 3,4
given that at time t = O there were i customers in the gqueue.

The standard regeneration argument relates the function Ri

(t, X5 X5 Xy X3, Xh) to the functions Rg (t, Xos Xps Xy Xg xu) as follows:

(ll) Ri (t) XO, X]_’ X29 X3, X}_'_) =

Rg (t, X09 xl’ X2: X3, Xh) + P { g (t) =0 l g€ (O) = i} U (Xo’xl’XE’x3’xh)
t

0
_+ jo Rl (t'ua xo, Xl: X2, X3, Xh) d Ml (u) >

where P { E(t)=0l)€ @) =1 } is the (conditional) probability that the
queuelength € (t) =0, i.e. that the server is idle at time t. Ml (+) is the
renewal function of the (general) renewal process of beginnings of busy periods.

U (xo, xl, x2, x3, xu) is the distribution degenerate at zero in five variables.

We recall that:
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where vy (§) is the L. S. transform of the distribution of the busy period of the

MlGll queue.
Also:
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Upon taking transforms in (11) we obtain:
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R, (g, S.» 815 Sps Sg Sh) , 1>1, is given in (10).

When 1 - A @ > 0; « being the mean of H (-), the existence of a joint
limiting distribution for Uj, j=0,1, 2, 3, 4 is guaranteed by the main limit
theorem for regenerative processes and the existence of a stationary version of
the imbedded Markov renewal process of the M'Gll queue [3]. When 1 - A @ <0,
the main limit theorem for regenerative processes guarantees that Ri
(t, Xos X1> Xps Xg xh) tends to zero for all i, X, >0, J = O0se0es, k. Since
the limiting distribution exists, when 1 - A o > 0, its transform is given by:

(15) R (SO’ Sl: 523 53: Su) = éi§+ g Ri (g: SO’ Sl’ 329 537 Su)

~O
(L -\ @) {l + ARy (o+, S.» Sys Sps S35 Sh) } .

L. The Joint Distribution of W (t,x), N (t) and 7 (t,x)

The random variables T (t,x), T (t) and 1 (t,x) are for each t > o related
to the random variables Uj’ j=0,1, 2, 3, bk associated with the timeinstant t
by:
(16) M (t,x) =U_ + U, + 7,
n (t) =0, + U + Uy,

1 (t,x) = U, + U + g

That this is indeed so, we argue for 7 (t,x). The other cases are similar.

Consider a virtual customer with service time x arriving at time t. He has to
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wait until 211 customers of the present generation, if any, have been served.

This is a length of time Uo' Next, in the next generation, all customers with
service time greater than x are served ahead of him. Regardless of the actual
order of service the total amount of processing time required by all customers

with service time exceeding x is U2 + Uh' U, is the processing time of those

2

who preceded him and Uh that of those who succeeded him in the arrival sequence.

We have:

(17) W (6,%) & + 0 (8) 6y + 7 (£,%) G5 =
(G + 8y + €3) Uy + (Cp +C3) Uy + (8 + ) T,
S SN Y SR T
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= Ri (ga gl + gg + §3’ Cg + §3) gl + g2: g3: gl) )

where R, (ereseseses.) is given by (1k4).

Formula (18) shows how the joint distribution of W (t,x), N (t) and 7 (%,x)
is related to the basic parameters of the M!G|l queue., We discuss the limiting
Jjoint distribution of these three variables as t = =, in some detail.

5. The Limiting Joint Distribution

The limiting joint distribution of the three virtual waitingtimes exists if

and only if 1 - A o > 0. Its Laplace-Stieltjes transform is given by:

(19) S (€l> g2’ g3) =

~0
(1-na) {2+ aR (0, + 8y + g §y +Cgs Gy +Gps Gy 5 €9 )
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6. Moments of the Limiting Distribution of the Basic Variables Uj’ j=0,1,2,3,k.

Let us denote:
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where the functions h (+5+), n >0 are defined in [2].



From (15) the L.S. transform of the limiting joint distribution of
Uj, j=0,1, 2,3, k4 is given by:

(n

~ i n )~
(@) R () =) {1- % ) [ a (0-49 (01},

- o)
n=0C

The theorem in Appendix I of [2] implies:

(n) (n)

(25) 4, (0,1) - a,  (0,0) =h_ (0,1) - b (0,%) = 4, (x,8)

Substitution of (25) in (24) yields:

(26) R () = ) {1 -2 Y oy},
n=

E_ U denotes the expected value of the limiting distribution of U and

further denote:
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where term by term differentiation is justified as in [2]. Applying 1' Hopi-

tal's rule twice on the right hand side Qf (27) we get:
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+ 3 (20 8 +o8)h (0,227 e b (0,1) ]
3. N w32 A%ap
I § X
U (v + T ) T
3 (l-l3a3) 1 -‘A o 2 (l—l o
JE—— 2 _
Emug = EU] , EU), = Eng
2 ® :
A (l-ha)ax o B t Tt 3 1ty
Ew(UoUl) =+ —— Z Y, hn(O,l) + 308 hn (0,1) + o h (0,1) ]
n=0
2
=}\ “x [ +3}\,2,f:./ ,82 ]
3 3 ¥ z 2
6(1-1" o) 1 -2 o
2
7 AT(1-) o) o z 1 1 3t
E,(UU,) = z ? [yn (0,1) +38 h (0,1) +o” h  (0,1) ]
n=0
2
Ao 2 2
= L v + ;_A__ELE__]
2 2 -

6 (1-1) 1A% g
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E(UU)

E (U,U,)

Em(UlULL )
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2
A (1-7\(1/) o 1 te 111
X : 3
. Y, [y m(0,1) + 308 B (0,1) +e” B (0,1) ]
' n=0
2
Ao :
x3 . [y + 3 R w 3 ]
3(2-)° o) 1 - A

2 *
AT (1-\ @) o

1 tr 3 T}
Y [yn,(0,1) + 38 b (0,1) +e’n . (0,1) ]

3
n=0
3 3%
}\dx 3 A a/’%a
— [y Bt
3(1-1° «7) 1-2 o

A3 (1= o) o, o

2 Ty h;l(O,l) + 308 h;l'(o,l) + o hr'l”(o,l) ]

3
n=0
3 *
)».o.fcy ‘ +3?\201_82]
33 A 2 2
3 (1-A ) 1-A o
(l-h o) a
o Z[Yh(o,)+3d'3h (0,1) ]
n=0
3 2
A 2 2
le Y+_3._L%._§2]
6(1h3a3) 1-A o
h3 (1-A @) o, a* >
Z Z[Yh(01)+3ozf3h(01)
n=0
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Em(U2U3) = Ew(Uth)

o
?\3' (1) o) @ - 1 1t 3 1
E,(UU)) = z z [yn,(0,1) +308 B (0,1) + & b (0,1)]
n=0
2
3 *
N % [v+32 XE_O!..B._E__]
6 (15 o) b 1374

/b
i[ \
A 2
{ 5o b e b H+AB 2 \
A ¥ 2 2 * X
Ew(HE')=’ 3o b A\ e, e b A b+rp 2 %
i
(36)
2 2 2 2
Ao b A 2 AT A"aShb + AR a f
x 2 ak b 2 OL‘xo"x}:) X x /
A o b 2 2 #° 2 2*2b+7\*
« %?-a o b l_ o, b Aaab A &y Bxa
2
2
where a = E U , b=EU,
© 0 © 0

That is, a is the steady state expected residual life length of the generation

gserving at time t, and b - a2, its variance.

Remark:
For x = 0+ the second and the fourth rows as well as the second and the
fourth colums of the matrix &_ Qg U') tend to zero. While for sufficiently

large x, the third and the fifth rows and columns tend to zero.
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If we define:

EX(E Uy UJ.) - (Ex E Ui)(Ex E UJ.)

r,.
1d

JE w2 (s )2 5 8R- (5 w0 ,
x i x i x ] x ]
i:j=0al:2,3sh‘
then in the case ofarlMEM!l queue as the traffic intensity tends to one it can

i > > >
be seen that r23 and r,) are negative, and Toy ro3 r02 o1

T. Moments of the Limiting Distribution of the Virtual Waiting Times

N(t,x), N(t) and M(t,x)

Let us denote:

/11 (t,x) \ 7 1 o 1 o

-' \

1
A =, T () ) ) A =1 1 1 0 o©
g (t,X)/ 1 0 1 0 1

Then from (16) we get

A=AJ

(37) E_A=AE_U

(38) E, (AA') =AE_(UU') A

[ R

Direct computation of E_ A was given in [21. Further a direct computa-
tion of E_ A A' is possible from (19). However, here we compute (37) and (38)

in terms of the steady state moments of the basic variables U's. Substituting

(35) in (37) and (36) in (38) and simplifying we get:

(39) E_A = L+2rae)a

(L+ 1o a

*
(L+22 ax) a
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(;Z;+3xax+3xea§)

+ 2)\Bx a
E_(AA') =] b(1+ )-é— a+ g— Ao b(l+ha+l2a2)
(40) + 332 s )3 a +A 8 a

2 b'< X

3 o Lot 2. b(an *+k2*2)
b(1 + 5 hort3h ae ) b(l+Fo+r Sha ( 3o 3\ o,
3.2 %, % *
\,___ +27\aczx)+mxa +218, 2

We define:

(41) pp, = (B, (BN (=,0) A=) - (5 51 (=,X) (21 (=) ]
(5, (21° (2,30) - (5, 21 (=0)2772

BT (=) - (B (=))?]2

(42) ppy = (B (BD (=) T (2,%) - (B, EQ (=,X) (B, ET (=,%))]
(5, BT (=) - (5, E 1 (=0)%°
(5, (27 (=,0) - (5, BT (=,1))2172

(43) pp3 =[E (BN (=) T (=,X)) - (EN (=) (B, BT (=,X))]

(BT (=) - (E7 (=))217%

(B, (8T (=,X) - (B, ET (=,%))°17
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In the case of an MlMIl queue when the traffic intensity tends to one it can

be shown that:

(W4) p._ = 0.79, p.. = 0.90 and p,. ~ .. p

8. The Probability P { T (t,x) <1 (t) }

From (16) we have:

(55) P { 1 (t,x) <7 () }

P { U3 <, }

j f d A, (8, x, %)
o I x2X3 i 2 3
where Ai (t, x2, x3) is the joint distribution of U2 and U3 given t.

As in § 2, if given t and t', the joint distribution of U2 and U3 is given by:

> At (L-H(x) )-Mt'H(x) '
L6) o (t, t'; Xy x3) = E; EZ e * {Kt[l-g(x)]}ae
3% 350 Jdos
- X)]J3 ije) ijl)
331 ﬁ(xe) H(x3)

Let A; (t, X, x3) be the probabiiity that in (0,t) the queue has never become
enpty and that the variables Ué and-Ué associated with the time point t satisfy
U2 < x2, U3.f x3, given that at t = 0 there were i > 1 customers in the qugue,
one of who was beginning his service at that time. Then:

: R LIRS
MW7) A (6 s %) = ) ) jo a,8,(m) al® (tatrom)

0Vl (n)
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)

C (6T, b, s xg

= E: J doRiéT) F, (&1, %55 x3) 5
v=1

where oRi\g-) = E? o0& (¢) and:

iv
n=0

©

(48) F (6ms xps %) = | @™ (eatran) b (eor, 10, x

(t')

By the renewal argument as in (11):

2’ X3)

-] t o
(49) Ay (b, %y, x5) = A] (£, %y, %) + jo A (b, xh, x5) M (u)

+P L) =012(0) =130 (x5, %)

where:

(50) U(x2, x3) =1 if %, > 0 and x3 >0,

]

0 otherwise.

Substitution of (47) in (49) yields:

[ae]
t
}: jo a By (7)) F(6=7, %), x

(51) Ay (B, x55%5) = 3)
v=l
t o
+ Xo Al (t-u, X, x3) d Ml(u)
1
+P L) =0 g(0) =110 (xy x3)
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If A (x2, x3) is the limiting value of A, (t, X55 x3) as t - o, then simi-

lar to the renewal argument in appendix II of [2] we have:

A(xz,x3) (1-20) { U(x2,x3) + A E; ORij(+co) Xo Fj (7, %55 x3) ar }
j=1

ifl—)\d’>0,

O otherwise.

Finally from (45) if follows that:

. © R () [ = r
P »X = (1-N A )
i—iﬁ {Il(t ) < T‘(t) } (l CY) { 1+ JZ]_ o 1j Jo “‘o 'YO
(Xz) (X3)
4 x Ty (1, x5, %5) ar ]
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