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1. Intrdduction

Let £' = (£ a}.;fk) be a vector ¢of linearly independent continuous

O’ fl’
functions on a compact set %. For each % or "level” in X an experiment can be

performed whose outcome is a random variable Y(x) with mean value 8'f(x) =

T Gi fi(x) and variance 02, independent of x. The functions,fi, i=0,1,...,k

are called the regression functions and assumed known to the experimenter while

the ve;tor of parameters 6' = (90,91,...,9 ) and 02 are unknown. An experimental
design is a probability measure § onX. 1f § concentra;es mass'§i at the points
X i=1, 2,...,r and §iN = n, are integers, the experimenter takes N uncorrelated
observations, n, ét eaéh-xi,i =1, 2,...,¥. The covgriange ﬁatrix of the least
squares estimates of the'parameters‘éi is then given by %-er}(g) where

©), m,® = 5,60 ¢

j(x) d€(x) is the information matrix of the

M(E) = (mij

experiment.

A fairly general problem in design theory is to.minimize‘a convex function
Y(M) of the tnformation matrix M. For example Y(M) = tr BMml_f@r B positive
semi-definite or Y(M) = -log |M‘ where IM! denotes the detefminant of M. Récently
a number of equivalence theorems and closely related iterative procedures have
appeared for minimiziﬁg Y(M(g))rsee Kiefér [1973] for refefendes. The purpose
of this paper is to describe and study some very special iterative procedures

which in approximation theory are called Remez type pr@eeﬁuﬁe@ or Remez exchange
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procedures. These procedure will be used to minimize c'M-l(g)_c for a fixed
vector c' = (co,cl,...;ck). In Section 2 we outline and discuss the procedure
and give two simple exaﬁples. Section 3 contgins a proof of the convergence.

~ This proof as well as.fhé procedure is taken from Meinardus [1967]. The proof is
given in a design theory context and is included here for completeness. Some

‘geometrical aspects of the procedure are included in Section &.

2. Remez Procedure.

One of the general iteratiﬁe procedures fof minimizing Y(M) is the following:
if at the nth step we ére at=M(§n) = M_we then move locally in & direction
with "steepest descent”. That is, we choose ﬁ; so that g(a)‘='Y((1-00Mh+&ﬁn)
has a minimum derivative at o = 0. Then ¥  , = (1 - oM % o ﬁn and o is
suitably chosen to give a decrease in Y. Since the set of all information
matrices M(E) is "spanned" by the set M(§x) = f(x) f'(x), x € %‘(gx cencentrates
mass one at the point x) we restrict the matrices ﬁh to be of the form
M = f(x) £'(x) and then find the x value to give the minimum value for g'(0) as
a function of x. This result gives g'(0) = trV Y(Mh)(f(x),f'(i) - Mﬁ) where>
VY(M) 1s the kxk matrix with entries (v"i'(M))ij = %;;— Y(M);» We thus move ;n a
direction f£f(x) £'(x) Wﬁere x minimizes f”(x)v'Y(Mn) %(x}. iﬁ certain speciai
cases for Y the o = o, at the nth stage may be explicitly choseﬁ in an optimal

manner. The most general method is simply to use gﬁ-* 0, to obtain some sort of

convergence and T o = © to prevent convergemee before reaching a minimum. In

the case Y(M) = c'Mﬁlc for some c¢' = (€.;Cq,...5C ) we obtain
0’71 n
, ' v ' -1 2
¢2.1) £ (x)V I £(x) = =(£'(x) M~ ¢)
so that x = x_ is chosen to maximize |£°(x) Mglciu The Fedorov type procedure

(see'Fedprov L1972D), then chooses §n+1 - (l-dn) gﬁ%@n %K.; thus moving slowly toward

a measure £ concentrating mass on the extreme of |f“(x}mg'éﬁg Part of the general



| . | |
equivalence theorem states that for € minimizing Y(M(E)), the value g' (0)

must bé zero for all x. 'In the case Y(M) = c'M-lc this reduces to
- : - *
(2.2) (c'M L™ f'(x))z < e iEe.

A presumably faster method, éee Silvey and Titteriﬁgfon [1973], is to choose
§n+1 to minimize Y(M(€)) where & is restricted to have support 9n the support
of En pius the point X - Thus, 1f one starts with a maasure.éo with mass
p(?)...P(o) on xl:..;r,.the point x ., is found maximizing ]ff(xﬂﬁquo) ¢| and

the values pil) i=1,...,7+1 are found to minimize

oW, |
(2.3) LI p,7 £lx) £'(x)

As one proceeds, most of the pi‘values will be zero so that thé number of effective
x points remains bounded. In general this bound is (k+1)(k+2)/2- In the case

YoMy = c'Mnlc an optimal design can always be found on k+l points. This 1s due

to a theorem of Elfving (see Karlin and Studden [1966)) which states that E*-
minimizes c'M-l(E)c if and only if there exists a function € with |€(x)| =1

such that JE(X) £(x) d&(x) =B,c for 5;2 = min c'M-l(g)Cand B.c is a boun&ary point
of a certain set R whiéh is the convex hull Ef the set {4 f(i) | x €2}

From the relation ?;? = inf c'Mﬂl(g)c it follows that

. 2
=P (c'd)
(2.4) B, = inf sup =%
* e g ¢ M(E)a
> inf (c')’

e [@een’Em

Le'9?
sup (d‘f(x))z
® .

In this case



(2.5) ‘sup |d'f(k5\ > B,
x

for any d such that c}d = 1. Equation (2.4) provides the cénﬁectionlbetween the
design theory and aéproximation theory since the sup and iﬁf can be interchanged
to show that the inf over d in (2.5) is B,_. |

The Remez procedﬁre for % = [a,b] restricts attention to gn with support
on k + 1 points and describes a method of 'exchange'.

One starts with & set a< x(O) < xio) <,..< xéo) <b. By the Elfving

Theorem mentioned above applied to the set % = { % (0)~ V=

..k} the optimal
weights pé ) v = (0, 1?7..5k are a solution of

k

2.6 &06@(3) (cm) »

() _(0)
where Ef’o)-; +1° é\.’ 20, zpv" 1, BO >0

and ﬁaz i{s the minimumvalue of c'M-l(g)c for § with support on xio)

In general one must take the solution of (2.6) with the maximal Bd if the

,1=0,...,k.

f(xi?)) are 1inear1y'independent the solution is then unique. Letting Eo’denote

the above design and

@.7) gy =W EY £ /W E e .
(éee (2.2)) we then choose a new set of points a < xél) < x;l) <.,.< xg:);s b
so that

2.8) (D i&po(x&))i Byr V= 0, Louuok

@ g%(x(;’) | > B, for some v,

) sgn»@quél)) = osgn w0<x48>>

where @ is constant = % 1.

(1)

The next design § is then chosen by taking p, @asa solution of



k
(1 (1)
\?::0 ev pv

(1)) = B.c

.f (xv 1

>Continuing in this manner we obtain a sequence of designs §n and values
B2 - c'M-1(§ Ye which,hopefully converge.
n n : '
With regard to the conditions (1) (2) and (3) for the new set of points

there are two usual methods of proceding. Typically the function ¢0(x) will

have k-1 local extréma kil), i=1,...,k-1 and onevuses these together with:
xél) = a and xé1)= b. The other method is to just choose § to glve
| |?§§)| = max |¢0(x)lrand then exchange £ for ome 5f the xso) values to satisfy (3)
value for whicﬁ

X
Roughly speaking this entails replacing § with an adjacent xéo)'

9 has the same sign. In general we use the following rule.

€ value sgn wo(g) = g€ repiaces
(0 0 0

agt< %é ? sgn wo(xé )) | xé ) »
a<gf< xéo)‘ ~sgn wo(xg) xéq) ’
0<Vv<k-l

©) . € < xégi  sgn ¢0(x50)) xso),
xéo) <E <5 sgn @O(xéo)) (©

0 . <t ~sgn ‘Pg(KEEO); Kéo)

Note that in both of these casegone of the xso) valuesvis replaced by the §
value for which BCPO(E)E = “‘POH = S;p E@O(x)i° Somthing of this nature is

necessary in order tc prevent convergence before reaching the required limit.
We will prove convergence of the above procedure for the case where the vector

c is "Tchebycheffian" with respect to the system fi(x), i=0, 1,...,k. This



means that for every set of k + 1 points a < X < X <...< xk < b the determinants

Dv(C) = Dv(C; .,xk) =v‘f(x0), f(xl),...,f(xb_l), c, f(xv+1),...,f(xk)|

Xy Ky
are never zero and théy alternmate in sign. We now show under these conditions and
ol -1 ’
> ' '
(1) (2) and (3) that Bn+1 > Bn or ¢c'M (§n+1)c <ec M‘ (§n)c. As inspection of the
c(0)
v

equations (2.6) shows that the values v =0, 1,...,k alternate in sign.

Moreover by (2.6) and (2.7)‘§ péo) Eso) qb(xéo)) = 30
and by (2.2), |¢0(xéo))| < BO so that 650) mo(x(g)) = BO' This implies that
(2.9) mo(x(S)) v =0,1,...,k

alternate‘in sign

These above conclusions hold at each step so that

=3 €D LM g M,

1 1) (@]
- % e(v) P(v) ‘¢o ( ))| sgn ¢0(x ))
1 1 ( ) 0)
- § (v) (1) ! 0 )l sgn ¢0(x(v))

-3 n” I
bTherefore
2100 B, =8y + Z Y (o, T - 8))
By condition (1),tﬁat |¢0<x(3)>| > BO 'we have

(2.11) B, > 8,

We should note here that the Silvey and Titterington type procedure would
" ' {0 (0 o :
choose the "best” subset of k + 1 p@ints from {x R PP 5} whereas the Remez
procedure is not gemerally the best but the exchange is made explicit.  Thus

instead of determining the B in (2.6) for each subsét of k + 1 points an exchange



is made and the system of equations (2.6) is solved once instead of n + 1 times.

The sacrifice is, of course, a smaller increase in the B value.

Example 1. This example will be used to illustrate the>choicé of exéhange

points. Let Z = [-1, 1], £'(x) = (1,x) and ¢ =(0,1). For,anuinitial two points

we use xéo) = - 1/2 and’x{o) =+ 3/4: Then ¢0(x) =x -1/8 and § = -1 giving

|¢0(§)‘ = mix |¢0(x)|i Moreover Géo) = -1 = sgn ¢0(xéo)), Eio) = +1 = sgn ¢0(x§0))
and 90 = 5/8. One can easily show that § = -1 must be exchanged with x(o) = =1/2

0
giving 31 = 7/8. The exchange with xio) gives a decrease to Bl = 1/4. The next
(0) |
0

v : (0)
step will produce € = +1. One could exchange x “and % at the first step

for the two extreme of lwo(x)‘, namely x = + 1.

Example 2. Let £f'(x) = (1, x, x2, (x = ﬂ)i) for X = [-1,1], where (x - n)i =
(x - ﬂ)z 1f x > N and equals zero for x < T. We consider the case T = 0.4. The

procédure is terminated if the critical value

where |‘¢nl| = max ‘mn(x)|. Four equally spaced points on [-1,1] where used
< :

for an initilal set xgg vV =0,1,2,3. The results are as follows.

@ @ L

n %5 Xy %9 *q P &
— - 5
0 -1 -.3333 .3333 1 4.5000 x 1072 | 1.0345 x 10
1 -1 -.3333  .5862 1 6.9108 x 102 | 2.2624 x 1072
2 -1 -.2545  .5862 1 6.3514 x 10"2 7.3706 x 10~a
3. -1 -.2545  .5941 1 6.3534 x 102 6.3136 x 10 °
The design §3 is then
-1 -.2545  .5941 1
© . .
59 = g.ogsg 2810 .4062  .2190 } :

and 8-2 = 247.7
n



The Fedorov procedure for this example was run for 30 iterations and 'rounded
off" to a four point design as described in Fedorov [1972] page 109. The results

produged a design

~ _f-1  -.3166 .5305 }
30 ~).1144  ..2427 .4633 .1796

(]

1 N —
and c¢'M (§3o)c_— 267.9

It should be remarked that each iteration in the Fedorov procedure usually takes

less time than an iteration using the Remez procedure.

§ 3 Proof of Convergence. We assume that the conditions (2.8) hold, that c is
Tchebycheffian with fespect to {fi}’ and that § giving m§x1|¢(x)‘ is one of the
points in the exchange.

We take equatidn (2;10) with 0 and 1 replaced by n and h:+ 1 to give

B, - P =TV (lp &2 -8 )

This implies 3 > B . Since at each stage there exists*a'vn such that

¢ (xvn+1)) = ||¢ || = sup |¢ (x)| it then follows that

G B -P 2.p£“+1) (e, - 8.3
: n :

We will show subsequently that lim p(\’n)> 0 for each v. Since the Bn‘ are bounded
n N
~ by B, they must converge and hence |l¢n|| - Bn = 0. By the definition of ¢

given in (2.7) by
o () = M IE) £ / M L(E)e
n - n n
it follow from (2.5) that

AESITRY



An upper bound on ||¢n|| can be obtained from equation (3.1) to give

Besllollse + @ -8 /0 (n+1)

n
oo (nt+1)
<B + (B, -B8) /b
“n
Therefore ||¢ || and hence B converges to P.

In order to show that lim 6 )> 0 we first show that lim |x( n) xin)l > 0.

n n
In the contrary case there exists a Yo and a subsequence such that
xéﬂll - xén) = 0 along the subsequence. We further refine the subsequence so that all
0 ' .
()

converge. The limit set will have at most k points say zl, ZyseresZy- We

then choose a polynomial a'f(x) such that

a'f(zv) =0 v_é 1, 2,...,k

a'le=1

then from the equation

Y

. (n) ‘_ -
(3.2) § P, Ev f(xv ) = Bnc

we obtain
T psn)_Ev a'f(xin)) =B '

However, in this case, the left side goes to zero from the'coﬁtinuity of the

functions £, while the right side Bn increases to B, > 0. The resulting contra-

i
diction gives lim xszi - xin) > 0. Now from each v and n we choose the vector
- ‘

a so that
n

(n) . ‘ .
a! f£(x; ) =0 1=0,1,....k, 1 # v
(3.3) :
a; c=1
Then p(n) e(n) a; f(25n)) = Bn' If lim psn)-= 0 then on aisuitable subsequence

v v n
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a; f(xin)) - ®, Howener the solution a from (3.3) is easily seen to be bounded

(n) (n)y o
if;__? lxyp; - %, 1 2M.>0.

8 4 Geometry of Remez Procedure. A number of interpretations are available here.

As remarked around (2.4) and (2.5) the design problem is equivalent to minimizing

(O () (0 '

y = {xo ’ xl "'-’xk _}s d

c'M-l(go) / c'M-l(Eo)c gives minimum value for sup |d'f(x)|. One then "plots"
. ' x€X ‘

¢0(x) or considers |¢o(xﬂ to find it's maximum €. "An exchange is then made to

sup ld'f(x)‘ subject to d'e = 1. For XO

give X, etc. One is aetually solving for the k + 1 pointssuch that inf sup |d'£() | is

d xEX
a maximum. This turns out to be equivalent to findinginf sup |d'f(x)| The 'Remez

d x

. procedure can be readily interpreted using the Elfving - Theorem. The vector d'
- -1,

= c¢'M 1(§ ) / e'™ (E e gives a supportplane d'z = BO (z = (zo,z ...,zk)) at

B.c to the set R( ) determined as the comvex hu11 of + f(x(o))
0

The representation

0, 1,...,k.

_ . (0)
B.c = % P, Ev f(xv

0 )

gives B c as a convex combination of € f(x(o)) and such E f(x( )) lies in the
hyperplane d'z = BO,,i{e. € ¢0(x(0)) = B One now chooses E giving maximum value
for'|¢0(x)| so that Gwo(g) > BO or €£(€) lies on the side of hyperplane d'z ='Bo
opposite the origin. -If one can now exchange €f(§) with one of. the vectors

G f(x(o)) 80 5 c (B > 0) is a convex combination of the new set of vectors then

"clearly" 81 > BO' This is true since if d c = 1 then

W
1
mw
[~
o
[}

.dlB.c_

-afz P e £y 4 oV e
i

d--(g D e £l 4+ pP (Esce) - eif<x§°)»>))
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2 ©, . (D ¢
=T p, € opx,") +py (&p(8) - By)

B, + Py <_|¢<§)| - By

1f one exchanges more than one point we end up with equation (2.10).

In order to determine how the exchange should be made we let

4y = Evf(xso)) and a = ij(g)- Then

%1 Pec=-

0 v=0 pv_?v- (pv = Péo))

and we wish an exchange .so that a similar equation holds. One simply takes a

fepresentation

4.2) a= % q, av'

and considers an exchange ﬁsing any a, with q # 0. Solving (4.2) for ag, and

substituting in (4.1) gives

ﬁoc = X 6 ) a + pi(a - T q, v) / 4y
vil v#i
AN P P
1 = I q, — -’—L>z: +—La
VAL Q% 94/ vV Y4

In order to have all the .coefficients non-negative we choose i to give minimum

value for pi/qi for qi > 0. A renormalization then pgoduces}

Blc = I p(l) a, + pil) a
_ véi

This method of exchange has certain advantages over the one indicated in the table
in § 2. One advantage 1s that the ordering of the x values is not used so that we

do not require X to be an interval.
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