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Abstract - Elfving's Theorem and Optimal

Besigns for Quadratic Loss

.

by W.J. Studden

The theorem due to Elfving mentioned in the title is ceoncerned with

the optimal allocation of experiments in estimating linear functions of

regression parameters. The purpose cf the present paper is to give a ma-

trix analog of this theorem and to give some simple applications.
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§1. Introduction. The purpose of this paper is to give a matrix

analog of a geometric result of Elfving in the theory of optimal desigh
of experiments. The connection with quadratic loss is indicated below.
Let f=(f1,...,fm)>denote m linearly independent continuous functions
on a compact set X. For each xeX an experiment can be performed. The
autcome is a random Qariable y{x) withrmean value @ £'(x)= Z Gifi(x) and
a variance o* independent of x. (Primes will denote transp;ses.) The
functions fl”"’fm’ called the regression functions, are assumed known
while Q=(Ql,..=,9m) and 02 are unknown. -An experimental design is a prob-
ability measure U on X. In practice, the experimenter is allowed N un-
correlated observations and the number of observations that he takes at

each xeX is "proportional" to the measure M. For a given design ¥ let
1K

.=mij(u)= ffifj du and M(w)= || P 5e10

m,
1]

the information matrix of the design

mij The matrix M(u) is called
Suppose u concentrates mass My at the points xi,i=1,...,r and Nui=ni
are integers. If N uncorrelated observations are made, taking n, observa-

tions of Xs 5 then the variance of the best linear unbiased estimate of
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ag = 1

2,6, is given by ooN" aM"l(u)a'. The inverse M_l(p) must be suit-

et

ably defined if M(u) is nonsingular. A design u is called a-optimal if u
minimizes V(aﬂﬂsaMml(u)a‘. The following geometric result was given by

Elfving (1952); see also Karlin and Studden (1966).

Ihggﬁgg_(Elfving),' Let R denote the smallest convex set in Euclidean m-
space which is symmetric with respect_to'the origin and contains all of
the vectoré f(x)=(£§x),...,fm(x)), xeX. A design Hy is a-optimal if and
only if there exists a scalar valued function ¢(x) satisfy [¢(x)E1 such
that (i) f¢(x) f(x)dpo(x)= Ba for some B aﬁd (ii) Ba is a boundary point
of R. Morsover Ba lies on the boundary of R if and only if Bz=v—l where

v= min V{a,u).
u

The quantity, analogous to V(a,p), that we wish to consider is

(1.1) v, = tr AN A = tr ML) AAY

where A is an mxk matrix and tr denotes the trace. We thus wish to minimize
the sum of quantities V(a,u) where the a's are given by the columns of A.

The expression V(A,u) can be also be seen to be proportional to
.E(é—@) AA'(éég)'where 6 denotes the least squares estimate of 6. This is the
reason for part of the title of the paper.

In the following sense the expressioﬁ V(A,u) provides some "generality".
Let L(B) denote a linear function on the set of mxm matrices which is posi-
tive in the sense that L(B) > 0 for B positive semidefinite. Then L(B)=tr BC

for some positive definite C. Thus V(A,u) is the most general positive linear

function in M_l(u).



A design p is called A-optimal if it minimizes V(A,u). In order to
State the matrix analog of Elfving's theorem we let ¢=(¢1,...,¢k) and de-
fine R as the smallest convex set of mxk matrices which contains all the

ot ey - 2 2 . . .
matrices €' (x)y¢ where xeX and E¢i=l¢| < 1. (The symbol I-l will dencte

the usual Euclidean novm.) We then have the following result.

Theorem 1.1. A design My is Ao—optimal if and only if there exists a func-
tion ¢(x) satisfying|¢(x)f =1 such that (i) ff'(x) ¢(x)dpo(x)= BAO for some
scalar g and (ii) BAO is contained in the boundary of R. Moreover BAO lies

on the boundary of R if and only if 8_2 = V.= min V(Ao,u).
u

A more complete'discussion of the function V(A,n) is given in §2 while
the proof of Theorem 1.1 and some preliminary lemmas are given in §3. A more
useful from of the theorem is given in Theorem 3.1. Various simple applica-
tions are given in §4 and in §5 we discuss briefly the choicé of a basis in
regression theory.

The application of Theorem 1.1 is, at present, somewhat limited (as are
most results on the optimal choice of design) in that it.appears difficult
in any given situation to determine the points where the observations are to
be taken. Some iterative computational proéedures are available both for the
‘minimization of tr M_l(u) AA' and for maximiiing the determinant of M(u). See
for example Fedorov (1968) and Fedorov and Dubova (1968).

We wish to thank Professor J. Yackel for a helpful discussion concern-
ing Lemma 3.1,

§2. The Function.V(A,u).. Whenever M(u) is nonsingular the gquantity

V(A,u)=tr AA' Mul(u) is well defined. With the aid of Schwartz's inequality

it can be shown that for any mxk matrix E



(2:1) tr? B'A < tr BE'M(y) E tr A'M 1A,

and equality occurs if and only if A is proportional to M(u)E. Therefore

2
tr E'A
(2.2 YR = s e

When M=M(yu) is singular we take V(A,u) as defined by (2.2) where thevsup
is over those E such the both numerator and denominator do not vanish simul-
taneously. Thus, in order that V(A,u) be finite we must have each colum of
A orthogonal to e?ery vector e such that Me = 0. That is, the columns of A
must be in the range of M(u). We can therefore restrict the columms‘of E to

also be in the range of M. Let ) sahg be the nonzero eigenvalues of M

Rk

with associated orthonormal eigenvectors v sV - Then M=zkivivi and if

10

we define
€ = [} [ = *
(2.3) M LA ViV, for ¢ = + 1 or + 1/2

then MY/% /2 _ Lv: v.. If the columns of A are in the range of M it fol-
.lows that (Evi vi)A = A. Then by Schwartz's inequality
(2.4) tr B'A = tr? prul/2 M2 4
< tr E'ME tr A'M7L A
and equality occurs if and only if A is proportional to ME. We shall usually

take the proportionality constant so that



(2.5 - BA = ME or @M A = E
where 3'2 = tr A'M A,

We have now shown that when the colusmz ©f A are in the range of M{y)
then V{A,)=tr A?M~l(p)A where the inverse is given by (2.3). Otherwise
V(A,pj= =.

§3. Preliminary Lemmas and Proof of Thzorem 1.1,

Lemma 3.1. Let R denote the smallest comven set containing the mxk matrices

f'(x) ¢, xeX and 1¢|2= Z¢§ < 1. Then

R = {Altr® E'A < sup £0OEE'£'(x) ¥ E)
X

where E is an mxk matrix.
Proof. Let Ro denote the convex set defined in parenthesis above. Then for

A= f'(x)¢,

(3.1) tr’ E'£'¢ < tr £(x) BETE (x) tr ¢ g

< f(x) EE' £' ().

Therefore R.C.Ro. Now suppose A0 ¢ R. 8Since R is easily seen to be closed
and bounded there exists a hyperplane strictly separating A, and R. Thus

there exists EO and ao such that

1 3t i
(3.2) tr Eo A 2 a,< tr LO AO for all AeR

Without loss of generality we take a,= 1. In (3.2) we take A=f'(x)¢ where



b = £(x) EO/ lf(x]EO]. Then
(3.3) £) BB £1(x) <1< tr? B A

for all x and hence A ¢ R,
o o

Corollary 3.1. (i) Every matrix AeR has a representation A = Zf'(xv)¢(v) P,
v
where ]¢(v)[ <l and ¥p, = I and the X, are not necessarily distinct.
v

(i1) Every matrix A in the boundary of R has a representation
= '
(3.4) A gf (x,)) ¢(x)) p,

where|¢(xv)| =1, Epv = 1 and the X, are all distinct. Both of the sums in

the above representations are finite.

Arguments similar to those used in Lemma 3.1 may be used to prove the

following lemma.

Lemma 3.2. A matrix A of the form (3.4) is a boundary point of R if and only

if there exists a "supporting plane' E such that

(3.5) £(x) EE' f' (x) <1 for all xeX
and equality holds for each x, (if p, > 0). Moreover ¢o(x)) = f(xv)E/lf(xv)Ef
and tr E' A = 1,

Proof of Theorem 1.1. First suppose that Yo and ¢ are such that

ff'(x) $(x) duo(x) BAO and that BA0 is on the boundary of R. Then by



Lemma 3.2 there exists an EO such that

‘e - Ja Y - 2 > S o !
(3.6) B tx EO AG = 1 and f(x) EOLO £f'(x) <1 vfor all x

with equality holding for x in the spectrum of Ho Therefore,

(3.7)  sup f(x) EE! £1(x) = 1.
X

For any design u we have

tr E'M(n) E = tr EE' [f'f dyu

< sup tr EE'" f'(x) f(x)
x .

= sup f(x) EE' f'(x)
X

- Then

trz E'A
00

V(A 1) > - : -
o) tr E0 M(u)EO

tr2 E!' A
0o o

2 ST
szp f(x)EOEé £ (x)

This inequality together with (3.6) and'(3.7) imply that

(3.8) | VA 1) > = .
o) —-82

Now for the measure My and any E we apply Schwartz's inequality twice to give



2

1

Tt E'Ag = 87t B[ () (%) du, (x))

fA

877 [ler B'E 00 90012 du (0
72 [tr(B'E' () £(x) E) dy, (x)

. - 'Miy ) E
B tr E h(uo, E

I

Therefore

2

. tr E'AO 1
V(Agsup) = sup & ETN()E <77

This inequality combined with (3.8) shows that M, is Ao—optimal.
Note that there always exists a design y satisfying (i) and (ii) so that

4

the above analysis proves the last sentence of the theorem, namely that Ve B

for BA on the boundary of R.
We now let o be any Ao~optimal design and wish to show that (1) and (ii)
are satisfied for some ¢. We take 8_2 =V, SO the BAO lies on the boundary

of R. Then there exists EO so that

(3.9) £(x) EB' £'(x) <1 = g2 tr2 E'A .
. _ oo — oo"

Integrating the left side with respect to y we obtain

3 1
(3.10) tr Eo M(uo) Eo <1

However since M is AO-0ptima1 we have



2

. tr” EéAo I
SESSU o4 w— < V(A ,u ) = ~=

PR Y = e
tr EOR(M)LO 0’0o 82

2 .2 2.2
hat tr E'M S > 8% tv“ E'A = 1. Thevef 5 E = T E'A
so that tx th(uO)Lo B™ ty EOAO 1 Therefore tr boM(uo) o B™ ¢t ohs
anc by the sentence containing (2.4) we must have AO proportional to M(uo)EO

The latter part of (3.9) shows that
3.11) ' BAO= eM(uo) EO where € = + 1
In this case

BA = ef £1(x) £(x) E, du (%)

= [ £100 000 dug(x)

where ¢(x) = ef(x)Eo for x in the spectrum of By The vector ¢ has length
one since equality must occur in (3.9) for x in the spectrum of My

For a given matrix A it is usually difficult to determine the spectrum
of any A-optimal design u. Theorem 3.1'below is sometimes useful in deter-
mining those A which have an optimal design supported on a given set of
points.

In many cases the "boundary representation'
= t
(3.12) BA % £Lx) o(x)p

will reduce to a finite sum with at most m terms. If the number of terms is

less than m we add arbitrary points with corresponding P, = 0. We shall assume
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in this case that the determinant F with columns ﬁ(xv) is nonsingular.
Let £7(x) = T£'{x) denote the vector of Lagrange functions for the

.., X_ 1n
1) 3 ]n

points x sX_, 1.e. zj(xj) = Gi.. Inserting the values x

1o Xy
2'(x) = TE'(x) gives I = TF so that T = F L. If we multiply (3.12) by T

and let TA = B then

BB = ] £'(x)) ¢(x))p, .
A\

In this case Bbv ¢(xv)pv where bv denotes the vwth row of B. Then

(3.13) 8 !

(z[bj[)'l, p, = Bb,l  and  e(x) = b |b

In case lbvl = 0 we have P, = 0 and ¢(xvj need not be defined.

. L -1
For any matrix B we take each nonzero row and replace it by’bvlbvi .

The resulting matrix is denoted by Bo' Thus if B_l denotes the diagonal ma-

d

trix with diagonal elements [bvl-l for Ibv[% 0 and zero if lbv|= 0 then
(3.14) B =B, B.

The following theorem characterizes those A with an optimal design sup-

ported on a given set x s X

170Xy

Theorem 3.1. If F is ' nonsingular then an A-optimal design is supported on

Xl’“"’xm if and only if there exists a matrix B such that
3 ! !
(1) (%) BO Bo M (x) <1 V x.
(ii) A = FB

The optimal weights are then proportional to the lengths of the rows of B.

Proof. Suppose first that a matrix B exists satisfying (i) and (ii).
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An A-optimal design then concentrates mass p, on x where P, is proportional
to the vth row of B. To see this we observe that with P, and ¢(xv) as in

(3.13) we have (3.12) holding. Moreover (i) implies that

£(x) T' BoBé T <1 for all x

and

-1

d B

tr Bé T(BA) = gtr B' B

- . -1 [
= Btr Bd BB' = 1

Therefore BAeBdry R and the result follows by Theorem 1.1.

1o Xy The

optimal weights p,, must be as in (3.13) and BA = va f’(xv) ¢(xv) with

Now suppose that.an optimal design My is supported on x
BAeBdry R. The hyperplane supporting R at BA then gives

. _ .
(3.15) £1(x) EE' £0x) <1 = tr E! A

so that (i) holds with B = F'E_. From (2.5) we know that 8A = ME_ so that

BA = BFCd E! EO where C = TA. In this case (iii) holds with B = CdBo'

§4. Applications, Polynomial extrapolation: Theorem 3.1 with

k=1, X=[-1,17, f(x)=(i,x,...,xn) reduces fairly readily to the extrapolation

result of Hoel and Levine (1964); see also:Studden (1968). If k=1 the matrix
A has one column. We take X, v= 0,...,n to be the extrema of the Tchebychéff
Ipolynomial Tn of the first kind, i.e. X = -cos %%-, v=0,1,...,n and Tﬁ(x) <1
with equality holding at X=X . If we take the elements of the column vector

B to have alternating sign then £(x) BOBé 2'(x) <1 since 2(x) BO= i_Tn(x).

Clearly A=FB for some such B if A=f'(x ), fxol >1. Thus the optimal design



for extrepelating to X, concentrates on the X, defined above.

Linesr Regression., In this case we take £(x)=(1,x) and X= [a,b] and

apply Theovem 3.1. It is readily seen that (i) holds with X;= 2 and X,= b

k]

for any matrix B due to the linearity of the regression functions. That is,
Lf 2(x) Bo= (P,(x), P,(x)) then pf(a)w;(a) <1 and pf(b)«-pg(b) <1, (usually
equality will hold). Then = oa+(l-a)b where a=(b-x)/(b-a) so that
Pi(x)z aPi(a)+(1—u) Pi(b) and Pi(x)+P§(x) < 1. For any matrix A we let ay
and a, denote its rows. Since the weights of the A-optimal design are then
proportional to the rows of B, we find that the weights on a and b are pro-
portional to the squafearoots'of b2|a1]2+[a2{2—balaé and 32]a1|2+|a2]2—aalaéﬁ

Note that in the case a=-b the weights will be equal if and only if a =0,

t
1%2
i.e. the two rows of A are orthogonal. This is the situation when, for example,
(i) A is diagonal or (ii) A has rows (1,1) and (1,-1), i.e. we estimate the

sum and difference of the regression coefficients.

Linear Spline Regression. Here we take X = [a,b] and let f(x) consist

X Lrym Cy - - - =
of the functions 1, {x go)+,(x gl)+,(x g2)+,..,,(x Eh)+ where go a<gl< ce. <
€h<€h+1= b and z,= 2 for z>0 and 0 for z < 0. The regression function is a
polygonal line segment. The argument used for the ordinary linear case shows
that (i) again holds for xl,...,xm equal go,gl,...,gh+l and any matrix B.

The matrix T = F-l has three nonzero entries starting at the diagonal (except
for the last two rows). The first row has 1, —(gl~g0)_l, (gl—go)—l while the

ith row, for i=2,...,h+2, has entries

1 -(gi-i'l-gi"l) 1
5'-51-1 (§1+1-é1)(€1_€1—1) £1+1_€1

1



If we take h=1, and A to have zerc entries except in the lower right

~ corner we then wish to estimate the coefficient of (x—gl) The optimal de-

+°

sign has weights

8 5 1 817 &

2ey-8) ° 7 7 205,y

on the points a = EO,EI and b = EZ.

For general h we take A = (aij) again to be diagonal with a = Q0

117 %22
and a,,= Y for i=2,...,h+2. 1If the Ei are equally spaced on (Eo’€h+1) the
optimal design has weights on &y,8;5...,§ | proportional to 1,¥5,/6,/5,...,
6,v5, 1.

2
Quadratic Regression. For simplicity we take X = [-1,1] and £(x)=(1,x,x")

and consider those designs supported on the three points -1,0,1. Since

2(x) BOBé L' (x) is a quadratic form and a polynomial of degree four, it can
be checked that it is at most one on-[-1,1] if and only if its derivative
vanishes at x = 0. This can be seenvto be the case if and only if the second
row of B is orthogonal to the firét minus the second. For example we can take

B of the form

/bll b2 by3
B = by 0 b,s
b11 'b12 b13
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Again the weights are proportional to the square roots of the diagonal of

BB' = TA A'T'. If ay.2, and ag denote the rows of A then the diagonal ele-

ments of TA A'T! are

2 2 2 2 2
=7 (Iazl +la3i ), Ibzl =la1l +|3'3| —zalaé

il
m

t
o
‘—"\
-
o
fes]

As special cases we take §

2
b, |

If A =1 = the identity, then o = B = y = 1 and the weights on -1,0,1 are
proportional to 1,2,1. This design can also be shown to minimize

[EG0 M) £r(0dx = tr M (1) C where

c0 0 c2
C = 0 c2 0
c2 0 c4

1 1
and Ci = f—l X dx.

Cubic Regression. For simplicity we take A = I, X = [-1,1] and
2

f(x) = (1,x,x ,xs). One can show that there exists an A-optimal symmetric
design on four points -1,-s,s,1. The quantities A and F are thus determined
and B = TA, We can argue that 2(x) BoBé 2'(x) <1 for all x if and only if

the derivative of the left side is zero at x=s. A rather tedious calculation
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shows that s = (/7;2)/3 and that the weights on -1,-s,s,1 are proportional
to the square roots of l+s4, (1+52)s"2, (1+szjs_2, 1+s*.  These values are

approximately s = ,215 and the weights are .087, .413, .413 and .087.

§5. Choice of Basis. In this section we indicate a comnection between

the quadratic loss designs discussed above and the design which maximizes the
determinant of M{yu) (see Kiefer (1860)). The result is of a simple nature
and follows fairly readily from the known result that if G is a positive
semidefinite matrix and |G| denotes the determinant then

1/n = min tr GH

(5.1) | n|G|
|H]=1

where H is also positive semidefinite.

If we consider a change of basis g' = Pf', then Mg(u) = fg'g du=PMf(u)P'

-1

and tr M_l(u) = tr Mél(u) AA' where A =P As a measure of how good the

g
basis is we consider

(5.2) | L(P) = min tr M-L(y).
g
M
Some normalization of P must be used and we consider those P with |P| = 1.
Using (5.1) we then have
Theorem 5.1. If L(P) is defined as in (5.2) then

min  L(P) = m]M%l(uo)Il/m

P|=1

where M, is the design maximizing IMf(u)l.
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; . n :
As an example we consider f(x) = (1,%x,...,x ) on X = [-1,1] for n=1,2.
It is well known that the design maximizing le(p)I concentrates equal mass

I for n=1 and on -1,0 and 1 for n=2. (The general case has equal

[n

on -1 an
mass on the n+l zeros of (1~x2) Pﬁ(x) = 0 where Pn is the Legendre polynomiall,
We consider four different basis; namely
oo F00 = (1,%,...,x)
2. T-basis: g=k(To,.,.,Tn) where Tn is the nth Tchebycheff polynomial.
10

nomial Bi(x) = (?)(1—x)i (1+X)n-i.

5. B-basis: g' = k(B,,B .,B,) where B, denotes the Bernoulli poly-
4. L-basis: where Li(x) denotes the ith Lagrange polynomial correspond-

ing to n+l points x.,x e X i.e. L.(x.) = 6. ..
ig P 2 s™n 1( J) i

0 J

1
In each case the proportionality constant k is used so that P = 1.
The case n=1 shows no distinction between the four basis. In each case

L(P) = 2 as a direct calculation will verify. For n=2 however we get

1. L(P) = 8 2. L(P) = 5.90: 3. L(P) = 8.03 4. L(P) = 5.67. It is not

N _ clear that the ordering will be the same for higher values of n. The result
for n=2 is in accord with results in approximation theory which indicate that
I the Tchebycheff basis is '"good'". By the above definition the Lagrange polynom-

ials on -1,0,1 are better.
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