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Testing the hypofhesis of equality of Variances for a set
populations is a problem of much importance, and for which
quite a few tests have been developed. A test proposed by
A. E. Brandt (1932) and W. L. Stevens (1936) appears to have
recéiVed little attention. The test they developed relied upon
an asymptotic distribution. The test proposed in this paper
uses a statistic denoted by Q, which is related to the.
coefficient of variation of the sample variances. It is a
linear function of a statistic originally used by Brandt and

Stevens. The definition herein is

: Exact moments are obtained for normal populations and equal
sample sizes, and for an analogous definition of Q for

unequal sample sizes. Critical values for Q are obtained

by fitfing the first four moments exactly for degrees of

freedom, v = 1(1) 10(2) 20, and number of samples p = 1(1) 10
plﬁs others to 64 and for o = .05, .025, .01, .00l.

The Q test compares favorably with other tests of homogeneity

of variances, as to power, simplicity, availability for small
samples, and ease of interpretation. Moréover it is not disturbed

by a very small or even a zero sample variance.



1. INTRODUCTION

The problem of testing for homogeneity of variances of several populations
is an important one. Tests based upon sample variances, standard deviations
and ranges have been devised and used. Such tests are useful to justify the
aésumption'of hdmoscedasticity in analysis of variance (ANOVA) and
regression, and as a test of interest in its own right.

In 1947, C. Eisenhart [1] and W. G. Cochran [2] contributed articles to
Biometrics summarizing various assumptions which are necessary for ANOVA,
including the homqgeneity assumption and the assumptioﬁ that the populations
are normal. In 1951, F. N. David and N. L. Johnson [3] published an article
i Hhe sFFect af non narmal Ley on the pawsr Function ofF the 1 test in ANOVA.
Iﬁ 1954, G.E.P. Box [4], [S] examined the effect on the P-statistic of
violating the homogeneity assumption in one-way and two-way classifications.
In reviewing. these important articles and other contributions in this area,
it may be gleaned that a violation of the homogeneity assumption when using
ANOVA technique cén create a severe disturbance to the‘F-ratio. Violation of
the normality assumption, however does not appear to have such severe effects.

One may classify the various tests of homogeneity of variances for more
than two populations as one of the following: (1) a ratio of the geometric
mean to the arithmetic mean, (2) extreme values such as maximum variance
divided by the minimum, (3) a ratio of the root-mean-square to the arithmetic
mean of the yariances, and (4) a control chart for ranges, standard deviations
or variances. The test proposed in the present paper éomes under general
category (3). A sketch of the development of the approach follows.

In 1932, A. E. Brandt [6], in a Ph.D. thesis at Iowa State College, proposed
a test statistic for use in a preliminary test to ANOVA. It is based on the

following argument, as given in a discussion of the test by G. W. Snedecor [7]



in 1937. "Equal degrees of freedom v are assumed for each cell estimate

of population variance. Let

=12, 6 -sDen (1)
where EE- is the arithmetic mean of the p sample variances. Hence W
~is the sample variance of sample variances. It is easily shown that
05 = 204/v, if each of the p populations is normal with variance 02.
Let Y = (p-l)W/oé. Then the distribution of Y is approximately chi-square
with p-1 degrees of freedom. Since o2 is unknown, Brandt proposed the

following estimate. Using the mean square within-plots S2 to replace o2

2

in Ty let

. —2 .7 -2 —2
2= @-0w/(es? 1Y) = BB 63-5%) sy (2)

Then Z is still approximately distributed as chi-square with p-1 degrees
of freedom, for sufficiently large samples. The rejection region is in the
upper tail of the distribution since large values of - z would usually be
associated with heterogeneous population variances.

In 1936, W. L. Stevens [8] published a test which used the same idea as
Brandt's test, although it would appear that Steven's result was reached

independently of Brandt's. Let

2 _ %P 2,5p ' 3
s Ej=l vjsj/zj=1 v; , and (3)
—,2 352 ' »

- P 2 _ 2 2 ' _
Zy Zj=1 vy (sj S ) /28 . (4)

Then, as before, 1z, is approximately chi-square with p-1 degrees of

1

freedom for sufficiently large sample sizes. This statistic of Stevens was



given in a context someﬁhat more general than the ANOVA context in which
Snedecor described Brandt's test, and does include vérying degrees of
freedom.

In category (1) are the L1 test of J. Neyman and E. S. Pearson [9],

and the test by M. S. Bartlett [10]. The L. test was further developed

1
by S. S. Wilks [11], C. M. Thompson [12] and U. S. Nair [13]. In category
(2), are a test with equal degrees of freedom (max si/f? si) by Cochran
[14] and the maximum F test (max Si/min Si) by H. 0. Hartley [15].

In category (4) are control charts for ranges or standard deviations,

which are frequently used in statistical quality control. They may also be

used to test homogeneity of vafiability, W. A. Shewhart [16].

2. THE Q-STATISTIC
Consider first the case of P independent random samples of n observations

each from normal populations with variances c?, j=1,..., p. Interest is in

.2 _ 2 _ 2 _ 2 ' . : 2
HO' 0] S0y = ... = cp =¢g° >0, say, vs. Hl' that the oj are not all
equal. Note that even H0 is a composite hypothesis. By using a standardized

statistic for the test, however, it can be treated like a simple hypothesis.
The sample variance of sample variances is given by (1). It measures the
variability between sample variances in absolute terms. If we knew the
hypothetical common 02 we could standardize by dividing by oﬁ, but since
it is not available we standardize as in (2). Such a statistic is then free

from 02, and also any physical units. However,

—z2 —2 .
8., 8§ - p 8% 1728”1

N
1]

(5
P 4
) Pz" 38 S% e
P




Now defining

2
a= (B, sH/aE; sH | 6)
one has
2, v |
Z = Lz—--Q - LZ . (7)

Thus the Q statistic here proposed is a linear function of that proposed by

Brandt. Moreover from (6) we easily have

RMS (S2)
Q=[—J—]-l , - (8)
aMisy | P
j

thus indiéating that Q 1is a monotone function of RMS(S?)/AM(S?), and
thusla test of category (3). Bartlett's and Li tests are of course
monotone functions of AM(S?)/GM(SE) and of category (1). Either of (5)
or (8) shows that the minimum value of Q is 1/p, occurring when all si
are equal and positive.

Under the assumptions of random independent samples from populations
N(uj,oz) we shall be able to find in closed form the first four moments.
Then, using a suitable system of distributions matching ekactly the first
four moments for each (p,v) combination, the desired critical values are
obtained as given in Table 1. Q is more convenient for finding moments and

distributions than is Z.

For varying degrees of freedom vj, the definition is

2
-3 P 4/17p 2 |
O R A LI ®

Ht
<

which specializes to (6) when vj



A recent paper by A. Cohen and W. E. Strawderman [17] contains a theorem

which shows that a test of 02 = .. = 02 > 0 wusing (6) is unbiased, that

1 P
is, the probability of "acceptance'" of this hypothesis when true is at a

maximum, as against alternative conditions.

3. THE Q-STATISTIC FOR TWO VARIANCES FROM NORMAL POPULATIONS.
The exact density function of Q may be found for two samples of n,,n,
independent observations from populations N(ui,oi) i=1,2, L. A. Foster

[18]. If o, =0, =0, say, then the distribution of Q does not contain

o, just as is also true of the F distribution. In fact one can readily

find
Q=1-g97m » OF (10)
Q + v2Q-1
F = ——i—T . (11)

The + in the latter is an indication that while Q is relatively high when

either 1 > S, 2 1’

latter case. Thus a single upper-tail test of o, = oé for Q is equivalent

or s, > s F is high in the former case and low in the
to a two-tail test for F.
It is, however, the authors' belief that the F test cannot be improved upon

by the use of the Q statistic, and hence results are not given in Table 1 for

P = 2, although they were obtained by Foster [18].

4, THE Q-STATISTIC FOR MORE THAN TWO VARIANCES FROM NORMAL POPULATIONS.
Several different approaches were tried to find the explicit distribution
function or the density function for Q when‘ P > 2, without noteworthy

success. The necessary multiple integrals and regions of integration become



unmanageable even for p = 3. Accordingly attention was turned toward
finding the first four moments for the Q statistic. This was readily
accomplished Foster [18]. See Section 5. Then a distribution function

for each case of v =1,..., 10 and p > 3, was fitted, matching the first
four moments precisely and desired percentile points obtained. See Section 6.

The results are given in Table 1.

5. THE MOMENTS OF Q, NORMAL POPULATIONS.

In evaluating the moments of Q in the normal case, the following notations

are convenient:

2 - (sf,..., s;) (12)

> T-VP
VoE (Ve vp) and v = z.=1 vj/p . (13)

J

The latter will sometimes be used as a subscript for Q, or if all vj's

are equal to v, we write . When considering Qm, m=1,2,3,4, let
Q v

m = (ml"f" mp) : ‘ (14)
m! = (mll)(mzl) s (mp!) (15)
=P ( sz)zmj/(zp 053 | e

=173 =1 %570 |

Then QH-l can be expressed by a multinomial summation involving terms
> .

containing Qm. Thus from (9)



2qm
m - ©p 4, vp 2
- [ o v385/ Qe v589 ]

J
= oM (yP 4.m, vp 2.2m
Qo 8P  EL v58))
m! 1P (v.s‘?)mj
) L= v
P m
2 moen LT (o v389)
| =m, P 2 4 mj-
_ @) " M ) 85 :
m m
P o= P 3y (yP 2
21 mj—m ET (Hj=1 vj )(Zj=1 ijj)
m. >
= I wmAaheyel v Q" - a”
XE m,=m
J

We next find an integral expression for E(Qm) under either
H : o, =0,=...=20_ , or (18)

H, : cj's not all equal , o (19)

>
and then derive E(Qﬂ) in closed form for HO.
v

: >
. . . m . .
First we obtain a representation for Q in terms of chi-square random

variables, Let Z. = v.S?/c? j=1,..., p. Under either H, or H each

i 373 0 1’
Zj has a chi=square distribution with vj degrees of freedom, and they are

mutually independent. Using (16)

m p‘ 2 2mj P 2, \2m
= T .2, A L,
Q" = (0520 /(T o5E)

3 . (20)

Since the Zj's are independent chi-square we have



2n
- P 2 j _(v./2)-1
[M5op0052) 72507 ]

P 2 2m -
0 Qe %)

QY =¢; [ ... [
0

lew(- 3 5.y 2] 5, dz] (20
where
@) g iy E
C =2 [nj=1r(—%a] : | (22)

Consider the following transformation Yo = 0 and 'yj = i=1 oi z; for

2 . . .
j =1,..., p. Then 1z, = (1/0 =Y. for =1,..., p. Since
j p 3 (1/ J)(yJ YJ-1) j p
P(Zj = 0) = 0, we can assume 0 < Yy S¥y < eee < Yp' The Jacobian of this
| 2 2,-1

transformation is (o7... op) Next let
p i
C2 = Cl/]'[j=1 Uj . (23)
Then
2m.+(v./2)-1
p [, (Va-ys_ 1) ]
BQY =¢c,f [ ... [ e
0 0 0 Yp

1 2
* [exp(' 3 zg):l(yj—yj-l)/(,])]} H?=1 de . (24)

Next consider the transformation yj = Hg=j u, for j = 0,1,..., p. Then

Uy =Yg = 0, and (yj-yj_l) = (ujuj+1...up)(l—uj_l), j=1,..., p. The

Jacobian is uzug...ug-l. Then we have

m, ®  (pv/2)-1 2
E(QQ) = cz_[fo U, exp(-up/201) du ] - (25)

11 ceaty;)-1
{...] np'lu(Yl+ ")

0 0 j=17 =)t

(1-u )Vj+1-1ex'{- l{p-l(np u.)é. ldu du
j pl- 5051 (Wju;) 8, du. . du

-1
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where

<
]
i
—t
-

2m, + /2 j v
m, (vJ/ ) j P

2, 2 . :
‘ (Sj (I/Uj) = (1/0j+1) J = 1"", p_]‘
Evaluation of (25) under H1 will be discussed later on. For the present
we assume H, and thus that Gj = 0, Also call oj'= 0, j =1,..., p.

Then

> w0 - p-1 1 (v,+...+v.)-1 Y. .-1
EQM = ¢, f w21 ncu 726%)du { 1[fu, ! 3 (1ewyy YT du.]}
0 P P j j j

2.pV/2 = p-1
C,(20%) I'(pv/2) o1 B(Y1+...+Yj, Yj+1) , (26)

where I' and B indicate gamma and beta functions. Using

B(a,b) = I'(a)T(b)/T'(a+b), cancellation yields

m ") T[(v./2)+2m,]
m, _ I‘( v/2 P J j
EQ@) = tpozeamy =1 Tv;72) - (27)

Substituting (27) into (17) yields

_ v ey T'(v,/2)+2m,
E(Qg) - Z m! v T(pv/2) Hg=1 [‘ Tlvi 3 1} (28)

m,
P = o1 P J i
_ 2j=1mj m m![Hi=1vj ]T (pv+2m)

Or if the vj's are constant at v, this expression becomes

: m!P(pv/Z)H€=1F[(v/2)+2mi]
EQ) = 1 {3 3 : - (29)
Xp 0.=m m!T[(pv/2)+2m] [T (v/2)]

ji=17]




11

Specifically when Vj 2 v  we have the following for m = 1,2,3,4:

>
If m=1, there are p vectors m, such that one component is 1 and

the other p-1 zero. Using T(a+l) = al(a):

EQ) = 53 - | (30)

>
If m=2, there are p vectors m, such that one component is 2, and

p(p-1)/2 vectors with two mi's of one and the others zero, yielding:

2, _ (v+2)Ipv(v+2)+8(v+3) ] :
vE(Qv) © T (pv+2) (pv+4) (pv+6) ) (31)

Then using My =‘oé = E(Qi) - [B(Qv)]2 we have

- 8v(v+2) (p-1) ] (32)

(pv+2)2(pv+4)(pv+6)

.uz

Three distinct kinds of vectors occur in Qi, from which after much tedious

calculation using u3'= E(Qi) - BE(Qs)E(Qv) + 2[E(Qv)]3: and

_ 3/2 . .
@z = u3/u2 » one finds

2 _ 8(pv+4) (pv+6) [pv°+(8p-10)v-8]°

og 7 3 (33)
v(v+2) (p-1) (pv+8) " (pv+10)
If p=2,v=1, then a; = 0; otherwise ag > 0. Furthermore
2.4 3.2 '
a, = 3(pv+4) (pv+6) [p"v (p+3)+2pv” (p"+68p-93) +- (34)

T+ 4v2(125p2—245p+84) - 128v(2p-3)+384] +

[v(v+2) (p-1) (pv+8) (pv+10) (pv+12) (pv+14)]
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The following are readily verified :

lin ol =0 lim a, =3 (35)
pee poo

lim ag = 8/(p-1) lim o, = 3(p+3)/(p-1) (36)
Vo0 Vo _

6. APPROXIMATION OF CRITICAL REGION FOR Q-TEST,
NORMAL POPULATIONS UNDER HO: Op = +v0 = op.
Since the exact distribution of Q in this case was not obtained, we
resort to approximation of percentiie points by means of members of a family

of distributions. The family chosen is given in I. W. Burr [19] and Burr

and P. J. Cislak [20]. The distribution function is

Fix) =1 - a9 ¥ kx>0 . | (37)

The parameters c¢ and k determine shape characteristics @, and Gy

and also u, 0 for x. Formulas (33) and (34) were used to find curve-shape

characteristics GS'Q and a4.Q. Thenithrough successive approximation, a
(c,k)  combination was found to yield the precisely matching o . and

. . . n o
%5 For some combinations of a3:Q and a4:Q it was ecessary to us

the reciprocal transformation x = 1/y on (37) yielding

P00 = aw™ S cky>o . (38)

Tﬁeh matching the.first two moments via
@ - uQ)/GQ = (x-wJdfo, ' (39)

it was possible to find the percentile points of Q approximately, as shown

in Table 1. In some cases there were two, or even three, combinations of ¢
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and k in (37) and_(38) yielding a perfect match of “3:Q and 04:Q.v In
such cases we chose the largest percentile value, of the two or three, so

as to be conservative. Eor the most part such approximated percentile points
of Q differed but little for the (c,k) pairs.

It is to be noted that E. S. Pearson [21] has shoﬁn that in fitting a
distribution by moments, the error displacement of percentile points on the
steep tail of a skewed distribution is much more severe than on the long tail.
This is fortunate here because all of the Q distributions are strongly
positively skewed, and it is in the upper tail that our interest éenters for

percentiles for the Q test.

7. MOMENTS FOR Q, UNEQUAL SAMPLE SIZES,

NORMAL POPULATIONS, UNDER H,.: o, = . =0

o' %1 . P’
Starting with (28) for varying vj's, Foster [18], found

v+2

EQ) =57 (40)

" which is a virtual analog of (30). Next he found

B@}) = B(Q) + 48[F/9-11/ (W) GF+) @W+6)] (41)

where Vv is the harmonic mean of the vj's, p/2?=1(1/vj). The second term
on the righ? is- the error made in the variance of Q if vV is substituted
for the vj's. ‘Since 3'3_3, the correction is always non-negative, being
zero only for ¢bnstant vj's. For fixed p, this error is close to zero if
v is close to v, or if p is iarge the error approacheé zero faster than

the variance of Q approaches zero.
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Two examples are given below for p = 3

v v v , v v o. /o

1 2 3 Qg Qg
Example 1: 1 1 10 4 1.429 1.146
Example 2: 5§ 5 4 4.667 4.615 1.008

Foster also obtained rather complicated expressions for the corrections to

the third and fourth moments of Q about the origin. An example of the

effect of using v for v is given below for p = 3, v, = 5, v, = 4,
\)3=3:
Calculations based on v v
Mean Q .4286 .4286
Standard deviation .08248 .08569
Coefficient of skewness (a3) 1.512 - 1.806
Coefficient of kurtosis (a4) 5.84 8.12

Foster also found some further results, in special cases and a series
representation. If the population is discrete, it is possible to evaluate
the exact distribution of Sz, and from it to obtain the exact distribution
of Q, for the null hypothesis HO. But this Very quickly becomes extremely

tedious, then unmanageable.

8. THE Q-TEST FOR HOMOGENEITY OF VARIANCES.

We thus have the simple test statistic

2

S0P shoP | 2
Q= (B, sk, sH (6)
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for the hypothesis HO: Oy = eev = op, vs. the alternative hypothesis Hl;
og's not all equal. Then for a given set of sample variances, s%,sg,...,ss

assumed to come from normal populations, we use (6) to find an observed
g-value. Entering Table 1 with the appropriate v and p, and a chosen

o level we find the critical value. Then if

q>Q reject Ho (42)

v,p,a’

q<Q " accept H (43)

v,p,a * 0"

Or, if the sample sizes vary we use (9) to find the observed q value, then

enter Table 1 with v, p and a.

9. TABLE OF CRITICAL VALUES FOR THE Q STATISTIC
The percentile points for the distribution of the Q statistic were
approximated as discussed in Section 6. Beginning with starting values of

¢ and k and a desired QS'Q and a4.Q for a (v,p) combination, the
program iterated on ¢ and k until both a . and a,

nearest .00001. Then using (39) the percentile points were calculated to

agreed to the

the nearest six decimal places and rounded off to the nearest three.



TABLE 1. PERCENTILE POINTS FOR Q-TEST (6), FOR 16

EQUAL DEGREES OF FREEDOM v, AND FOR p SAMPLES.

v =1 v =2

p .95 .975 .99 .999 .95 975 .99 .999
3 .915  .957 * * 752 .801  .863 *
4  .799  .853 .920 * 612 659  .720 .898
5 .702  .757 .828 * 511  .553  .608 773
6 .621  .675 744 .949 436 .479  .539 .690
7 .555 605 671 865 379 416  .469 606
8  .500  .547 .609 .793 334 366  .412 .537
9  .454  .505 .576 .750 298 .328  .371 .481
10 .415 .46l .528 .694 269 .295  .333 .433
12 .32  .391 .448 598 223 .244 .27 .358
14 .305  .339 .391 .522 191 .208  .234 .303
15  .285  .317  .365 .490 177 .193 .217  .280
16  .268  .297 343 .460 166 .180  .202 .261
18 .238  .264 .304 .409 146 .159  .178 .228
20 214  .237 273 .367 131 .142  .158 .202
22 .194  .214 246 .332 118 .128  .142 .180
24 177 .196 224 .302 108,116 .129  .162
26 .163  .180 206 .276 099  .107  .118 .148
28 .151  .166 .190 .254 091  .098  .108 .135
30 .140  .154 176 .234 .085  .091  .100 .124
32 L1310 .144 163 .218 .079  .085  .093 115
3  .115  .126 143 .189 .070  .075  .082 .100
40  .103  .112 127 .167 062 .066  .072 .088
45 .091 099 11 145 .055  .058  .063 .076
50  .081 .08 098 .127 .049  .052  .056 067
60  .066 - .072 .080 .102 .040  .042  .045 .053
64  .062  .067 .074 .094 037  .039  .042 .049

*
These entries exceeded 1 using the approximating distribution. Since Q<1,
they are omitted. ‘ ' : S o=
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12

14
15
16
18
20
22
24
26
28
30
32
36
40
45
50
60

64

TABLE 1 CONTINUED

v=23 v =4

.95 .975 .99 .999 .95 975 .99

.657 .701 757 .919 .596 .634 .684
.517 .555 .605 .754 .461 .498 .549
.423 .460 .512 .644 .374 .402 .443
.356  .386 .430 .546 312 .335 .369
307 334 .372 Lan .267 .288 .318
.268 .291 325 .411 .234 .251 .276
.238 .258 .287 .363 .207 .222 .244
.214 .231 .257 .324 .185 .199 .218
177 .191 .211 .265 .153 .164 .179
.150 .162 .178 .222 .130 139 .151
.140 .150 .165 .205 121 .129 .140
.131 .140 .154 .190 .113 .120 .130
.115 .124 .135 .165 100 .106 .114
.103 .110 .120 .146 .089 .094 .101
.093 .099 ~ .108 .130 .081 .085 .090
.085 .090 098 .117 .074  .077 .082
.078 .083 .090 .107 .068 071 .075
.072 .076 .082 .098 .063 .065 .069
.067 .070 .075 .090 ~.058 .061 .064
.062 .066 070 .083 .054 .057 .060
.055 .058 .062 .072 .048 .050  .052
.049 .052 .055 .064 .043 .045 .047
.043 .045 .048 .055 ©.038 .039 .041
.039 .040 .043 .049 .034  .035 .037
.032 .033 .035 .039 .028 .029 .030

.030 - .031 .033 .037 .026 .027 .028

17

.999
.828
.675
.552
.461
. 394
.342
. 300
.267
.217
.181
.167
.155
.135
.119
.106
.096
.087
.080
.074
.068
.060
.053
.046
.041
.033

.031
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TABLE 1 CONTINUED

v=2>5 v =56
.95 .975 .99 .999 .95 .975 .99 .999
.554 .588 .631 .760 .524 © .554 .593 .708
.425  .454 .498 608 399 .424  .461 .558
.342 .365 .399 .490 .320 .339 368 446
.285 .305 .334 .407 .266 .283 .307 | .368
.243 .260  .284 .345 .227 .241 .261 311
.212 .226 .246 .298 .198 .210 .226 .268
.188 .200 .217 .261 .175 .185 .199  ° .235
.168 .179 .194 .232 .157 .166 .178 .208
.139 .147 .159 .188
.118 .125 .134 .157
.110 .115 .123 145 .102 .107 113 .131
.103  .108 .115 .134
.091 .095 .101 117
.081 .085 .090 .104 .076 - .079 .083 .094
.073  .077 .081 .093
.067 .070 .074 .084
.062 .064 .067 .076
.057 -~ .059 .062 .070
.053 " .055 .058 .065 .050  .051 .053 .059
.050 .05l .054 .060
.044 .045 .047 .052
;039' .040 042 .047 .037 .038 .039 .043
.035 .036 .037 .041
.031 .032 .033 .036 .029 .030 .031 .033
.026 .026 .027 .029 .024 .025 .025 .027

.024 .025 .025 .027
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TABLE 1 CONTINUED

v =7 v =38
.95 .975 . .99 .999 .95  .975 .99 .999
.501 528 .562 .666 483 .507 .539 .633
379 .401 .434 .520 .364 ..384 .413 .490
.303  .320 .346 .413 .291 .306  .328 .388
252 .267 .288 .340 242 .284 271 318
215,227 244 .287 .206  .216  .230 .268
.187  .197 .210 .247 .180  .188  .199 .231
166 .174 .185 .216 159 166 .176 .202
149 .155  .165 .192 .142  .148  .157 .179
097 .101 .106 .121 093 .097 .10l .113
.072  .075 .078 - .087 069 071  .074 .082
.047  .049 .050 .055 .045  .047  .048 .052
.035  .036 .037 .040 .034  .034  .035 .038
.028  .028 .029 031 .027  .027  .028 .030

.023 .023 .024 .025 .022  ,023 .023 .024
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15

20

30

40

50

60

.95

.468

.353

.281

.234

.199

.174

.154

.138

.090
.067
.044
.033
.026

.022

.975
.493
.370
295
.244
.208
.181
.160
.143
.093
.069
.045
.033
.026

.022

TABLE 1 CONTINUED

.99
.529
. 396
.315
.260
.220
.191
.168
.150
.097
.071
.046
.034
.027

.022

.999
.619
.465
. 367
.301
.254
.219
.192
.170
.108
.078
.050
.036
.028

.023

.95

.456
.343
274
.227
.194
.169
.149
.134
.088
.065
.043
.032
.025

.021

.975
.479
.359
.286
.237
.201
.175
.155
.139
.091
.067
.044
.033
.026

.021

10
.99
.512
.383
.303
.250
.212
.184
.162
.145
.094
.069
045
.033
.026

.022

20

.999
.596
.446
.351
.288
.242
.209
.183
.163
.103
.075
.048
.035
.028

.023



10
15
20
30
40
50

60

.95
.438
.328
.262
.217
.185
.161
.143
.128
.084
.063
.041
.031
.025

.020

975
457
<342
.272
.225
.192
.167
.148
.132
.086
.064
.042
.031
.025

.021

TABLE 1 CONTINUED

12
.99
.486
. 362
.287
.236
.201
174
.154
.137
.089
.066
.043
.032
.025

.021

.999

.558

.415

.326

.267

.225

.194

.170

.152

.097

.070

.045

.033

.026

.022

.95
424
.318
.253
.210
.179
.156
.138
.124
.082
.061
.040
.030
.024

.020

.975
.440
.329
.262
.217
.185
.161
.142
127
.084
.062
.041
.030
.024

.020

14

.99
.466
. 347
.275
;227
.192
.167
.148
.132
.086
.063
.042
.031
.024

.020

21

.999
.530
.393
.308
.253
.213
.184
.162
.144,
.092
.067
.043
.032
.025

.021



10

15

20

30

40

50

60

.95
.413
.309
.247
.205
.175
.152
.135
121
.080
.060
.039
.029
.023

.019

.975
.428
.320
.254
.211
.180
.156
.138
.124
.081
.060
.040
.030
.024

.020

TABLE 1 CONTINUED

16

.99

.451

.335

.265

.219

.186

.162

.143

.128

.083

.062

.040

.030

.024

.020

.999

.508

.375

.295

.242

.204

.176

.155

.138

.089

.065

.042

.031

.025

.020

.95

.405

.303

.242

.200

171

.149

.132

.119

.078

.058

.039

.029

.023

.019

.975
.418
.312
.248
.206
.175
.153
.135
.121
.080
.059
.039
.029
.023

.019

18

.99

.439

.326

.258
.213
.181
.158
.139
.125
.082
.060
.040
.029
.023

.019

22

.999
.490
.362
.284
.233
.197
.170
.150
.134
.086
.063
.041
.030
.024

.020
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TABLE 1 CONTINUED

v = 20 v = 20
.95 .975 .99 .999 P .95  .975 .99 .999
.398 .410 .429 .476 10 17 119 122 .130
.298 .306 .319 .351 15 .077 .078 .080 .084
237  .244 .252 .276 20 .058 .058 .059 .062
.197 .202 .209 .226 30 .038  .039 .039 .040
.168 172 .178 .191 40 .028 .029 .029 .030
.147 .150 .154 .166 50 .023 .023  .023 .024

.130 .133 .136 .146 60 .019 .019 .019 .020
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10. ADVANTAGES OF THE Q TEST

As compared with other tests of the homogeneity of a set of variances the
following seem to be indicated:

1. The Q statistic is more easily calculated from a set s? variances
than is Bartlett's test. It is of course not as easily calculated as is
Cochran's or Hartley's tests. |

2. The Q test is as easily interpreted as any of the tests with the possible
exception of a control chart. But for such charts it is rather difficult to
find the a risk involved.

3. The Q test does not require use of an asymptotic distribution, as does
Bartlett's test. Thus, the critical values of the Q test are available all
the way down to variances with but a single degree of freedom.

4. The Q test does not become inapplicable if a variance should be zero,
as does Bartlett's or Hartley's tests.

5. There is evidence in the literature that in ANOVA one or two cells
with high 02 are much more disturbing to the analysis than one or two cells
with excessively low Uz. The Q test is more sensitive to the former and
less sensitive to the latter than is Bartlett's test. A single very low s?
can have a very marked effect on Bartlett's test, yet but little on the Q test.
Thus the Q test would seem to be more what is needed invANOVA analyses.

6. As to power, the variefy of forms the alternate hypothesis Hl can take,
make power studies difficult; not to mention the mathematical difficulties
involved. But it would seem that in many common situations those tests using
all of the vs?'s such as the Q test, Bartlett's test and the L tests would
give more reliable decisions, than those depending upon one or both extreme

s? such as Cochran's or Hartley's tests.



10.

11.

25

References
Eisenhart, C., 1947. The assumptions underlying the analysis of
variance, Biometrics, 3, 1-21.
Cochran, W. G., 1947. Some consequences when the assumptions for the
analysis of variance are not satisfied, Biometrics, 3, 22-38.
David, F. N. and Johnson, N. L., 1951. The effect of non-normality on
the power function of the F-test in the analysis of variance, Biometrika,
38, 43-57.
Box, G.E.P., 1954, Some theorems on quadratic forms applied in the study
of analysis of variance problems. I. Effect of inequality of variance on

one-way classification, Ann. Math. Stat. 25, 290-302.

Box, G.E.P., 1954. Some theorems on quadratic forms applied in the study
of analysis of variance problems. II. Effects of inequality of variance
and of correlation between errors in the two-way classification, Ann.

Math. Stat., 25, 484-498.

Brandt, A. E., 1932. A thesis submitted for the degree of doctor of
philosophy, Iowa State College, Ames, Iowa.

Snedecor, G. W., 1935. Statistical Methods, Collegiate Press, Inc.

Ames, Iowa.

Stevens, W. L., 1936. Heterogeneity of a set of variances, Jour. of

Genetics, 33, 398-399. An appendix to a paper by A. C. Fabergé.

Neyman, J. and Pearson, E. S., 1931. On the problem of k samples,

Bull. Acad. Polonaise des Sci. at des Lett., Series A. 460-481.

Bartlett, M. S., 1937. Properties of sufficiency and statistical tests,

Proc. Roy. Soc., A, 160, 268-282.

Wilks, S. S., 1937. The sampling distribution of the criterion AHl when

the hypothesis tested is not true, Biometrika, 29, 124-7.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

- 26

Thompson, C. M., 1937. An investigation into tﬁe adequacy of Dr. Wilks'
curves, Biometrika, 29, 127-132. |

Nair, U. S., 1939. The application of the momenfvfunction in the study

of distribution laws in statistics, Biometrika, 30, 274-294.

Cochran, W. G. 1941. The distribution of the largest of a set of variances
as a fraction of their total, Annals of Eugenics, li; 47-52,

Hartley, H. 0., 1950. The maximum F-ratio as a short-cut test for
heterogeneity of variance, Biometrika, 37, 308-312;.

Shewhart, W. A., 1931. Economic Control of Quality of a Manufactured

Product, D. Van Nostrand Co., New York.

Cohen, A. and Strawderman, W. E., 1971. Unbiasedness of tests for

homogeneity of variances, Ann. Math. Stat., 42, 355-60.

Foster, Louis A., 1964. Testing for Equality of Variances, Ph.D. Thesis,

Purdue University.

Burr, I. W., 1942. Cumulative frequency functions, Ann. Math. Stat., 13,
215-232. |

Burr, I. W. and Cislak, P. J., 1968. On a general system of distributions,
I. Its curve-shape characteristics, II.The sample median, Jour. Amer.

Statl. 5§§g¥, 63, 627-635.

Pearson, E. S., 1963. Some problems arising in apﬁroximating to probability

distributions using moments, Biometrika, 50, 95f112.



