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1. Introduction.

A previous papérv[Glesér and Oikin (1972 )] dealt with statistical.
inference problems.ip the context of an experimental design in which k
randomiy chdsen grouﬁs of individuals from the same population of
individuals are asked to take different psychological tests under idenbtical
resting cOnditions.b The k tests (TO’Tl)’(TO’TE)"°"(TO’TK) have one
subtcsth T, in common. It is desired to test whebther (TO’Tl)’(TO’TE)""’(TO’TR)
are parallel forms:of the same test. |

The experimental‘design described above is a natural oﬁe for ongoing
testing program; sﬁéh as the Schblastic.Aptitude Test (SAT), where forms
must be changed from year to'year (so that nev items must be introduced and
validated), yet experimentation with new forms and admiﬁistration of qld
?orms are done simultaneously. The deéign described above‘might be used i1 -
é civen year to validate items for future years, |

Another experimental design which has potential use in ongoing testing

programs is one involving a certain hierarchical structure.  Because this



desipn is more complex than the design mentioned above, we confine our discussion

Lo the case where 3 groups of individuals are randomly chosen from a given

population of individuals and are tested under identical conditions. The

three groups are given tests of the form

(1.1) - (TgU5v)s (T,U,,7,.), (TUpoVa) s

respectively. Here TO is a subtest common to all three tests, Ul is

common to the first-twb groups; and V., V2, V5 are newvsubtests. The

1
tests are characterized by r = r0-+r1-+r2 scores, I, scores on subtest
TO’ rl scores on subtest Ul or U3, and r2 scores on subtest Vl, V2,
OI:' V..
3

Let xég), xfg),.xgg) be the scores of a typical individual in the
g-th group on subtests TO, Ug, Vg respectively (where Ug ="Ul, g =1,2).
By our gssumptions abéut t?e subtests, xég) is an ro-dimensional (row)
vector, xfg) is an :1;dimensiona1 (row) vector, and xgg).is’an Ty-
dimensional (row) véctor. Thus, |

<0 600

is an r-dimensional (row) vector,1*=ro'+rl'+r2. We assume that x(g)

has a multivariate normal distribution with mean vector

/

(1.3) u(®) . (nég),px{g),uég)) P

and covariance matrix



Z(g) 2:(g) 5:(8)

| o %02
(1.4) - = () _ (g) Li%) {g)._ .

where the blocking of “(g) and Z(g) conforms to the blocking of x(g).

| (&) .. . . (g) . .
That is ) is 1 x r, = 0,1,2, and X is r, Xr k = 0,1,2.
| ’ HJ s 3’ J slscy 3k i Kk’ VELS sl

With this background in mind, we are interested in using observations
obtained from the individuals tested to determine whethér the 3 forms
(TO,Ul,f ), (TO’Ul’V ), and (T ,U ’V3) are parallel forms of the same

psychological test. If the 3 forms are parallel, then the parameters

(1) (2) (3), 2_:(1), 2(2), 5(3)

0, y M satisfy the null hypothesis:

1.5) g @) @ (3) 1) _ (2)

1] =N = U and %

=x@ .G

If the 3 forms are not parallel, then the eonstrucﬁion of our experimental
\

des1gn assures us that at least the following relatlonshlps hold among the

parameters

“él)-_ uée) ='u£3), | “il) _ @)

= u]. »

(1.5)  A: o ' o
B CON &) S € I VS ¢ D RN )
00 00 00 o1 oy 2 11 11

Thur, statistical verification of the hypothesis that the three forms

(TO,U,,vl), (T 0V ,v2), (T ,U3,V ) are parallel takes the form of a test



of the null hypothesis H against the alternative hypothesis A.

In Section 2, the likelihood ratio test statistic for our hypothesis
testing problem is derived. To carry out the test we use an asymptotic
chi-square test. In Section 4, we show how our approach to deriving a
test of the null hypofhesis_H can be used to construct statistical
tests of hypothesis for the parallelism of test forms under various
experimental designs related to those considered here and.in the previous
paper [Gleser and Olkin (1972)]. In Section 3 we provide an example in

which some of the results of Section 2 are applied.

2. The Likelihood Ratio Test Statistic.

Assume that N . individuals take the psychological test (T ,U ,V ),

g =1,2,5. Let xig) = (x(g),xif),x(g)) be the vector of scores of the
i-th individual who takes the test (T ,U ,V ), i=1, 2,...,Ng; g = 1,2,3.
Under our experlmental de51gn, we may assume that the score vectors xfg)
are mutually statlstically independent, i = 1,2,...,Né; g =1,2,3., In
this case, we needﬁnqt consiéer all of the data, but may reduce our con-
sideration to the sufficiént statistic
(;(1),;(2),;(3),‘,(1),V(2)’V(3) )

(}-C.JV) = F)



where

N .
(2.1)‘ -—(8) - ﬁ_ 5 (x(g), gg) (g)) - (—(g) ;;g)’;ég))
g i=l ‘
and
vie) & &y,
N Yooo Voro Yoz
(8) (&) (g) !
| Vo Vo Vod
with

ab

N
e ©) =)y (&) (e
‘g)f.il 6@ -6 o 30,

;(l), ;(2), ;{'(3), V(l)’ V(E), v
are mutually statistically independent. Further, ;(g)

(g)

normal distribution with mean vector u and covariancé matrix (N )" L(g)

a,b =0,1,2; g =1,2,5. The statistics

has an r-variate-

and V(g) has a Wishart distribution with degrees of freedom ng = Ng—l
and parameter E(n;lv(g)) = Z(g); %/= 1,2,35. From the above facts the
joint density functién p(x,Vw,5) of thé sufficient statistics (;E’Y)
can be directly obtained, and can be exhibited as a funétion of the unknown
parameteré

W ) 6G)y ) ) 6
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To obtain the”likelihood ratio test statistic (LRTS) of H versus A,
we could proceed ab initio to obtain the maximum of p(E,vlu,x) over the
parameterq Hs L, both under the restrictions (l 4) on u, Z imposed by H;

and under {he restrictions (l 5) on [ Z imposed by A. The ratio of

{these maxima

max p(x,V|u,1)
H

~ o~ A~ A

(2.3) A= —
max p(x,Viu,z5)
A -~ -~ ~ o~

is then the LRTS for testing H versus A. The null hypothesis H is

\rejected when A is smaller than a Predetermined constant A¥*, where ¥

is chosen so as to give a desired level of significance « for the test.
However, the determination of the LRTS is more easily accomplished by

using the fact that A is the product of the LRTS Xl for testing H

versus the alternative

!/

(1) lJl(1)) _ (u(gz),“l(e)) - (“55) “1(5)). ,
2:h) H*:< L) @) @ @\ .5 .0
1) (1 () (2
! 1 fF0" Foit| _ [ %o Zo | %% or
(1 (1 h -+ (3) (3) ’
\ 0)_ z{l). | zl(g)- zl(f) o zlg zlf

and the LRTS A, for testing H* versus A (Anderson (1958), Lemma 10.3.1).
The hypothesis testing problems that give rise to xl and K2 are of a
form for which the LRTS has already been obtained [Gleser and Olkin (19(2)],

thus, putting together the solutions of these two component testing problem:



immediately yiélds the desired LRTS 'x;

2.1. The likelihood ratio test statistic xl.

Turning first to the test of H versus the alternative H*, we see
by comparing (l h) and (2.4) that under both hypotheses the subvectors
(X(B) (g)) of scores on (T O’Ug) have identical marginal distributions,
g =1,2,3. Thus, without loss of statistical generality, we can regard |
(TO,Ul) and (TO’U3) as being identical subtests Z = (T,U). Hence, we
have three psyéhological tests (Z,Vl), (Z’VE)’ (Z,V5)) and want to test
whether these,thrée tests are parallel forms of the same psychological
test. In the nofation of Gleser_and Olkin (1972), henceforth abbrevial-d
G-0, this last hypothesis testing problem is to test the null hypothesis ”mvc
that all three tests (z,V,)5 (2,V,), (z,v5). have identically distributed
score vectors against the alternative hypothesis Hm'vc' that only the

score subvectors on the subtest 2 are identically distributed. From

N/?)

the results obtained in G-0, the LRTS for this problem is

(1? Ng/g) (ll L ) () (1, ,0)

| | 1 ()
(2;5) &1 _ =l 1 o 1

N 22.0,1

|5 o]

where N = N1+N'2+N3', ,Ip is the px p identity matrix,

; w x(&)

x.= =
N g=1 g

2

(2.6)



and o
' -1

(g) (g) .
(@ @ _ e (@) Yoo Yoy (e) (a)y
Zg o, 17 | 22 (V g VQE ) (g) (g) (V. 5 g ) *
Note that
5)
V(% VOlllg.) ( ) (g)( )
o . = (I ,0) Vv I o)'. ,
Vig;‘ v (&) 01 0"1
so that ] g
.lN V(g)l = 'l ég)o,lHNl Ly 4y »0) V(g)(Ir +r ,0)"|

071 071

Thus, we may rewrite (2.5) in the form

: - N /2
- N/2 -
| (1. tp 0) (W4 ) (T i ,0)] / ]31 l—l—.v(g)l &
(2) _N,I‘o 17 rOl ,9;=1Ng :
i hl—i-. N2 2 . ’(_) - Ng/2v.'
| I (w#x)l | ggllﬁ; (3, 1 OV g (Iro*-"’l,’c_))'l

2.2. The likelihood ratio test statistic }\ .

Comparlng (2.4) to (1. 5), we see that both the hypothes1s H* and
the alternative hy'pothesm A place restrictions only on the parameters

of the marginal distributions of the test score subvectors (x(gg) ,xjfg) )



1 = 1,2,5. Under these conditions, it is straightforwurdly shown that

the LRTS X, for testing H* versus A can be found by reducing con-

2
At e istie T8 () (&) y(e) (6)
sideration to that part of the sufficient statistic X Xy ,VOO o1 sV 1
formed from the.test score subvectors (x(g), fi)), i= 1,2,...,Né; g = 1,2,3.
That is, to find A, we can act as if only (x(g),xfg)) are observed,

i=1, a,...,Ng, g = 1,2,3. Under that assumption, we see from (1.5) and
(2.4) that (xél),xl(l)) and (x(gg) ’xl(e) ) have identical distributions under
H* and A, and thus.for testing H* versus A, groups 1 and 2 can be
combined into oné'group without loss of statistical generality. The testing
problem now becomés one of determining whether (T SUy ) and (TO,U ) are
parallel forms of the same psychological test, where scores on (To,Ul) are
obtained from N, + N individuals, and scores op (TO’UZ) are obiwined

17
from N, individuals. From G-0, the LRTS for this problem (which, in

the notation of"Géo, is a LRTS of the form ) ) is
mve,m've
(N +N ) N
T | 21 e, TEoL 6
[z ,0)@w+B) (1 ,0)']  |=—2— vy ) ol I l
rq ro N 4N ll 0
(2.8) Ay = 1 2 3
| |&(x_ . ,0)@W+B)(z ,0)'|
N roﬂi roﬁi_
vhere o~
- N2 N — =
= - '
(2.9) B = (N1+N2)(N +N2 X Nl+N x)(N = x1 N1+N2 X, = X)

+ N3(x3-x)(;5-x)' s



and where for any matrix C,

(2.10) o Cc=1cC C C .

C20 ‘a1 Cxp
blocked in the manner of V(l),V(e), etc,, we have

, -1
(2.11) %1.0 = %1 7 %0%0Co

Recall that for C as in (2.10),

Coo Cop | o |

: €10 C41 l('Iro*rl’O)C(Iro"Lrl,O) l

(2.12) e, ol = IS = e .
. AL ' oo[ ‘ ool

- Using this fact, we can modify (2.8) into a form more suitable for computation:

1. e (V2 (3) (Y52
‘ﬁ (1, +0)(wsz) (IrO,O) 'ﬁ" (Iro*Tl’o)v (Ir0+rl,(-))
(2.13) Ay = : /
. (3) 3
(I :0) (w+B) (I ,0)'
' fr 0+rl I 5 l
- (N, +N_)/2
1 (l) (2) s Rl
) I+ (ro*‘r ) )(t T ;;) | .
: (1) (e) N, Nyl /2
R |N1+N2 Voo )

-10~




2.5. Calculation of the LRTS .

A comparison of (2.7) and (2.13) reveals that in calculating X = Moo
there is little,cancellation between terms inlﬁxl and terms in xe. Thus,
one‘reasonable way‘to compute vx. is to first compute. Kl and k2
separately, and then mul.tiply Al and A2 to obtain. A. However, to

take advantage of the one cancellation that does occur between terms in 'Al
. .

“and Ay We recommend first calculating Alu and (x2/u), where

N5/2
1
w= g @, ow®a ol T
3 01 071
the LRTS A can then be computed as the product of %lu and (ke/u).
- In setting up the matrices V(l),V(2),V(3),W,A,V(l)+v(2), and B for
. computation of xi_ and AQ, it is worth noting that some computational effort

can be saved by taking advantage of the relationship
. - 7~ , _ _ _
A=B+ (N +-N2leiN2(x(1)—x(2))' (x(l)-x(a))

holding between A and B (compare (2.6) and (2.9)).

The rejectioh'region for the null hypothesis H bésed upon the test
statistic A ié of the form X < A\*, where A* is a constant chosen so
that the test of_ H versus .A based on A has the desired level of
significance . If we use the asymptotic approximation -2log ~ X2 s

the degrees of freedom, f, for the approximation is equal to:

' r (r.+1) or_ (r,+L) . 3r, (r, +1)
v . oo T\ : 2\To r(r+)
=(r_+ . —e = r
£ =lrgter)+ov,) + B T BTy TgTy t T v S5 — Lr - B
(2.14) -
= g ry + 3r2 +‘ r r +2rr +2r.r_ + % rf + rg .

01 o2 12

-11-



2.4, A Bartlett Modification.

In a somewhat different hypothesis testing context (that of testing
homobeneity of variances), Bartlett (1957) suggested that the small sample
brhavior of the LRT might be improved by assuming in the calculation of

~the LRTS that the number_of observations taken in each population equals

the degrees of freedom left after estimating the various nuisance
.. . 7 , .

paramcters. This idea was applied to broader testing contexts by Andersen
(1958), and more reeently by Gleser and Olkin (1972). Following the arguments
in  G-0, the Bartlett modification of Al would replace Ng by Né-ro-rl-i
wherever Né explicitly appears in (2.7), g =1,2,3. The Bartlett
modification of x2 vwould replace Ni+Né by Ni+N2-rO-i and Nﬁ by

N)-r -1 wherever N.+N_ and N explicitly appear in (2.13). To find

12 3
the appropriate modification of 3 = xlx » we follow a rule implicitly used
by Anderson (1958) and - G-O, and replace N in the formula for A by
the smaller of the substituted sample sizes (degrees of freedom) used in
the modifications of Kl and A2, g = 1,2,5; In this particular problem,
this rule meanszﬁhat Ng is replaced by Né-ro-rl-l whérever Ng
explicitly appears in the formulas for Al and x2, g = 1,2,3., Under this

modification, Kl is replaced by

| m e
RO L T
r
0 "1 C 1 g=l g
(2.15) L = m ?
a 3 £
I%.(wm),e 1 InTl' (T .. ,O)V(g)(Ir . 20)"| 2
b g™y YoM 071
where mg =N -ro-rl 1, g= 1;2:3: and



. = +4 = - 4 4 .
m ml m2+m5 N ﬁ(ro rl 1)

Similarly A, 18 replaced by

m

3
m —
. : . 2
. (1, 00 (x, L0 |2 (@, ow® o]
(2.26) L. = T Yo o 3 Yo _Ip'T
SR 211,05
R, o), 02 1L y(3)) 2
m ro+rl ro+r:L m5 00
(m1+m )
S (1), (2) 2
_]mlﬁnz (Iro“‘ ,0) (v )Ty iy 20)' |
t @) @) ﬁ“) | ,
1) .. (2
\ | Imfm Voo )l
and the Bartiett ﬁddification of N is
’ (2.17) ' L = 1.11..2 = (Llu*)(Lz/u*) s
where
( ) m3/2
o= |E (1 0w Lol
,m3 ro+r1 ro+zl -

2.5.- The rejection region for H based on L

The appropriatébrejection region for the null hypothesis H based
upon the test statistic L is of the form L < L*, where L* is a constant
chosen so that the test of H has a desired level of significance a.
The form of this rejection region parallels the form of the rejection region

for the test of H versus A based on the LRTS A. Indeed,'when N1 = N2 = N3 =

~13-

TR DTS Y T

A




(K-ro-rl—;)/K (K—ro—r1~1)/K

then L = A , and thus when L* is set equal to (A¥) s

A and L define equivalent o-level tests of H. On the other hand, when

N,, N,, N, are not all equal to one another, L and A are not monotonically

1’ 72 3
reiated, and thus do not define equivalent o-level tests of H.

To carry out fﬁe test of H versus A based on L it is necessary to find
the value of the‘cut—off point L* that will provide the desired level of
significance o. Unfortunately, the distribuﬁional computations necessary-

in small samples to determine L* are extremely complicatéd, and the results
are still in anxincomplete state. A similar comment applies to

computation of the cut-off point A* that makes the test with rejection
region A < A* haéerlevel o in small samples.

N.,, N, are all of reasonably large magnitude, a large-sample

2’ 3

approximation can be used to find L*, namely

When Nl’

(2.18) - L* = exp(- % xi(a)),

2

where xi(a) is the (1-a)th fractile (100(l-o)th percentile) of the Xj

distribution, and f is given by (2.14). Note that this largerample

approximation is-identical to the large-sample approximation

(2.19) A* = exp (- %-x%(a))

for A* (see Section 2.3). This, of course, is ﬁdt surprising since L and A
have the same limiting distribution as Ng + o, g = 1, 2, 3. It should be
noted, however, thétvin moderate samples the re;éction regions A < ¢ and

L < ¢ are not the same, regardless of.the constant ¢, 0 < ¢ < 1. For example,

o (K-T,-1,-1)/K
when N, = N, = N, = K, then L = A , so that unless (K—ro—rl-l)/K

1 2 3
is close enough to 1, it is possible for the tests with the respective
rejection regions A < ¢ and L < ¢ to have a.positive probability (under H and

A) of reaching different conclusions.

-14-



3. An Illustrative Example

For the purposes of démonstrating appliﬁation of the test statistic
A obtained in»Sectioh 2, data was obtained from 300 raﬁdomly-selected
answer sheets taken from the April, 197l_administratioh of the Scholastic
Aptitude Test. Ey'éelecting various sections from the‘Scholastic Aptitude
Test (SAT), three different test forms (actually test sub-forms, since
not all sections were used) were constructed. Each form was equally
'repreScnted (100‘9b5¢rvations) in the sample. All'constructéd test

forms had a common verbal section (subtest T " Two of the forms had

0)'
a common mathematics section (subtest Ul)’ while the third form used
a different méthematics section of the same SAT (subtest US)' The
equating items from the SAT were combined into a third section which
we can call the ”eqﬁating section", which was assumed to differ amoung

the three forms (thus creating subtests Vl’ Vz, \Y Each section

3)'
(T, U, V) on a given‘constrﬁcted form (subform) was summarized by a

single score: T was summarized by X, U by Xy» and V:by-x If the

2
three forms (subforms) of the SAT are parallel, the pérameters of the
joint distributidns.of these subtest scores on, each of the thfee forms
must satisfy the null hypothesis H. To test thisinull hypothesis against
the alternative A.of’non—parallelism, we use the LRTS A'(Seption 25 and
reject H when | |

A < expl- 2 xa(@)},
or equivalently when

(3.1) -2 log A > xg(a),

where a is the desired level of significance, f is given by (2.14), and
x%(a) is the (1-a)th fractile of the'xi distribution.

In the‘context of the given problen, g =T) =T, = 1, r =3, N1 = N2

-15-



= N3 = 100, and N = 300, The values of the sufficient statistic (i}V) are

given in Table 1.

Table 1. Summary of the Test Score Data
¥ (14.44, 12.64, 14.66),
| 2{2) = (13.78, 12.86, 14.54),
—( %
X 2 (14,41, 10.36, 14.74),
; 6622.64 5260.84  5992,96
v ol 5260.84. 7525.04 5275.76 |,
5992,96 5275.76 7126.44
4563.16  2965.92  4383.88
v® 1 2065.92 - 5248.04  2985.56 ,
4383.88  2985.56 5746.84
S 6086.19  3055.24 5199.66
v® | 3055.24 3545.04 2940.36
5199.66 2940.36 6073.

24

From the data in Table 1, we find that

(3.2) -2 log A = 34.02.

Since ro = r1 = r2

xil(.OOS) = 26.8, it follows from (3.1) and (3.2) that the null hypothesis

'1, we find from Equation (2.14) that f = 11. " Since

of parallelism of the three constructed SAT subforms is rejected at the
0.5% level of significance.

The rejection‘of the parallelism hypdtheéis H in this particular
example occurs largely because of the difference between the average
scores of the examinges on the mathematics subtests U1 and U3 (see Table 1).
Since in our construction of these subtests we used two different

mathematics sections of the same SAT form, and since these two sections

-16-~



are not supposed.to'be iﬁtefchangeable (they presumably are designed to
test different aBiJitibs or levels of ability), the obtéined differences
are not surprising. The rejection of the parallelism hypothesis thus
merely reflects the artificial way in which the three subforms in our
e#ample were consffucted, and should not be taken as an indication of any

lack of parallelism of the forms actually used in administering the SAT.

4. Generalizations

The techniqués-of Section 2 can straightforwardly be extended to
treat hypdthesié testing problems in which scores on G forms of a test
aré compared to one another in an attémpt to determine if the G forms are
parallel. To present the relevant likelihood ratio test theory, however,
we need to change our notation, in order that theiresults may be given
in a compact form.

We assume that éach test form consists of G subtests: S(1), S(2),...,
S(G). Subtest S(i)‘haS'i different versions: Sl(i), SG—i+2(i)""’ SGQI(i)’
SG(i), where Sl(i) is common to test forms 1,..., G—i+1;.and vefsion Sj(i).
appears in test form i, j = G-i+2,..., G. Thus, subtest S(1) has only one
version Sl(l) which appears in all test fbrms. Subtest S(2) has 2 versions
81(2) and SG(Z), witﬁ 81(2) appearing in test forms 1, 2,..., G—l.and S (2)
appearing only in test form G. F1na11y, S(G) has G diffecrent versions
Sl(G), SZ(G),...; S (G), each version appearlng in one and only one test

form. The assignment of subtest versions to test forms is illustrated

in Figure 1.

-17-



Subtest Subtest Subtest Subtest Subtest
1 2 3 G-1 G
Test Torm'1 Sl(l) 51(2) 81(3) Sl(G—l) Sl(G)
Test Form 2 Sl(l) Sl(2) 81(3) Sl(G—l) 82(0)
Test Form 3 Sl(l) 81(2) 81(3) .SS(G—l) SS(G)
Test Form G-1 | §;(1) 5,(2) Sg.1 (3 - Se_1(G-1) | S, ,(6)
Test Form G Sl(l) SG(Z) SG(S) SG(G-l) SG(G)
Figure 1. Hierarchical assignment of subtest forms to
the G test forms.
‘ v G
Let each of the G test forms be characterized by r z rg scores:
, )

N

1

xgg)’ xgg),

S(1), S(2),...

,'S(G), respectively, of test form g. Hence x

on subtest S(l),‘r2 on subtest S(2),...

1 xiri vector, i = 1,2,..., G. Let

(4.1)

X

(g)

Xl )

(g) _ (

NON

ves X

5 T

(g)
G

G

on subtest S(G). Let

(g)

i

is an

o xég)lbe the scores of a typical individual on subtests

be the 1 x r vector of test scores by a typical individual who takes test

form g. As before, we assume that x(g) has a multivariate normal

distribution with mean vector

(4.2)

u

and covariance matrix

(g) .

(g) . (g)

1 2 ¥

~18-

ves MG

(g))




S(g)  v(®) ()
211 z12 e E1c
(g) 7_ (g) (g) (g)
(4.3) ) * Ll21 25t Lo ’

(g) (g) (g)
a1 Loz o Lgg

where the blocking of u(g) and z(g) conforms to the blocking of X(g).
SN ¢ R (@) ie i wop. ik o= o |
fhat is, uj isl x rj and zjk is lj X T3 j,k = 1,2,..., G.

We assume that individuals have been assigned to test forms at
random in such a way'that Ng individuals take test form g, g = 1,2,...,0.
We also assume that-the conditions under which individuals are examined
arc identical, and'that individuals work independently of one another.

Let the score vector of the ith individual taking test form g be

@ . @ @ (g
(4.4) x50 = (x1i s X2 e Koo ).

Under our above-stated assumptions the x(g), i-= 1,2,..}, N

i ;g=13.2"~-, G:

, g
arc mutually statistically independent, and a sufficient statistic for

the parametcrs of the distributions of test scores on the G test forms
2 G
v ),...’ y( )),

3

is (% V), where ¥ = (x1, X, @), v = W)

. . .
o g
(4.5) x@ . Loy 8. =@, o, 39,
g i=1 .
and ' ‘ Né _
V(g) = .21 (X:Eg) - ;(g))l (xig) - X(g))
1= ;
(4.6)
(g) (g) (g)
vi?t V5 e Vic
(g) (g) (g)
Vai V22 e VoG
tg) ig) ig)
Va1 Va2 v Vg

g=1,2,..., G.
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If the G test forms arc not parallel, the construction of our
experimental design assures us that at least the following relationships

hold among the paramoters:

N R (S A2 ) =1 2. g,
(4.7) A : J J ’ ’
R LG A

On the other hand, if the G forms are parallel, then the following

hypothesis about the parameters holds:

(4.8) TP CORNIICO BRI T €5 I J € R

H =y = e Z(G).

The iikelihood ratio test for testing the null hypothesis H against

the altcrnative A is constructed in terms of E{l), 2{2),...,‘;(6), V(l),

V(Z),..., V(G), and the following quantities:

(4.9) M, = % N, ' j=1,2,..., G,
i L e
g=1
(4.10) q. = % T, j=1,2,..., 6,
Ioogh e
(4.11) Ej = (Iqj,O):qj X T, j=1,2,..., G,
S " -
(4.12) W= ] oV, j=1,2,..., G,
g=1 '
and B1 =0,
Mg B osw -, a0 Y
(4.13) B.=B._l+—-J—M—1—-—-(M- ¥ ON X% ) Gy .ZNgx -
oo j-1g=1 & j-1 g=1

for j = 2,3,..., G. Note that

G G
4.14 ’ = q,. = s N=M, = N
( ) T qG ggl rg G Z

-20-



The likelihood ratio test statistic A for testing H versus A can now
be derived by a simple extension of the method used in Section 2 (for the

case G = 3). The resulting LRTS is

¢ |%_ Byp (MGvBy) B! G/?‘ (J)l "i/f2
| G
(4.15) A =§ T -
j=2 11 o Yo/2)1 (5) iz
|MG By (fg+By) 5 INJ 6o Vo EGoganl

E!|Mj/2

6-1 1. E5 Yooge1

j=2 Il_ E. | J/r

Mj j-1 G J+1

Loy |N1/2
Nl‘
ll’E‘ v Ei 1/2

Nl G-1

We reject the null hypothesis H if
(4.16) : : A< A*

where A* is chosen so as to give the test a desired level of significance

o, For Nl’ N2,..;,'NG all moderately large, we can use the fact that

under H
@.17) -2 1ogxlﬁ—‘1 X%,
where
G
r (r +r__,+3) T, (r,+3). G G
@.28) £= Jg-BB gl o L L 2 Ve )]r3),
g=2 ' g=1 8/\g=1 8

to find an approximate level-a test based on A. This test rejects H when
' 2
(4.19) -2 log A >vxf(a),

where A is given by (4.15), and f is given by (4.18).
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Various other hierarchical designs for testing the parallelism ,
psychological tests can be analyzed using the methods of likelihood
ratio testing developed here and in the earlier paper (Cleser and
Olkin (1972)). Discussion of these designs and their analysis is planned

for a future paper.
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