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Abstract

Let there be n Wiener processes with common variance ozt ali of
which have zero drift except for one which has drift ut. Further let
there be a prior probability distribution over the n processes for the
one with drift wut. The authors show that search time is minimized over
a certain restricted class of search strategies if one searches that
process with the maximum posterior probability of being the process with

drift.
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Introduction. The problem we wish to consider here is the same search

Problem considered by Posner and Rumsey [4], [5]. In [3] we have pointed
out some serious errors in their optimality arguments. We also note that
this same error was made by Zigangarov [6].

Our purpose here is to partially salvage their resﬁlts by showing that
maximum likelihood strategies are optimal over certain restricted classes
of strategies of the type considered by Posner and Rumsey .

First consider a description of the search problem. 'Let yl(t),...,yn(t)
be n Wiener processes each with known varianée czt,v n-1 of them have
zero drift while the remaining one has drift ut where u 1is known. Our
problem is td determine, with probability at least 1-e of correct selection,
the process with drift wut. Henceforth, this process will be known as the
correct process. In addition, we are given a piiof distribution pl,pz',...,pn
where P; is the probability that the ith process is the correct one.

In [4], Posner and Rumsey tried to use weak limits of the class of
lattice time strategies, for which they claimed optimélity, and weak limits
of another class of strategies called & perturbed strategies, for which

.computations were more tractable, to determine "expecfed search time'". A
similar approach was also used in [6]. In [3] it was shown that neither the
class of lattice time nor the class of & perturbed strategies admit weak

limits.



The & perturbed strategies are defined as follows. Observe the
process corresponding to the largest prior probability untillthe first
time the posterior probability has decreased by 4&/n, then observe the
process with maximum posterior probability at that time. We now describe
the class of strategies with which we shall deal. As in [3], we call the
process which is being searched the target and the act of changing targets
a switch. DGY Qill be the class of strategies which ?equire that the |
posterior probability of the target being searched must change by at least
+§ or -y before a switch is permitted. Furthermpre, the strategies in
DGY are determined solely by the values of the posterior probabilities.
This class will be more rigorously defined in section 2. Clearly, Posner
and Rumsey's 3§ pefturbed strategies belong to DGY .

Our main result may now be described. For any §, y > 0, the expected
search time is minimized if at any time a switch is pefmitted, one always

searches the target with the highest posterior probability of being the

correct one.

2. Preliminaries. We begin with some definitions and structure of the.

problem. Basic is a probability space (Q,A,P) on which are defined the

n Wiener processes yl(t),..., yn(t) for t >0, discussed in section 1. .
We note that from the initial probabilities pl(O),..., pn(O), the knowledge
that i is the target being searched and the value of pi(t), we may -
determine pl(t),..., pn(t). Therefore, the strategy>1 being used and
pI(t)(t) are sufficient statistics for the posteridr processes. For any

a, B >0, let T(pl,...,pn,a,s,i) be the first time that the posterior
probability pi(t) croéses one of the boundaries piCO) + 0, pi(O) -8B

given that the ith target is searched during the entire time 0 <t < T. -



For &, vy > 0, we define DGY to be the collection of all strategies

IGY determined by the conditions:

(i) o > 68, B

n 2 m = Y m=1,2,...

(11) m+1 = T(Pl(Tm))"" pn(Tm)’ am’ Bm, 1m) . .
(2.1)
(iii) 15Y =i for Tm <t< Tm+1
(iV) Pi(Tm) +a f_l'ei pi(Tm) - >0,
where s Bm,'im are arbitrary for m = 0,1,..., T0 =0, and e is givén.

The posterior process Pi(t|ISY) is the posterior probability that at
time t, the target i is the correct one (the one with drift rate u)
when the search strategy IGY is used. We will need the following formulae

for p, (t) = pi(t|IGY) when Io (1) = j for 0 <t <t (see [4]):

piﬁO)
pj(t) = m
pj(0)+(1-pj(0))exp(——7-(ut-2yj(t)))
20
p; (0)
p; (t) = = -y = (2.2)
' (l-pj (0))+ P; (0)exp(—5 (ut-zyj (t))) :
20

p; (0) . ) L
Pj(t) . pj(o) eXP(ZGZ (ut- Yj(t)): 1 + J

Throughout‘the exposition we will abbreviate pi(tllay) to pi(t)
when there is no possibility of confusion.

Our results depend on the boumdafy crossing probabilities and eiitbtimes
for Wiener processes ([2], p. 632j which we list héfé for convenience. Let
W(t) be a Wiener prdcess with drift At and variance th. Then if the

prbcess is started at x (W(0) = x) and observed until it crosses one of the



boundaries a > x > b, exit occurs with probability 1 and the probability :

P(x,a,b) of exit at a 1is given by

=2A -2\
exp(Z2) - exp (2%
: _ T T
,P(x,a,b) = -2Ab -2Xa (2'3)
exp(—5—) - exp(—5—) :
T T
and the expected exit time M(x,a,b) is given by
M(x,a,b) = 3 (a-x)P(x,2,b)- (x-b)Q(x,a,b)] i (2.4)

where Q{(x,a,b) 1 - P(x,a,b).

From (2.2) we see that the posterior process pi(tIIGY) is continuous
in t and is a Markov process because of the independent increments of the
Wiener process. The following lemmas show that we may study the posterior
process pi(tllay) by means of an appropriate Wiener process. .

Lemma 2.1. Let IGY = j. Then pi(t) crosses the boundary ’pi(O) +a
if and only if pj(t) crosses the boundary pj(O) - aﬁl—pj(O))/pi(O).‘v

Proof. For i ¢ j, it follows from (2.2) that
p; (£) = p; (0) p;(t) K(t) : (2.4)
where K(t) 1is some process. When pi(t) = pi(O) + o , we have
p;(0) +a =p;(0) p;(t) K(t) . @

Summing (2.4) over the range i,i}j, we find that Pj(t)K(t) = (l-pj(t))/(l-pj(o))f

Substituting this value into (2.5), we see that

pj(t) = Pj(O) - é(l-Pj(Q))/Pi(O)



Central to our discussion will be the Wiener-procéSSes W(t) and
W(t) where both processes have variance uzt/c2 and W(t) has drift rate
uz/Zc2 while W(t) has drift rate -u2/202. In general, we will use a
bar over a qﬁantity to denote conditioning with respéct to the correct
target while the absence of a bar denotes conditioniﬂg with respect to an
incorrect 6ne. As the next lemma shows, searching the correct posterior
process is equivalent to observing W(t) while searching the incorrect‘
process is equivalent to observing W(t). |

Lemma 2.2. Let Iéy(t) = j (= const.) and let d be such that
0 < pj(O) + a < 1. Then pj(t) crosses the boundary pj(O) + o if and only
if the Wiener process W*(t) crosses the boundary log((pj(0)+a)/(1-pj(0)-a))
where W*(0) = 16g(pj(0)/(l-pj(0))) and W*(t) is one of the two pro;esses
W(t) or W(t) depending on whether j 1is the correct process or not.

Proof. By (2.2), pj(t) = pj(O) + o if and only if

= ’ |
p;(0).= Pj(O)(Pj(0)+a) + (l-Pj(0))(Pj(0)+a)exp(;;5(ut-2yj(t)))

" Taking logs, we obtain

Pj(0)+a pj(O) ” |
tog I-p; (0)- = log I-p; (0) 22 (2y;(t) - ut)

The process —HT (Zyj(t)-pt) is a Wiener process with drift rate pz/zd2
20

if j is the correct target and -u2/202 if j 1is an incorrect target.
The variance is easily seen to be uzt/o2 in either éase. This provés the
lemma.

We now turn our attention to the unconditioned process. The following

somewhat surprising theorem is basic to our results.



Theorem 2.1. Let T0 be the first time the pdsterior process crosses

one of the boundaries pj(O) +a or pj(O) - B, where pj(O) + o :_1,

a >0, pj(O) - B >0, B> 0. Furthermore, let IGf(t) = k (= const.) for

0 <t j_TO. Then whatever be k,
Prp;(TylTg,) = P5(0) + a] = B/(a+B)
. (2.6)
Prip; (Ty|14,) = p;(0) - 8] = a/(a+B)

provided the posterior process pj(tIIéy) can attain the boundaries pj(O) +a
or pj(O) - B at all.

Proof. We first consider the case k = j.‘ For ease of notation, we let

pj(O) = p. By Lemma 2.2, the Wiener process W(t) or W(t) (depending on
whether j is the correct or incorrect target) must begin at x and cross

one of the two boundaries a,b where

a = log Tg%%E
b = log T%E_B 2.7)
x = log Igf

Let P(x,a,b) be probability that W crosses a and let P(x.a,b) the
probability that W crosses the boundary a at t?me ‘To. Then the probab-
ility that pj(tllay) crosses the boundary a is pﬁ(x,a,b) + (1-p)P(x,a,b).
We use (2.4) with A = u2/202 for W, A= -u‘2/202 for W and 1° = pz/cz.

Therefore

P(x,a,b) = &S5, P(x,a,b) = < “ea (2.8)



From (2.7) we obtain

P = (p*ro)8 _ (1-p-8
P(x,a,b) = Joay s P(x,a,b) = TT:§§T3%§3 (2.9)
Therefore
Pr[pj (TOIIG‘Y) =p +a] =
" (2.10)
plp+w)8 . (1-p)(1-p-a)8 _ _B .

p(a+B) (1-p) (o+8) T o+B

Since the posterior process must cross one of the boundaries p + a .or
p-8, (2.6) follows for the case k = j. If k4 j, then the process
pk(tlldy = k) must cross one of the boundaqies pk(O) + a' or pk(O) - B!
where o' and B' are chosen in such a wayithat the posterior process
pj(tII6Y = k) crosses pj(O) + 0 or pj(O) - B . By Lemma 2.1, a = B"/Y

and B = a'/y where ¢ = p./(1-p,). We have

Prp, (Ty |15, = k) = p;(0) + a] = Prp (T [I5, = k) = p (0) - 8]
: (2.11)
a! _ By _ B

T OT+B'  Gy+BY  a+B

Since one of the two boundaries must be crossed (2.7) follows and the theorem
is proved.
Remark. The condition that pj(tlléy = k) attains the boundaries

pj(O) + 0 oOr pj(O) - B 1is equivalent to the conditions

(i) P * B/ <1
(2.12)
(ii) Py - a/y >0



Condition (2.12) (i) is satisfied for any p, while (2.12) (ii) is

satisfied for

Py > ° A | . (2.13)

In terms of our search problem, this condition means that it will be
difficult for the maximum posterior probability to exceed 1 - € when
searching a target with small prior probability.

Definition 2.1. For 0 < x < 1,

R(x) = (2x-1) log i%%; . | - | 7 (2.14)

This function R permits us to simplify analytic expréssions for
expected search time.

Let M(p,a,B) be the expected time for the posterior process of the
target being searched to start at p and cross one of.thé boundaries‘ P + a,
p - B. We_note that this time is independent of the target.

Theorem 2.2. Let a,8 > 0 be such that p + a <1, p -8 >0. Then

2

M(p,a,8) = L [(Er Repra) + 25 RGE-6) - R@)] (2.15)
g .

Proof. Let M be the exit time given that the target being searched
is correct and M the exit time given that the target is not the correct one.
Then

M(p,o,8) = pM + (1-p)M . o (2.16)

Since M is the expected time for the process W to begin at x and cross
one of the boundaries a,b where a,b,x are as in (2.7), we obtain from:

(2.4)



-

M= Z [(a-x)P(x,a,b) + (b-x) (1-P(x,3,b))]
u R
2 (2.17)
M = ZZo{(a-x)P(x,a,b) + (b-x)(1-P(x,a,b))] |
M
From (2.9) we have
p P(x,a,b) - (1-p)P(x,a,b) = (2(EBIL)E |
_ (2.18)
P(1-P(x,a,b)) - (1-p) (1-P(x,a,b)) = 2{EBI)e
Putting together (2.16), (2.17) and (2.18), wevobtain
2
MGp,o,8) = & (GRra)-LBa, CE-B)-ldb o (gpo1)x) (2.19)

M
which yields (2.15) if we utilize the definition of R.
We conclude this section with a tabulation of the properties of the

function R.

Lemma 2.3. For 0 <x <1, the function R has the properties:

(1) R(n)(x) = R(n)(l-X) n even ‘

(ii) RM(x) - R (1-x)

(2.20)
(iii) R (1/2) =

|
o
-~

n odd

(iv) Rn(x) is increasing,

J
. where R(n)(x) is the nth derivative of R.
Proof. For n =0, (i) follows.directly from (2.14). For n\},O,
(i) and (ii) follow by induction and a direct differentiation; (iii) follows

from (ii). To show (iv), we observe that
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_ 1 1 X
S1x " xt?lee i
(2.21)
R = —L
(x(1-x))

From this, (iv) follows for n = 1. Using the change of variables
X = (u+l)/2, we have Rcz)(x) = S(u) where S(u) = (4/(1-u2))2
From the power series expansion for S(u), we see that S(n)(u) is
increasing for 0 < u < 1. From this (iv) follows.
3. Main Results. In this section, we present our main result which may

be stated loosely by saying that it is optimal to search the target with
lafgest posterior probability. We first prove the.following. |

Lemma 3.1. Let T be the time at which the posterior process Pi(tllay)
first crosses one of the boundaries pi(O) + q, pi(O)'f 8 where «a,B >0,
pi(O) +a<1 and pi(O) - B > 0. Further assume that the strategy

Sy
Then the expected search time is smallest if j = i.

I = j (= const.) for 0 <t <T, pj(O) 5~pi(0) and pj(O) < (1+a-B)/2.

Remark. Implicit in the above assumpfions is that (2.13):
.pj(O)a/(pi(0)+a) is satisfied; otherwise exit from the boﬁndary pi(0)+a
would not be possible.

Proof. For brevity, we let p; = pj(O), p; = p;(0). We let j $i.

If the jth target is searched, the posterior process pJ.(t|I(SY = j) must

cross the boundaries pj + a' or pj - B' where a' = By, B! ay and
Y = (l—pj)/pi. We note that y > 1. The lemma will be proved if we show

that

M(Pj» C!', B') - M(Pi, a, B) 10' . (3'1)

If p] = l—pi’ v =1, M(Pj: a', B') = M(l'pi’ B, a) = M(pi’ o, B) and

the difference in (3.1) is zero. Since pj f-l_pi’ We‘need only show that
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the difference in (3.1) is decreasing in pj for 0 < pj_i 1-pi. Indeed,

the derivative of the left side of (3.1) with respect to pj is

o

78 R (5*BY) + oop R (py-ad) - R (o). (3.2)

From Lemma 2.3, it follows that R' 1is concave on (O,%ﬂ and convex on

[%31). Therefore, if pj + BY < 1/2, we have by ;oncavity of R'(x) on
1 .

(0 _2"] >

Gp Ry * B ¢ Ryl SRR - (3.3)

If pj + By > 1/2, we proceed as follows. Let ;£1(x). and {é(x) be

linear functions for which

£1 (pJ-OHIJ) = R! (PJ -ONJI)

iﬁ(l-pj+aw) = R'(l-pj+aw)
(3.4)
J-Z(PJ'(W’) = R! (PJ'O"‘")
i&(pj+8¢) = R'(Pj+3¢)
Then
o R yrE0) ¢ Ep R ppen) = 2,) . (3.5)

By the antisymmetry (2.20) (ii) of R', :£1(%J = 0. Therefore, from the

N

concavity of R' on (0,%ﬂ, we have R'(X).l =£1(x) for pj- ap < x <
It follows that 63.3) will remain valid if we show that ;£1(x) Zj£2(x)'
for pj- ap < x <1, Let

2p.+ 28y -1

tr = - 2, 29 -1

As we will show below, pj < (1+¥(a~-B))/2 which implies that 0 < t* <1

which together with the convexity of R' on [%31) yields
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£ (p;+BY) = (l—t*)R'(%a) + £R! (1-pyrai) >
(3.6)
R'(p;+80) = £, (p.+BY) ,
] J
since (1-t*)/2 + t*(l-pj+oup) = pj+8tp. The conditions ;£1(pj-a¢') ==€,2(pj—oup)
and £1(pj+81p) > =£2(pj+BlP) imply that =£1(x) Zfz(x) for x _>_pj—oup, which

proves (3.3). Therefore, the difference (3.1) is decreasing as long as

pj < (1+y(a-B))/2 (and pj < 1/2 which is always true since pj :_pi and
pj j_l-pi). Using the fact that ¢ = (l-pj)/Pi, we may write this condition
as
| oBy 1,8 |
IO I (3.7

Since p, - 820 by assumption, we have 1 + (““B)/ZPi.l 0 which implies
that the left hand side of (3.7) is increasing in pj. For pj = 1-pi,
¥ = 1 and the condition becomes pj < (1+a-B)/2, which is true by assumption.
Therefore, the condition holds for 0 f-pj f-l'pi’ which completes the proof
of the lemma.

The next theorem is a key result in our optimality arguments. This
rather surprising result is a generalization of Theorem 2.1.

Theorem 3.1, Let Idy be any search strategy in D&y' Let IGY(O) =1,
a >0, B>0, pi(O) +o <1, pi(o) - B>0 and let T be the time at which
the process P1 (tIIGY) crosses one of the boundaries vpi(O) + o,

8y
pi(O) - B. Then

_ _ B
Pr(pI(S (TlIGY) =p; * a) = vy
Y . (3.8)
Pr(pl (TlI(S‘Y) = Pl - B) = -a—":ﬁ-' .
8y
Proof. We first consider the case when 1 has one switch; i.e., I

Sy Sy

remains constant until Py (t|Iﬁy) crosses p.+a; OT pi-Bl and then remains
Sy
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constant until P; (tlIGY) crosses p.+ a or .pi - B . By Theorem 2.1
Sy '
applied twice, the probabilities are

Pr(p; (T|I) =p;(0) + o) =

%

81 l
—— Pr(p (TiI.)
a1+61 IGY 8y

pi(o) +a - al)

(3.9)
1 1) ) |
+ —— Pr(p (T|1 =p +a+ B
o *8) Isy 0¥ Toy
B Bra; . B-B g
B a1+81 " o+B a1+81 a+B ~ a+B

Similarly for the other boundary. We proceed by finite induction on the

number of switches. Let Tn be the time of the nth switch. Then Iéy(t)

is constant for Tn—l <t< Tn. Let pIGY(Tn-llldy) take on the values

Py .7 With probability M 1> k=1,..., 2h-1 (there are at most 2"°1
2 ]
values pISY(Tn_llIGY) may have). Then
Pr(py (T, 1Tg) = p;(0) + o) =
Y
-1
2", B+ (P} .1~ P; (0))
o AL - (3.10)
k=1 ’
21 op - py )
It B + z k,n-l i I
a+B k=1 o+B k,n-1 *

Here we have used the Markov property of the posterior process pi(tIIGY)'

The proof will be complete if we show that
n-1

2
k§1 P po1” PO M =0 : (3.11).



For n =1, pi 0= pi(O) and (3.11) is trivial. There is a sequence of
3

constants ¢ ,B such that pi o hay be written in the form pg n
. E Rl

k) k’
* - 3
and pj,n-l Bj. Thus (3.11) becomes

o

By

n-1
2 ) (pi,n-1+“k'Pi(°) %, Pn1 B O
ko1 a+R ,n-1 ak+Bk a+B k,n-1
n-1 n-1
= 2 z pi,n'l-pi(o) Hk + 2 EEEE_.H - gkfk_.n
k=1 o+B {n-l k=1 ak+8k k,n;l ak+8k k,n-1
= 0

We have used the induction hypothesis on the first term of the right hand

side of (3.12). This completes the proof of the theorem.

1

)

14

+a,
J

(3.12)

We shall have occasion to use the quantity q which is the value of

the posterior probability for which the i 1largest posterior probabilities

are equal. The q; are given by (see [5])

P,
i ()
4 = I-1
BrG@-Dpy L Py
J=

where

p(i) denotes the ordered values of pi(O). In particular a;

Py

and q, = 1/n. We shall also use the notation P(i)(tIIGY) to denote the

ordered values of the posterior processes.

Lemma 3.3. Let p(l) > q, and let T be the time at which pl(t|IGY)

crosses either of the boundaries 1 - € or 9,- Then E(T)

is minimized

if 1 is constant on 0 <t < T and equals i*, the index of the target

8y

with largest posterior probability.
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Proof. We let o =1- ¢ - p(l), B = P(l)_ Qg Then we have

p(z) <1- p(l) .and p(z) f,qz' Therefore, for any j = i* we have

1-p 1y =P 1-pey*q, 1-e-p
Wmr@ .= (1% 2, () . lta-B (3.13)

PGy =Py = 2 s 3 3

We consider searching only those targets for which pj(O) - ya > 0 where
Y = (l—pj(O))/p(l); otherwise exit at the top boundary is not possible

and the expected exit time is infinite. Since I it is constant,

sy € DGy’
say k, over a random interval [O’Tl] where pk(Tllléy) is either

pk(O) + 38§ or pk(O) - ¥. There exist &' > &, v' > y such that
p(l)(tlldy) crosses p(l) + &', p(l)— y' when ?k(tIIGY) crosses

pk(O) + 6, pk(O) - yv. From (3.13) we see that the conditions of Lemma 3.1

are satisfied. Therefore E(Tl) is minimized if k = i*. Since the

posterior processes are Markovian,

! 6!
E(T) = E(T)) + slry—v B(Tg) + grr E(T) (3.14)
where TG is the exit time starting from p(l) + &' and TY is the exit
. . o . . -
time starting from p(l) y'. Next let T1 be the first time Idy + i
and let T2 be the time after Tl at which IGY switches again. Then
the rule I'. where
Sy
i* 0 <tcx< T2
I'GY(t) = (3.15)
IGY(t) T2 <t <T
will have a shorter expected exit time than IGY . This follows from

arguments similar to the preceeding ones. Therefore 'Iay(t) = i* for
0 <t <T which proves the lemna.
We now state and prove our main result.
Theorem 3.2. The optimal strategy IGY € Ddy searches the target 1

for which pi(t) = max pj(t), whenever a switch is permitted.
i
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Proof. We consider three cases:

P(l)(o)“Yi PQ(O); P(l) (0)= p(z) (O)s and P(z) (0) > P(l) (0)"Y

In the case p(l)(O)—Y 2_p2(0), it folliows by Theorem 3.1 that the
posterior process p(l)(tIIGY) will arrive at one of the two boundaries
1 - ¢ and qé with the same probability whatever rule in DGY is used.
Furthermore, the posterior distributions at exit time are also independent
of the rule used. The Markovian property of the posterior process ensures
that the future decisions depend only on the value of the posteriors at
exit time. Therefore, we may choose the rule which minimizes the expected
exit time. This choice is given by Lemma 3.3 as search the target with
the maximum posterior probability.

We consider the case when p(1)(0) = p(z)(O). He@ceforth, we abbreviate
pj(O) to pj. By arguments similar to those of Lemma 3.1, M(p,$8,y) is
decreasing for p < (1+8-y)/2. For any pj < p(l) =‘p(2), we have pj f'P(l)

and pj <1- 2p(1); We show that pj < (1+6-Yv)/2 by considering the cases

p(l) <1/3 and 1/3 < p(l) < 1/2. In the first case we have
1-p
(1) 1+8=-v
PJf_P(]_)_. )

while in the second case, we have

1-p
: _ (1) 1+46-v
Pyl i T

Therefore, the expected time to the next permissible switch is smallest if
we search the target with index i* whose probability is p(I) (we randomize

since there is a tie). Moreover let IGY = j % i* and IgY = i* until the

permissible switching times T1 and Ti respectively. Then



Pr(p(l)(TI|I§Y =Py * §) = -

S+y
Pr(p (T1115,) = p(yy * Yl?éii) R
Prip; (Ty|Tg,) = Py Yligi) ) afv
Pr(p(l)(TllIGY) =Py 611-);;)) GIY
Let T11 be the first passage time required for the process p(l)
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(3.16)

to go

from p(1)+ Yp(l)/(l_P(j)) to p(l) + Y p(l)/(l-p(l)) and le the first

passage time required to go from P(l)(o) - Gp(l)/(l-pj) to p(1)+

T21 the first passage time from p(l) + p(l)/(l-p(l)) to 1 - ¢

T22 the first passage time from p(1) +8 to 1 - e. Now

E(T|I3) = BT + 55 E(T,,) + 5o E(T,)
E(T|Ig) = E(T)) + 5= (B(T};) + E(T,))

$

where T 1is the total search time. From (3.17) we see that

S,

and

(3.17)

E(Tllﬁy) Z_E(TlIgy)- Considerations similar to the preceeding show that in

case p(z)(O) > p(l)(o) - vy, it is optimal to search the i*th target. The

main difference between this case and the case p(l)(o) -y > p(z) is that

a switch is not permitted when p(l)(t) = p(z)(t) since p(l)(tllay) will

not have decreased by vy. To complete the proof, we note that the three

cases cover all possible starting positions and each case terminates with

posterior probabilities which are covered by the three cases. We use the
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Markovian nature of the posterior process to independently determine the
rules at successive switching times. If UjsUy, ... are the successive

switching times, then the expected search time is

[+e]

-Z E(u;) 1 (3.18)
i=1

where Hi is the probability of continuing the search after the ith

switch. This probability is independent of the rule, by Theorem 3.1.

Therefore the search time is minimized by termwise minimizing (3.18). This

completes the proof of the theorem.

4. Remarks and Extensions. Our results cover only &y strategies. This

leaves open the question of optimality for discrete time strategies. It
is hoped that this optimality may be obtained as a convergénce of the results
for &y strategies via some sort of convergence.

It alsé remains to investigate the applications to sequential design
of experiments [1]. These results will very likely solve some optimality
problems in ranking and selection problems. This relationship however remains

to be investigated.
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