An Algorithm for Calculating
Indices in Faa di Bruno's Formula
by

Eugene M. Klimko

Purdue University

Department of Statistics
Division of Mathematical Science
Mimeograph Series #277

April 1972



Abstract

This paper presents a fast algorithm for generating the non zéro
indices used in Faa di Bruno's formula for the higher order derivatives
of compositions of functions. The application of this formula to the

solution of functional equations and to some problems in queueing theory

are indicated.



Introduction

We consider real valued functions f and g of a real variable x
whose nth order deiiVatives f(n), g(n) exist. An old formula due to
Faa di Bruno [1] gives the nth order derivative of the composite function
h=fog expressed in tefms of the derivatives of the functions f and g. The

formula is given as
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where h(n)(O) is the nth derivative of h, f(r) is the r'th derivative of

f and
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The major problem in using Faa di Bruno's formula is the calculation of
an in (1.2). Specifically, one must enumerate the terms occuring in the sum
on the right hand side of (1.2). In the pre-computer era, this difficulty has
limited the use of F;a di Bruno's formula to calculating defivatives of small
orders (at most 4 or 5). The purpose of this paper is to present a computer
algorithm for rapidiy calculating the coefficients an in (1.2).

The key idea of our approach to this calculation is to generate all vectors

in the set

ar (1.4)

S
i
[~
S



The particular class gnr to which a given vector belongs is .then easily determined
by computing the sum of its components. Moreover, it was discovered during
the initial stages of_this research that most of the components of a given
vector (jl,...,jn)syn are zero. Therefore, it is advantageous to generate
and use only the non zero components of each vector and the algorithm gen-
erates precisely thése components.

In section 2, we describe the index generating algorithm in detail and
give a Fortran program of it. We also introduce some notatioh which is used
.in section 3 to prove that the algorithm actually produceé all of the vectors
in gn. In section 4, we describe some applications of thislalgorithm. These
include an application to queueing theory which also showed that in spite of
the large number of terms occurring in the sum in (1.2), the procedure is

numerically stable.

2. Index Generation Algorithm.

In this section, we give details of the algorithm for»generating the
vectors in the sets gn-described in the introduction. As each vector is
generated, an index r designating the class ﬂnr to which the vector belongs
is also calculated. This approach was necessary since there does not seem
to be a simple mefhod for generating the classes»gnr. On the other hand,
there is no disadvantage to this method since the entire set of coefficients

r=1,...,n may be simultaneously generated. Each vector (jl""’j )

nr n

determines one term

n! g(l)(x) I gn(x) In
: — (5 co (B (2.1)
Jll...Jn. 1! n!

and the index r tells to which partial sum representing Y _ the term (2.1)

should be added.



From the computational point of view, ohly the non zero components
in the vector (jl,...,jnj are needed to evaluate (2.1). Therefore only
these components are used in the algorithm. This approach is also advantageous
in that it conserves storage space. Instead of the set ﬂn’ we shall deal with

the collection of elements

S= (v, r, I ,J) - (2.2)

satisfying the conditions

1 <v<n
. v
Iv'{lk}k=l
v
Jv_{jk}x=1
v
r= ) i (2.3)
k=1
E
n = i, j
kel kk
1<i <n k=1,2,...,v
1< jk <n

The sets o and gﬁ'ﬁay be mapped one to one onto each other by the relationship ¥

(G{sesifds Wy, T, 1, 3) | (2.4)

where j{k=jk k=1l,...,v, ji=0 otherwise. The mapping ¥ is clearly one to-qne
and onto. o

Since each vector generated by the algorithm may be represented as a transfor-
mation 9{ applied to the previous elementbgenerated below, we define such a
transformation on d%. Briefly, the algorithm may be descfibed as beginning

with the initial element S1 = (1,1,{n},{1})egh and forming'the successive powers

2 N |
Sys USys U Sysee U 5575, | (2.5)



where SO=(1,n,{1},{n}) and N is some fixed integer which is one less than

the cardinality of the set gn.

oV Y . .
The sequences {lk}k=1’ {Jk}k=1 are kept in stacks called‘I and J in

the program listed in table I. In addition, the parameters v, r and K are

reprosented in the proéram by the symbols NU, R, K where

v v -
T=) 3, , Kemne ) i j o (2.6)
Ik k=1 KXk

Whenever the algorithm completes the process of generating on element 9/ S,

K must be zero. The main steps in generating all elements of dh are

A.

E.

initialize the stacks Iv’ Jv and the parameters r, K, v

to v=1, r=1, K=0, i,=n, j, =1,

1
issue one vector,
test for termination condition:il=1, (2.7)

transform the quantities Iv’ Jv’ T, K, v,

go back to B.

We now describe'step D in detail. This step is the application of % to

the element Seiyn represented by the parameters v, r, Iv’ JV. In this step,

the stacks I, J are modified by one or more of the following operations.

a.

b.

C.

delete the last element in the stacks,
modify the last element in the stacks, (2.8)

enter a new element in the stacks.

Each application of step D deletes at most two, enters at most two and deletes

at most one element from the stacks. A modification of the last stack element

is defined as setting jv=jv_1' Entry of a new stack element requires the



computation of valﬁe§ for iv+1 and jv+1' Entry is always done by pairs

of elements (i*,j*)‘with i* entered into stack I and j* entered into

stack J. Similarly deletion and modification always involvés both stacks
I and J; we shall.sometimes refer to the stacks I and J collectively as
the stack. Moreover, following each operation 2.8 a-c it is required that
r and K be modified'in such a way that (2.6) holds for the current status
of the stacks I and J whether or not they are sgmplete, that is; represent
an element of Iy This requirement saves the summation which would other-
wise be required to calculate r. The rules for modifying v,T and K are

A. deletion: r=r-jv K=K+ivjv’ v=v-1,

B. modification: r=r-1, K=K+jv, : (2.9)

C. entry: v=v+l, T=T+] K=K_1v3v .
Having defined the above rules, we may now describe the steps in carrying
out part D of the algorithm

If iv=1 delete the last stack entry (v=v-1),

Modify the entry at v, '

If_jv is now 0, delete the entry at v,

Set if=iv-1, j*=[k/i*], (2.10)

If j*#0, enter the pair (i*,j*) into the stack
(v=vel, i =i%, § =5%),

o o o o o
nNn b N

D.6. If K is not 0, enter the pair (K, 1) into the stack
(v=v+1, i =K, jv=1)

where [+] is the.gréatest integer function. The steps (2.10) define an
application of the tranformation Y to an element Sed; represented by the
parameters v r Ivg'JQ. These steps will be translated into a set of oper-

ations on elements of § in the next section.
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We conclude.éhis section with the presentation of avartran subroutine

of the algorithm. The input to the subroutine is N which is the value of
the subscript n of gn the desired class. The output vectors are issued by
a call statement CALL PRNT. The output parameters are issued in the common
block called I2., The subroutine PRNT disposes of the vector generatad and

is expected to leave the common block I2 intact.



00cCoo01
000001

6Qcool
c0Co002
00C003
0GCCO004
0C0005

0CC006
0CC006

0ocoo7

00c013
6cco1s

000016
000017
000021

000022

000025
000030

00C032
00C033
00C035
000036
000037

0CCo41
- 000042

000042
00C044
000046
00C047
000050
0CCo51

006051
000053
0C0C055
00C056
0CC0S6

SUBRCUTINE INCEX
CCMMCN/I2/NyRyNU,1(10),J(10)

INTEGER R

c

c INITIALIZE STACKS AND PARAMETERS
I(1)=N '
Jl{1)=1.
R=1
Ny=1
K=0

C

c [SSUE CNE VECTCGR
10 CCNTINUE
CALL PRNT

C TERMINATION TEST
IF(TI{1).EC. 1)RETLRN

BEGIN NEW VECTCR
6 K=K<+ (NU)
Rz=R-1

Yy OY

OO

MOCIFY LAST STACK ENTRY
JINUY=J(NU) -1
1S=1(NU)-1
IF(1S.EQ.0)60TO1T

c [F JINU)=C, PURGE LAST ENTRY FROM STACK
IFCJINU) EQ.O)NU=NU-1

14 JS=K/1IS
[F{JS.EQ.0)GCTOL5

MAKE NEW ENTRY IN THE STACK
NU=NU+1
JUINUDY =4S
[{nNUYd=1IS
K=K-1S=&JS§S
R=R+J$§

ao

c ‘

c IF STACK IS CCMFLETE GO TO ISSUE ouTPUT
IF(K<.EQ.0)GCTC10

15 CONTINUE

C  MAKE A NEW ENTRY IN THE STACK
NU=NU+1
JINU)=1
I (NU)=K
R=R+]
K=0
GCTOL0

COME HERE TC FURGE LAST STACK ENTRY IF I(NUY=}
1§ K=K+J{NUL)
R=R~J(NU)}
NU=NU-1
GCTO016
END

-~ YO

Table 1



3. Proof of the Algorithm.

We now consider the proof that the algorithm generated in Section 2
génerates all of the vectors in gn, Instead of the clasS;Jh and the
transformation 9y, if will be more convenient to work with sets of vec-
tors having n comﬁonénts rather than sets of the type d; u;ed in the
previous section. We let a; be the collection of all elements ggnerated
by the algorithm of Section 2, that is those given by |

9

' 2
Slluslsu819°°°’u S]. (3'1)
n

where S1 is the element (1,1,{n},{1}) and Z(O S1 is the_termination

element of the algorithm. We shall show here that the algorithm always

terminates, that is the sequence (3.1) is finite.

Definition 3.1. 'Let g; be the set of vectors J*=(ji,...,j;)'which corre-

spond to some element in d; by the relationship ¥ defined by (2.4).
The transformation Y on z% induces a transformation J on the set

yn in the following way.

Definitibn 3.2, Let Jlsgn, Jl#(n,0,0,...,O) and let S1 correspond tovJ1
under the.mapping W‘fhen.TJlﬂmxsl, if J1=(n,0,0,...,0), thén‘fJ1=J1.
Since the maﬁping 7 is one to one and onto, the transformation 7 is
well defined. 1In fact, the pairs GJHQ()and (ﬂn,J) are isomorphic under
the mapping 9 except. that 9 is not defined for the element S0 for which
SO=(n,0,O,...,0). This however causes no difficulty. |
Our goal beéomés that of proving the following.

Theorem 3.1.

For any n 3_1,_g*n=gn.



We postpone the_proof until further results are established. However,
we outline the idéa of the proof. There is a natural ordering on the set
: yn with the property;that the initial vector used by the élgorithm is the
largest of all elements in the set ﬂn and the terminal vector is the
smallest. The transformation J in turn generates succeséively smaller
elements of g until it terminates. We shall now formalize this idea.

Definition 3.3.

Let J1=(311’J12""’31n)’ J2=(321’322""’32n) be elements of yn. Then

J1,< J2 if and only if jlm < j where m is the largest integer such that

J2m
J1m ? J2m'

Definition 3.4.

<
J2 or

1

Let Jl,'Jzegn, Then J, < J2 if and only if either J1

Iy =J2.
We now establish some properties of the relationships < and < .

Lemma 3.1.
The relationships < and < are transitive and form a trichotomy on gn,

i.e. for any Jl, J255% either J1 <.12 or J1=J2 or J2 < Jl. Moreover, for

< =(1 1 = ’ i 1. .= i =
any Js&%, JO <J = J1 where Jk (%<1""’%<n) k=0,1 with Jo1™™s Jox 0,k > 1

and jln=1 =0 k < n.

3 Jlk 5

The proof of this lemma is almost trivial and therefore is omitted. -



10

In order to prove Theorem 3.1, we shall need a list'of.properties of
the transformation J similar to the list of properties (2}10) of U. We
state them in the following. |
Lemma 3.2.

The transformation J may be characterized by the following rules.

Let J,= (311,312,.. ,jln)eﬁn Then J J. -(j21,j22,...,32 ) where

(a) j23 T jls s>t
®) 3y = 172
S n
@ K =n- o3 osj,
s=t
(d) Jz(t_l) = [K/(t"l)]
n
(e) 1 =n- I s j,
s=t=1 25
(£) j21 =14f 1 >0
() j28 =0if 1l <s <=1, s #1i

and t is the smallestvof the integers 2,...4n for which Jl >0.
This lemma is a direct translation of the properties D.1- D.6 of (2. 10)

into the space ﬂn. Therefore we omit a proof. We now state the following.
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Lemma 3.3.

For every n=1;2,l--s9; C:yn

Proof.
We show that if J=(j1,...,Jn)egn, then JUegn. We dlspése of the
trivial case by moting that if J=(n,0,0,...,0), JU=Jeyn. Hénceforth-we

assume that J#(n,O,Q,...,O). Since Jeyn we have

j; 20 i=1,2,...,n

e

(3.3)

i j.=n.
31-

o~

i=1
Let t be the smallest of the integers 2,...,n such that jlf > 0. Such a
t exists because J#(n,0,...,0). Let J'=(ji,.,.,jﬁ)=JU. Then j;=js for s > t.

Moreover, jt'z_l and jt=jt-1 > 0. Therefore j; > 0 for s > t. Since

) )
ij! o= ij., -t, (3.4)
i=t ' =t ? _
we have
n
K=n - ) i j! > 0. (3.5)
. 1
i=t -
It follows that j! > 0 for i =2,...,n since j!=0 or 1 if s < t-1. By (3.2),
ji > 0. Clearly
n .
Y ij. =n. | (3.6)
. 1 . . :
i=1 . :

The lemma is proved.

We now demonstrate a key property of the transformation J.
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Lemma 3.4,

Let’J1=(311,ff.,Jln)egn. Then JJI < J1 unless J1=(n,0,0,...,0).
Proof. '

Let J2=(321,,f;,J2n) = JUI. Let t be the smallest of_the integers

2,...,n for which jlt'> 0. Then by (3.2a), j25=jls for s=t+1,...,n and
Jop < g The lemmg is proved.

A much stronger version of Lemma 3.4 is the following.
Lemma 3.5, R

For any vector Jggn with J#(n,0,0,...,0), JJ is the lérgest vector
J'vin.gn such that J' < J,

Proof.

We denote the components of vectors J by ji i=1,...,n where J and ji
may have primes. Let J”eﬂn and J" < J. Further let t be the largest integer

for which j; # jt’ ie j; < since J'" < J. Finally, let u be the smallest of

It
the integers 2,3,,.,;n such that ju > 0. We now argue the cases (i) t=u,
(ii) t > u and (iii) t < u. We first consider case (i).

If t=u, then by 3.2a, j; = js for s > t and it follows that jg = jS for s > t.

3 I > 3 1t J T ~1=3¢ 3 3 1t 3t 11t = 3t Bl 3t .
Since Jy < Je Jt < Je 1 Jg- If either Jg < g or jY Jt)Jt_l <Ji.p then
"o g o 3 an 1 - -
J J'. If Je =38 3¢y 234 then we see that
n n
K" = n-.z ijy = n-_z ijl=k', ‘ (3.7)
1=t i=t

since j;=ji for i_z_t. We must have jg_l f_[K/(t—l)]=jé_l. If t-1=1, then
J"=J'. If t-1 > 1 and 3"y .17§{_,, then we let q be the remainder after
division of K by'tél_and we note that for q < s < t-1, j;';,o and j; <1,

for otherwise we would have

Il.M:S

ij}>n. (3.8)
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Since j; = 0 for q <s < t-1 by (3.2) and also by (3.2) j&”=51, it follows
that J" < J', ' |

We next consider the';ase t > u. Then j; = js for s > u and it follows

thatng < jt = j{i&ﬁich proves that J" < J'. The case t < ﬁ cannot occur.
We have jt >0 while jﬁ is the smallest of the integers 2,3,,..,n for which
ju‘> 0. Therefofe.t”must be 1. However, if jS = jg fof's=2;.f.,n, then
J" =J. The Lemmalis proved. |

The preceding 1émma is the key to proving theorem 3.1;to which we
now turn. |

Proof of Theorem 3.1.

R % . * =

We have seen that yn o gn' We now show that gn ﬂnf By means of
the relationship <, we order the elements of ﬂn into a Sequence
(n,0,0,...,0)=J; <J, < ... <Jy=(0,0,...,0,1) where N is the cardinality
of gn' This is possible because < is a trichotomy on ﬂn' Suppose that

Jopx € §p but Jo. ¢ g% Then by Lemma 3.5 J , =JJ

el .Therefore

Jm*+1 ¢ y;. By a finite induction, JS ¢ ﬂﬁ for s z_m*Jbut'JN € ﬂn' The

contradiction proves the theorem.

4. Applications.

Here we give some applications of Faa di Bruno's formula. The basic
application is that of finding the derivatives of the solufion of functiénal

equations of the form

g(x) = £(h(x)+g(x)) - (4.1)

where f and h are known g(x) is unknown and appropriate derivatives exist.

We apply Faa di Brumo's formula to (4.1) to obtain
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Q
7~
M‘
| — .
B |

- f(hX)+g(X))
no, _ B (r)
g )= ) Y £ 0h&)e&) o (4.2)
: ._r:l ’ .

=Yy £ 0@ [ Y, £ () +g )
where

o ' ' j 4 (M) gy, (1) i
v = ) n! h (Xi}-g (X)) T X)eg T (X)yn

= c - : ( - (4.3)
nr . . S PR I ‘n!
(Jl,...,Jn)e&hr 1 v

n

The only element iﬁ d1 is the vector (0,0,...,0,1). Therefore,

_ ,(n) (n) _ : . :
Yn1 =g (X)+h " (x). For every r > 1, every vector (Jlg...,Jn)E&%r has

jniO which means3that the coefficients an, r=2,...,n depend on g(l)(X)...gn_l(X)

and not on g(n)(X). This permits the establishment of ‘the following recurrence-
relationship for thé derivatives of g:
n

1 (r)
[Y Y £ mE)+gx)]
[1-£ ) (@) +g(x))] _rzz n :

=™ W mEy g+

(4.4)
o (1) (o s (1 -
Wiy = £ (8E¥§ h(X))h'’(X) 4.4)
1-f (h(X)+g (X)) :
g(X) = £(h(X)+g(X))

The preceding idea may be épplied_to mulfiple'compositionsvof functions
wifh a.correspondingiincrease in complexity of the relations (4.4).

This principlé.has been applied bvaréfessor Marcei F. Neuts and the
authof [2] to the éémputation of the busy period mbmenté‘Of a single server
queue with group arrivals.. This computation involved a thréeféld applica-

tion of Faa di Bruno's formula to a functional equation of the type
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Y(s) = hs-Aeollogy(s)]], (4.5)

where h and 0 are known functions and y is unknown. We spare the reader
the rather complex detalls of this application, but p01nt out that some
rather startllng results were obtained. In [2]) forty derlvat}ves
(moments) of vy Were;ébtained with a moderate amount ofjébmputer time and

it was observed that.fifty moments were éntirely possiﬁle; . The surprising
results of [2] weré that despite the enormous number of terms (see table
IT) occurring in the summations of the type (4.3), no problems of round off

error occurred. In fact, at least seven decimal places were obtained.

Table II
n cardinality of ﬂﬁ
10 42
20 627
30 . 5604
40 37338
50 204226

We fefer the readef to [2] for a ﬁealth of information on compufational
organization and use of Faa di Bruno's formﬁla.‘

| Finally, we present some results dﬁe to the referee who has written‘
programs in the iahguage SYMBAL which calculated the derivatives of h =
£(g(x)) by mgans éf féﬁ di Bruno's formula and also by direct differentiétion

of h. Of interest was the timing information given in table III.



16

-Table III Time in seconds
Computation of | Fda di Bruno | Direct differentation
attt o 0.19 0.14
n'v 0.38 0.34
o 10.63 | 0.74
i 1.10 1.6
it 1.73 2.70°
pYtil 2.83 4.78.
Rl 5.50 | 8.19
n 7.50 13.72
n*t 12,10 | 20.83
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