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Let f be a real-valued Borel funcﬁion, X and f(X) be integrable random
variables defined on a probability space (2,%P) and Gbe a sub o-field of

#. Jensen's inequality states that, if f is convex on an interval I con-

taining the range of X, then

(1 Ef(X) > £(EX)

(where E denotes expectation); its generalization is
(2). E[fX) | Q > £FIEX| @]

with probability one.

One applicatibh of the generalized Jensen's inequality is in martingale
theory where it is used to show that ''convex functions of martingales" and
"convex non-decreasing functions of submartingales' are submartingales.

" The usual proof of (1), e.g. Loéve [6; p. 159], uses the fact that
" under the hypothesis there must exist a non-decreasing function, m(-), satis-
fying, for all x and y in I:
(3) f(x) - £(y) > mly) (x - y)
(e.g. take m to be either the right or left hand derivative of f). Then,

_since EX must lie in I, we have

- (4) f(X) - fCEX) > m(EX) (X - EX).



w\nge the expectations of both sides, giving\.
(5) Ef(X) - £(EX) > m(EX) (EX - EX) = 0
which proves (1).
Inequélityv(4) can be generalized to
(6) £(X) - FEEXIOT 2 mEX|D] [X - EX|W)]

and taking the conditional expectations of both sides with respect to G,

would yield the analogue of (5), thereby proving (2) -- provided that the

conditional expectations exist. If I can be bounded above or below then

SO can m[E(XIQ)] and there is no difficulty. But in general, the hypothesis
is not sufficient to guarantee the existence of the mean of the right side of
(6).

_~ For example, take f(x) = exp[xl, let Y be any symmetric random
variable with Eexp 2|Y| < =, but EYexp|Y| failing to exist. Let Z be
independent of Y with values 0 and 2 each with probability 1/2. Take X = YZ
and G the o-field generated by Y. Then the right side of (6)'bec6mes
(7) lY!(Z-l)explYl
which has the same distribution as
(8) Yexp|Y],
hence no mean. So while we are strongl& tempted to say that the conditional .
expectation of (7) with respect to G is
©) | (IY|exp|Y]) E(z-1) = 0,

we may not do so.



e ;Loéve does ﬁbt give a proof of (2), but merely asserts (p. 348) that

. -
it follows from (1) and the fact that P{X > Y} = 1 implies
P{E(Xlﬁ)'l E(YlH)} = 1 for any ¥ < g. We leave this as an exercise for -
- the reader: one which we have not been able to solve.

- Feller [4; p. 214].mentions (2) without proof. Neveu [7; p. 122]
mentions only the case X > 0, without proof as an easy generalization of
(l), which it is since the interval I can be bounded below. Chung [2; p. 281]
has a proof of (2) which is not based on (3) and which is not quite complete.

Doob [3;‘p. 33] shows that once the existence of regular conditional
distributions is established, (2) can bé obtained from (1) in an elementary
way. Indegd Breiman [1; p. 80] assigns the proof of (2) as an exercise with
the above as a hint. |

I prefer to build a proof around (6) as follows:

- Choose a > 0 and let

o) A=A = {[EX|Q] < a} .

Then (6) is true with X replaced by XIA -- unless 0 is not in I, in which

case X should be replaced by XIA + bIAc for some b in I, and f(0) should be

replaced by f(b) below. Now m[E(XIAiQQ] is bounded, so we are justified in

concluding that
(11 E[£(XI,)|g] > £IEXIL,|Q] .
Because Acly, the left side of (11) is
a2 E[f(0TI, + £(0)I,c|g]
= E[f(0]gl1, + £(0)I,c ,
while the right side is

(13) LB = FEXQIL, + £0)]c .



}. ,
\“E()‘mp!aring (12) and (>13) we see that, in effect, on A, the IA's can be
deléted from (11). Since P(A) -~ 1 as a » «'v,. this 'corﬁpletes the proof.
Recently, I noticed (6) in Hunt [5; p. 48] ‘with the remark that (2).
then follows imrhediately if X‘is bouﬁded and "in general by a passage to
the limif". So the preceding proof fills in the details omitted by Hunt.

‘But note that the proof will not go through if (10) is replaced by

A = {|[X| < a} since this set is not in G.
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