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1. Introduction. The problem we wish to consider here
is the same search problem considered by Posner and Rumsey,
[2]. Our purpose here is to point out some serious errors
in their optimality arguments and to discuss some aspects of
the search problem which they did not consider.

A brief description of the search problem follows. Let
yl(t),..., yn(t) be n Wiener processes each with variance

ozt; n-1 of them have zero drift and the remaining process

has drift ut where u 1is known. Our problem is to locate
the process with drift ut with probability 1-¢ of cor-
rect selection. In addition, we are given a prior distribu-
tion P1sPys--+sP) where P; is the probability that the
ith process is the correct one.

In Section 2 we discuss specifically the difficulty with
Posner and Rumsey's argument for optimality. They used weak
limits of the class of lattice time strategies for which
they claimed optimality and weak limits of another class of
strategies called ¢§ perturbed strategies, for which computa-

tions were more tractable,to determine the "optimal expected
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search time'. We show that neither the class of lattice
time nor the class of § perturbed strategies are tight and
hence weak limits do not exist.

The 6 perturbed strategies are defined as follows. Ob-
serve the process corresponding to the largest prior probab-
ility until for the first time the posterior probability has
decreased by &/n, then observe the process with the maxi-
mum posterior probability at that time. We call the process
which is being searched the farget and the act of changing
targets.a switah.

Section 3 discusses the expected search time and the ex-
pected number of switches of another class of strategies
called 1 strategies. These strategies are shown to have
the same limiting expected search time as the d&-perturbed
strategies.

Section 4 discusses the merits of the two types of strate-

gies and points out the simplicity of the Tt strategy.

2. Llack of tightness. 1In this section we consider the
two classes of strategies which were considered by Posner
and Rumsey. We show that it is not possible to cbnsider the
weak limits of strategies in these classes which Posner and
Rumsey studied since these limits do not exist.

It is necessary to begin with some definitions and struc-
ture for the problem. Basic to the situation is a probabil-
ity space (Q,A,P) on which are defined the n Wiener proc-
esses yl(t),..., yn(t) for t > 0, discussed in Section 1.
The strategies which we discuss are functionals of
yl(t),..., yn(t) whose value at any time t denotes the
subscript of that Wiener process which is observed at time t.

For example, the discrete time strategy id(') is a
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functional which is constant over intervals [kd, (k+1)d),
k =0,1,2,...

To study these strategies we choose to use the space
D[0,1] of all right continuous real valued functions on
[0,1] which have only discontinuities of the first kind.
That will be our space of sample functions, the probability
measures which we consider on D[0,1] will be those induced
by (9,A,P) through the functionals 1i.e. [id(to) = k] is
an event in D[0,1] and also determines an event in
whose P probability we assign to that event. Considera-
tion of the strategies as determined for t e [0,1] 1is
sufficient for our purposes. Since the space D[0,1] con-
tains functions whose discontinuities are only of the first
kind we will refer to a discontinuity as a jump.

We will show that the sequences of strategies considered
by Posner and Rumsey do not converge in the Skorohed D top-
ology, (see [1], p. 109 ff.). Since this topology gives a
complete separable metric on the space D[0,1], tightness
of the measures is a necessary and sufficient condition for
weak convergence (Prohorov's theorem).

Let TS (O=tOn < tln < ... < 1) be a sequence of par-
titions of the real line with the time increment going to
zero (for simplicity, we assume that each partition is a re-
finement of its predecessor). We choose the sequence
t=t, 7 0 (the number O plays no special role here).
The following lemma reduces our problem to calculating the
probability of the set of paths whose first discontinuity is
at time tn.

Lemma 2.1. Let t >0 and £et A be the collection of
sample paths which are 0 for t < t and which have jumps
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on [tn, to_g)- Let P be a sequence of probability meas-
wres on D[0,1] {4orn which Pn(An) >c >0 gor n>N. Then
the sequence P A8 not tight.

Before proving the lemma, we introduce some concepts and
notations of the D topology. These particulars may be found
e.g. in [1] p. 109 ff. Let 1i(t) denote the sample func-
tions of D[0,1]. We define a modulus similar to the modulus

of continuity. For 0 < § < 1,

wi(s) = inf max sup {]i(s)ei(t)l s,te[t.

»t )}
{tk} 0<k<r s,t 1-17"k

where the infimum extends over all finite sets {tk} of

points satisfying the condition

The following are necessary and sufficient conditions for
tightness (cf. [1] p. 125):
(i) for each n > 0, there is an a such that

Pn{i: supt]i(t)l > a} <n n > 1

(ii} for each positive € and n, there exists &,
0 <8 <1 and an integer n, such that

Pn{i: wi(G) > e} <nq n > n,-
Proof of the lemma. Condition (i) is always satisfied since
there are only a finite number of processes being searched.
We show that (ii) fails. Indeed, for each sample path i
belonging to An’ an easy computation shows that w{(é) >1
for ¢ > tn' Therefore, for any 6 > 0 and n > max (N,1/%)
we have Pn{wi(ﬁ) > 1} > ¢ which contradicts (ii).

To show that the sequence itn is not tight, it remains
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to show that Pn(An) > c¢. This is the content of the next
lemma.
Lemma 2.2. Under the hypoiheses of Lemma 2.1,

l;m Pn(An) = 1/2.

Proof. The probability of a jump at tn may be computed
from the posterior distribution of j being correct given

j 1is being searched.
. (0
PJ( )

' u
pj(O) + (1-pj(0)) exP(;;i'(“tn'ZY(t)))

PJ (tn) =

The rule of searching the most likely process at t, trans-
lates (see Posner [2]) into the rule that a switch occurs at

time tn if and only if the likelihood ratio

p;(t))
Z(tn) = log T p. ) >700) ,
i*n
which is equivalent to
u
- —5 (ut_-2y(t)) >0
202 n R

and focuses our attention to the boundary where
= 2
y(tn) utn
The above process at t is a normal random variable with mean
(u?/20°)t_ if j is correct and mean —(u2/202)tn if 3
is not correct. In either case, the variance is uzt /02,
n
The probability of switching at time t, is

p(switch|j correct) p(j correct) +

p(switch|j not correct) p (j not correct)
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which equals

(27207t /26"t
(- ————) p,(0) + ¢( ———) (1-p.(0))
w't /o ) w't /o )
Wt wit
= B, (0) + 953D - 20,(0) el

where ¢(x) 1is the cdf of a normal distribution with mean

zero and variance one. Therefore,

lim  p(switch at t_) = p.(0) + 1. p.(0) = 1
t >0 n j 2 J 2
n
We note that this is independent of whether j 1is the cor-
rect process or not.
We now turn our attention to the ¢ perturbed strategies,
as defined in [2].
Lemma 2.3. The & penturnbed sthategies are not tight.
Proof. Let Pn denote the measure on D determined by
Gn. We will produce a sequence Gn and a corresponding se-
quence of times t = such that Pn(An)i_c where A~ is the
set of sample paths which are 0 for t <t/ and different

from 0 for tn <t<t Lack of tightness will then

follow from Lemma 2.1. goi simplicity, we omit the sub-
script 0 from po(t).

The strategy iG switches if and only if the posterior
probability has decreased by an amount &/n = &' (assume

§ < 1). We will compute the probability of the event
P(t) > P(0) - 8", 0 <t < (810% P(s) < PO) - 6,

for some s such that (6')4:_5 j_(é')z}

i.e. the probability of a switch between times (6')4 and
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(6')2. For P(t) < P(0) - &' we must have

P(0)

P(0) + (1-P(0))exp [15 (ut - 2y(£))]
20

or equivalently, the target y(t) must satisfy

< P(0) - &

2

Rt 23 log (1 +

1 oy > -5

8! )
[1-P(0)][P(0)-6"]

Thus the desired probability is that of the first crossing
of the boundary in (1) occurring between times (6')4 and
(s")°.

By the result of Shepp [3, p.348] this probability for a

target with zero drift is

o(- 55 (6% o c(61))-e*C oL (517
’ 20 c¢c(8') )
2) Bh?
(- Lot ig, c(sm)) + eS8 s(c L s
_ 25 e8n)
u §!

§! '
(T-P(0)) (PL0)-8")
Since c(8') = 0(8') this probability is bounded away
from zero as S - 0.

where c¢(§') = log [1 +

Now if & 1s any positive number less than 1 and we

define the sequence

2
t - St t = (&
(3) 61 = §'; én = (Gn_l) for n > 2

then the events
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A = {(P(t) > P(0)-8 for 0 <t f_(65)4 and

(4) P(s) < P(0)-8' for some s such that

are pairwise disjoint and have Pn measure bounded away
from zero. Similarly if the target has drift ut we can
generate the same sequence of sets.

Next we see that the Prekoroff distance cannot go to zero
as the necessary and sufficient conditions of Billingsley
are violated as shown in Lemma 2.1 by this sequence of times
in (3) and subsets An found in (4)

3. 1 Strnategies. We deal with a search strategy i
which chooses the target with the highest posterior probab-
ility at each sWitching time and which does not allow for
switching (selecting a different target) before a specified
elapsed time Tt. We will define the strategy only for the
case of a uniform prior distribution. The results obtained
in that case clearly indicate what happens with a non-uniform
prior.

This strategy should not be confused with the discrete
time strategies considered by Posner and Rumsey. Note that
after time 1 has elapsed this strategy has random switching
times determined by boundary crossing times.

Specifically this strategy is described as follows. Let
S' be a switching time or time 0. If no posterior probab-
ility is > 1 - e then we select at random a target, set all
posterior probabilities equal to 1/n. The next possible

switching time S" is determined by the rule:
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S' + t. if the target has posterior probability
< 1/n.

s where s = inf {t:t > S' + 1 and the target

L' has posterior < 1/n or > 1 - €}.

Thus the strategy iT requires at least time 1t to switch.
We can easily compute the expected time E(S'" - S'), that
is, the expected time the strategy iT searches the same

target before switching or terminating the search. Let

u2/202, for the process with

a=mEH@-1), and A
drift, we find

a
E_(S"-5') = 1+ jo M(x) dP

where M(x) 1is the expected time for the Wiener process to
either reach the switching boundary or the terminating bound-

ary from the point x. More explicitly this expression is

B (5"-5") = © - —— (ap(-)-(1-"H G v(-)
A(l-e ) :
(a- 557
JA )
AT 8 22T
"2—]_[- [e -e ] = alP(*)}
AT
wherein y(-) = ¢ 2 ) - 9 -/255 s
AT
e M -
b = o= - e( 1)
AT
2
¢ 1is the standard normal c.d.f. and X = 55
5}
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When the target process has zero drift this is

B, (S"-8") =1 - aE-¥-)) - A-e* (- o)

A(l—ea)
AT, 2
REL i
AT 8 2T
+oJo e - e D1
Similarly the probability of switching before stopping is
AT AT
X- =— X- o
2 2
0 S 0w a8 )
vV AT (e"-e ) vV AT
q. = X ————— dx + = dx
-~ ¥ AT 0 (1 -e ) VAT

for the process with drift and for any process wwth zero

drift .
AT AT

X + —2—— X- T
¢(———) ¢( )
- 0 VAT a (ex_ ea) VAT
q. = —————  dx + dx .
e Ve AT 0 (1-eThH AT

From these expressions, the expected search time M and
the expected number of switches S must satisfy the rela-

tions respectively

—l "o 4 E__l. " _ t
M= = EC(S S') + m Einc(s S') + gM
and
- 1 n-1
S=lwaS=1+24a, * 73 4,

so that both M and S are found in closed form.
Proposition: As 7t > 0 the expected search time of the =

n-1-en
n-1 )}

and the expected number of switches S~ < a T ~0.
T

strategy s 3 {(1-26)4n (29 (n-1) + (m-2) (

10
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Proof: Note that all three expressions EC(S”—S'),
Einc (S'"-S') and 1 - q approach zero at the rate vt
when 7t - 0.

L'Hospital's rule applied to the expression for M gives

its limiting value as 1 - 0 and the equation S = L

immediately shows the limit behavior of S. o

4. Comparnison of & pernturbed and 1 strnategies. An
important advantage of the strategy iT is its inherent
simplicity in implementation. This simplicity results from
the fact that one need never compute posterior probabilities.
Each switching time is determined by a pair of linear stop-
ping boundaries for the target process and these boundaries
remain unchanged throughout the search. For a given e,n
they are simply:

ut ut a02
,Q/t = — d t) = =— + ——
(t) =5~ an u(t) = 5=+ =

for the lower and upper boundaries respectively.
As noted by the proposition of Section 3 the strategy iT
has the same limiting expected search time when 1 - 0 as

the strategy i, as 6 » 0, c.f. [2]. This is not com-

pletely obviousdsince the strategy iT switches targets
"infinitely often as T >~ 0" and hence disregards the ac-
tual posteriors "infinitely often as 1 - 0".

The question of switching is an important one which has
not been previously considered. We now compare the switch-
ing behavior of these two strategies.

Proposition: Let S and Sg be the expected number of
switches fon the two strategles i and i, hespecitively.

Then fon & = /1

8

11
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S
. . ) 1 ,A
lim lim -— = = =
n>wo 810 Oor &Vl

Proof: An expression for Sg can be obtained by consider-
ing the possible events until a first return to the uniform
distribution i.e.

Sé = 1+ ql(l + qz(...+ anG)

where qps95s-++>4, are the probabilities of switching the

1st time, 2nd time, etc. Thus

36 = 1 + Q% 99,% -+ * Q95 qn36

but each of these terms q, =1 - (n—l)?gfl—nE) +0(8) ,

[2], so that we can say

n
S(S =__]‘_j_n+o(§)
(1-q)(1-q )

1
- nde +0(8)

(n-1) (n-1-neg)

We have previously seen that S_ =\/§E l-1d-e) | o (V1)
and the result follows. T

For the sake of comparing some explicit expectéd search
times and expected number of switches,Table I below gives
some representative values. Note that appropriate compari-

son values are for 6 = V1 .

12
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Table 1
Comparisons of § and Tt Strategies

Epsilon = .100 Delta = .0010 N = 10 TN(l-e) = 10.6267

Expected  Expected Expected  Expected
Delta Time Switches Tau Time Switches
.0010 10.63 35985.95 .000016 10.65 4981.22
.0020 10.63 17985.95 .00002 10.66 3521.96
.0030 10.63 11985.95. .00003 10.67 2875.49
.0040 10.63 8985.95 .00004 10.68 2490.12
.0050 10.63 7185.95 .00005 10.68 2227.12
.0060 10.63 5985.95 .00006 10.69 2032.99
.0070 10.63 5128.81 .00007 10.69 1882.11
.0080 10.63 4485.95 .00008 10.70 1760.49
.0090 10.63 3985.95 .00009 10.70 1659.75
.0100 10.63 3585.95 .0001 10.71 1574.53
.0200 10.63 1785.96 .0002 10.74 1113.08
.0300 10.64 1185.98 .0003 10.76 908.65
.0400 10.64 885.99 .0004 10.79 786.78
.0500 10.65 706.00 .0005 10.80 703.62
. 0600 10.66 586.01 .0006 10.82 642.23
.0700 10.66 500.30 .0007 10.84 594.52
.0800 10.67 436.03 .0008 10.85 556.07
.0900 10.68 386.04 .0009 10.87 524.21
.1000 10.69 346.05 .0010 10.88 497.26
.2000 10.82 166.15 .0020 10.98 351.35
. 3000 11.03 106.25 .0030 11.07 286.72
.4000 11.34 76.35 .0040 11.13 248.19
.5000 11.80 58.45 .0050 11.20 221.90
.0060 11.25 202.50
.0070 11.30 187.42
.0080 11.35 175.27
.0100 11.44 156.68
.0400 12.30 78.04
.0900 13.22 51.91
.1600 14.20 38.91
.2500 15.25 31.17

13
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