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Hoel, Port, and Stone [3] have given an elegant, elementary proof of
the following familiar theorem for discrete time Markov chains with

stationary transition probabilities:

THEOREM 1. - If the Markov chain is irreducible, aperiodic, and positive

recurrent, then the n-step transition probabilities, Pi j(n), alllconverge
: bl

to the stationary probabilities, I(j).

Their proof says, in effect: Let one '"particle" stért in state i,
another start with tﬁe stationary distribution, and each, independently
of the other, move according to the given transition matrix. The three
components of the hypothesis guarantee that the "direct-product" process
is irreducible and recurrent so with probability one the two particles
will eventually be in the same state at the same time. Letting T be the

time until this occurs, we conclude that

(1) Py, = (G| < P(T > m).

This proof has great appeal not only because it is essentially
probabilistic and much simpler than the usual proof, see e.g. Chung [1],
or Feller [2] or Karlin [4], but also because for finite chains we can

then get an exponential rate of convergence. That is, the right side of




(1) is easily seeh tb be less than (l—a)n for some a > 0 which does not
depend on the initial state i, and for all n greater than the number of
states.

On the other hand, the usual proof covers the null rééurrent case as
well, while Hoel; Port, and Stone's does not. To remedy this situation

we offer a pfooﬁ in the same spirit as theirs for the null recurrent case:

THEOREM 2. If the Markov chain is irreducible, aperiodic and null

recurrent, then the n-step transition probabilities converge to zero.

Proof. The three components of the hypothesis guarantee that the

direct-product procéss——namely the one with transition probabilities

.. = P, P.
Ui,5), (x,0) ik "j,e
--is irreducible just as before but not necessarily recurfent.

If it is transient, the proof is easy since transience is well-known

to be equivalent tov'

m.
(2) nle(i’j)(k’z)(n) < o for all i,j,k,2.
so, in particular,

X [P. . (n)]2 < for all i,j.
.__1 ) 1]

n
(Incidentally (2) is easily proved probabilistically; see e.g. Hoel, Port,
and Stone [3].)
If it is recurrent, we exploit the existence of a (ﬁnique up to
multiplicative consfant) generalized stationary distributiqn (i.e. ihvariant

measure) for the ofiginal chain, namely the non-negative solution to the

system of equationsf




m(j) = n(i)P, .
alg i 1.3

Let R(i) '"particles" start in state i, for each i, and let each
""particle", independently of the others, move according to the given
transition matrix. If ER(i) = m(i) for each i, then, as is well-known, the
expected number_of pafticles in state i at time n is again m(i) for each
i and n. Moreover; since Z m(i) = « for any null recurrent chain, it ié
easy to choose the R(i)'s :o that Z R(i) = «~ with probébility one,

Now start a."pértiéle" in staie io and let it pove independently of
.the others. By recurrence of the direct product chain each one of the
other "particles"'will eventually be in the same state éf:the same time
as this one. Then, roughly speaking all the ones that do so by time n have
the same chance as this one of being in state j0 at time‘n. But the
expected number is_m(jo) for all n. Hence Pio’jo(n) must go to zero.

Here is a rigorous proof:

Let {Y(n): n Z_O}»ﬁnd {Xr(n): r=1,2,...; n > 0} satisfy:

Y(0) = i0 _

X.(0) =i if J_Zi R(G) < r ijgi R(5)

PO (+1) = JHR(DY, (YO :kan}, (X, (D) = Py

P (n+1) = JIRADY, (Y}, X (K kend, (X (K):s #7]) = Py (o j
. r

Let
Nn = number of r for which Y(k) = Xr(k) for some k < n
t < NO} = {r: Y(O) = Xr(O)}

{th N, < t_f-Nn+1} = {r: Y(n+l) = Xr(n+1), Y(k) #'Xr(k), k < n}

i.e. W, is the "t-th particle met by" {Y(n)}.




Then
m(jo) = E(number of r for which Xr(n) = jo)

> FIE Tty 0 = 393 0y

= g P(Xypy (M) = JoIN, = tIP(N_>t).

It is easy to show that

P(Xw(t) (n) = joan 2t) = P(Y(n) = jyIN > t),
Now '

Pio,jo(n) = P(Y(n) = Joan _>_t)P(Nn > t) + P(Y(n)=j0|N_n < t)p(Nn < t)

_<_:P(Y(n) = joan >t) + P(N_ < t).

Thus

m(i,) 1Z[P-¥” f (n) - P(N_ < t)]IP(N_ > t).

TV T g n n

Since Nn 4w as n - o, we conclude that P, . (n) >0 asn >~ =@

1,5
_ 0’70 :
Here are two related open questions: Does Nn + = even when the direct-

product chain is transient? (ENn does.) For any given null recurrent chain
is there a k such that the k-fold direct product chain is transient? (i.e. is

Z[Pi j(n)]k < » for some i,j and k?)
n 2 PR
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