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Transient solutions in Markovian queueing systems.

| In many applications, one has to find transient solutions in queueing

systems, such as parallel qheues, sequential queues or queueing networks.

Many of these queueing systems are Markovian, i.e. they can be formulated

in terms of Markov processes. There are several methods available to find

transiént solutions of Markov p}ocesses. However, since queueing systems
'

lead to Markov processes with huge, but sparse transition matrices, only

methods preserVing sparsity are promising. Such methods will be discussed

in the paper.



Abstract:

This paper discusses the methods available to find transient solutions
for huge, but.sparse Markov brocesses, as they arise in connection with
queueing systems. The methods discussed include Runge—Kutta, Liou's
method, and ran&omizafion. It is shown that all these methods are closely
related, but that the method of randomization is superior to the other two
methods. Our own experience and experience of others ciearly indicate that
all the methods mentioned above are viable for finding transient solutions

in problems having 600 states or more.



Introduction

A queueing system, i.e. a system consisting ofrone or several queues,
is Markovian if it can be formulated as a Markov process. The simplest
Markovian queue is the M/M/1 queue. The states of the Markov process
dgscribing this queue are i, where i is the number of elements in the
system. The transition matrix of this process is very sparse: Its only

non-zero elements are a.

3 ie] T A and a; s = U.

i

If a system has.d interdependent Poisson queues, the system is still
Markovian, but its states are the d-tuples il; iZf'”"id’ where ij’
j =1,2,3,...,dyis the length of the jth queue.

An Erlang queue is another example of a Markovian qﬁeueing system.
The state space of the M/Ek/l queue is e.g. characterized by the two
numbers il and-iz, where i1 is the queue length and i2 the phase of the
server. Clearly, systems consisting of d such Erlang queues can be
characterized by a Markov process whose states are described by 2 d integers
il’ i2""’i2d'

Even when considering only steady state solutions, Markovian queueing
systems are complex. In some cases, closed solutions are available. A
good description of these cases is found in Kleinrocks book [7]. However,
most practical pfoblems are too involved to be solved analytically, and a
numerical approath is indicated. In particular, Schassberger [14] developped
an iterative approach to find the equilibrium probabilities for two queues
in parallel. His method was later used by Wallace and Rosenberg [15] for

solving queueing problems arising in computer systems. Furthermore, Hillier



and Boling [3] used a different iterative method to find equilibrium
solutions for sequential queues.

The main problem faced by these authors is the.ehormous size of the
transition matfix. A queueing system leads to a Markov process whose states
are the d-tuples il’ iz,...,id. If each ij can assume é different values,
there are thus ad different states, and even for small a and d, thiﬁ number
can easily exceed 1000. The transition matrix of éuch a process has over
10002 = one million entries, and that many entries are difficult to store
iﬁ today's computers. Fortunately the transition matrices are usually
sparse, and it is sufficient to store only the non—zérb entries (see [12]).

If a process has N states, the transition matrix provides N-1 equations
for the N unknown steady state probabilities. An Nth equation is obtained
because the sum of all these probabilitieé must equal one.

When N is large, say 1000, the solution of these equations becomes
difficult. A straight-forward application of Gauss-Jordan would result in
N3, or one billion operations. To do that many operations is extremely
expensive, and to. reduce the computer costs, one has to exploit the sparsity
of the transition matrix. Unfortunately, even if one starts out with a
.sparse matrix, the later operations of Gauss-Jordan result in a dense matrix.
For this reason, the authors cited above did not use the method of Gauss-
qudan, but other algorithms which were able to preserve sparsity better.

The problems encountered when finding steady state solutions persist
when one desires to find transient solutions. Again, the tfansition matrices
are huge, but sparse. Any efficient algorithm has to preserve sparsity. This‘
already rules out methods using Eigenvectors, which ére normally used to find

transient solutions of small Markov processes [4,6]. However, there are



other methods available. Several authors [5, 9, 10,.11; 16] have employed
the Runge-Kutta method for solving differential equations for finding
transient solutidns in queueing systems. In particular, Olson [11]
observed that it takes less computer time to find transient solutions of
the M/M/1 queue by Runge-Kutta than it does by using the explicit formula
given in Prabhu's book [13]. Whitlock [16] solved substantial queueing
networks by the same method. We ourselves used randomization as it will

be described below to find transient solutions of processes with over 600
states without difficulties. Thus, finding transient solutions in queueing

systems is quite'feasible.



The method of Runge-Kutta.

Let A = [aij] be the transition matrix of a continuous Markov process

with N states. As usual, as; is defined as:
§
a,. = - a. .
11 j=1 1]

The problem is now to find pj(t), the probability of being in state j at

time t, given pj(O) = qj, j =1,2,...,N. ‘As is well known, the pj(t) can

be found from the following differential equations:

N
P1(t) izl a;5p; (1) i=1,2,...,N (1)

with

p;(0) = q, i=1,2,...,N (2)

These equations can be solved by the method of Runge and Kutta, which

particularizes in this case to:

pl(g+1)h] = p(gh) + gK; + 3K, + 3K, + 2K, + O(h) (3)

with:

~
u

K, = plgh) (Ah)

K, = [p(gh) + %K
K; = [p(gh) + 3K,](Ah)
K, = [p(gh) + K;](Ah)

In these equations, Ei are row vectors, and p(t) is equal to

-~
]

-~
|

[pl(t), pz(t),...,pN(t)]. Equation (3) is applied recuréively to calculate
p(h), p(eh),...,p(gh), p[(g+1)h].

The essential question is how this method performs as N becomes large.
In order to see this, the number of operations and the storage requirements

will be evaluated.



The storage requirement, as it will be calculated for all methods
under discussion, will never include the aray or arays needed to store A.

When discussing the number of operations, we will use the following
conventions: |

a) A vector-matrix multiplication is the multiplication of a row-
vector with a matrix of‘size NxN.

b) A vector addition is the additioh of two row vectors of length N.

¢) A scalar multiplication is the multiplication of a row-vector by
a scalar.

Of these operations, the vector-matrix multiplication is by far the most
fime—consuming one. Vector addition and scalar multiplication are about
equal as far as computer time is concerned.

Storagewise, the method of Runge-Kutta requires foui one-dimensional
arrays of length N. Two of those arrays are requiredrto store p(gh) and
pl(g+1)h], and the remaining two are needed to store_E; and K, . K3 can be

1 -2 =

stored in the same array as 51. To do this, one adds %51 to the appropriate

term in equation 3 as soon as 52 has been calculated. Then, 51 is no longer

needed, and its space is available to store 55. For similar reasons, it

is possible to store 54 in the array originally used to store 52.
The total number of operations to evaluate equation (3) is 4 vector-
matrix multiplications, corresponding to the 4 Ei’ 7 vector additions,
corresponding to the 7 plus signs, and 6 scalar multiplications. Also, A
has to-be multiplied by h, but this has to be done only once and need not
be repeated for any g > 1.
- As mentioned, the method of Runge-Kutta was successfully employed to

solve a variety of queueing problems. Whitlock [16] used it actually for

systems with non time-homogeneous transition matrices. In this case,



equation (3) has to be slightly modified. The numerical experience reported
by the authors cited indicates that Runge-Kutta is a viable method for
"calculating transient solutions. Whitlock [16] also found that Runge-

Kutta is much faster than simulation.

Modified Runge-Kutta and Liou's method

It is possible to write equation (3) in a more compact way. One
finds by simﬁle:substitution:‘ |

K; = p(gh) (Ah)

K, = p(gh) (Ah) + 2p(gh) (Ah)?

K5 = p(eh) (ah) + Lpcen) am)? + Zp(eh) (amy®

X, = (gh) (Ah) + p(gh) (AW)? + Jp(gh) (AM)® + To(gh) (any*

Using these values for Ei’ equation (3) can be written:

Rl(g*1)h] = p(gh) + 3K, + 3K, + =k, + 0(h>)

= p(gh)+p(gh) (Ah) + 5p(gh) ()% + Zp(gh) (An) >+Lop (gh) amy*+0(n®).  (5)

This method shall bé called the modified Runge-Kutta method.

Before discussing this equation in detail, we introduce Liou's
approach, which is as follows:

The solutibn of differential equations (1), subject to the initial

conditions (2) can be written as:

p(t) = p(0) exp(At) = q exp(At).

Here, q = [ql,qz,...,qN]. p(t) can now be found from the following power
series expansion:
m

o -1
p(t) = §7 q(At)/n1 = ¥ qat)"/n! + R . (6)
n=0 n=0



Here, Rm is a row vector which indicates the trancation error, given one
only retains the first m terms of the power series. Liou now suggested
to evaluate p(t) by equation (6). It turns out that the modified Runge-
Kutta method is a special case of Liou's method.

First, since the process is time-homogeneous, one finds for t. > t

2 1
after having shifted the origin of the time axis to t1:
m-1 n n
Eﬁtz) = Eﬁtl)exp[A(tz-tl)] = nzo Eﬁtl)A (tz-tl) /n! + Rm' (7).

If m is replaced by 5, tl by gh and t2 by (g+1)h, this expression is exactly
the same as equation (5), which shows that (6) implies (5).

Since Lioﬁ's method i§ a generalization of the modified Runge-Kutta
method, it is sufficient to discuss Liou's method.

The terms gﬁAt)n/n! of Liou's method can be calculated recursively as:

{laa)™ Y/ m-1317-a}e/n.

gﬁAt)n/n!

To do this recursion, one has one vector-matrix multiplication, and one
scalar multiplication for multiplying the result by t/n. To calculate the
m terms q, q(At)/1!, ngt)z/Zl,...,gﬁAt)m_l/(m-l)!, this recursion has to be
applied m-1 times, giving (m-1) vector matrix multiplications and (m-1)
scalar multiplications. To obtain p(t), one has to sum ail these terms
which gives (m-1) vector addition. In the modified Runge-Kutta method,

)
one has m=5, which gives four vector matrix multiplications, four scalar
multiplications and four vector additions. This compares with four vector
matrix multiplications, 7 vector additions and 6 scalar multiplications in the
direct Runge-Kutta method. The modified Runge-Kutta method results thus in

a considerable saving in computer time.



Furthermore, Liou's method can be done using three one-dimensional
arrays only: One is used to store the vectors gﬁAt)n/n!, one to store
g{At)n-l/(n—l)!, and one to calculate p(t). This implies also that the modified
Runge-Kutta needs less storage than the original Runge-Kutta.

‘Transient solutions are primarily interesting for systems that converge
slowly toward their steady state. In such cases, p(t) for high t has to
be evaluated. For high t, Liou's method results in substantial round-off

o

errors. This is so because gAt, and, with it, gﬁAt)n/n! have negative
elements. When summing'up the terms, which are huge for large t, the
negative and positive elements almost cancel each other out, because the

sum of all termsimust bé a probability vector which has elements between
zero and one. There are two possibilities to avoid'having differences
between large numbers. One is to break down the interVal from 0 to t into
several subintervals [O,tl), [tl,tz),.;.,[ti,t), and éalculate the Ejti)
recursively using equation (7). Alternatively, one can look for methods not

requiring any subtractions. Such a method will be described in the next

section.

Randomization

As mentioned above; the negative diagonal elements of A cause high
round-off'errofs when calculating p(t) according to equafion (6). It is
now possible to find p(t) by a series expansion of a matrix P which contains
no negative elements.

To do this, let P be equal to:
P=A/F+1 (8)

Here, F z_laiil, but otherwise an arbitrary number.

L]
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The off-diagonal elements of P are non-negative as are the ones of A.

The diagonal elements of P are:

Pjj = a33/F+l > a5, /]a; ] + 1= 0.

Thus, the p;; are non-negative as well.

The row sums of P are one:

a../F+1 = 0+1
1]

Il o~
=]
i

I 12

1
Consequently, P is a stochastic matrix.

One now finds for p(t)

p(t) = gexp(At) = q exp[(A/F+I)Ft-IFt] = q exp(PFt)exp(-Ft)

- m
} P'[(F)" exp(-Ft)/nl] =
n=0 n=0

-1
Z g_Pn[(Ft)n exp(th)/n!]+Rm.

(9)

The method given by formula (9) is called randomization, because it can

be interpreted as a discrete Markov process imbedded in a Poisson process.

The Poisson process generates Poisson events at a rate F, and the probability

of having n events during an interval of length t is thus (Ft)n exp(—Ft)/n{.

an gives the probability vector of being in state j in a discrete Markov

process which has the transition matrix P. Consequently, [(Ft)nexp(—Ff)/n!]an

gives the probability vector of having n Poisson-events and being in state j

after these events, and summing these vectors gives ' p(t).

The trancation error of equation (9), Rm, can be estimated with

réasonable accuracy. Actually, for each probability pj(t), one has:

m-ll

py®) = | pM DT (-Fo)/mi] + ] p™ (Pt exp(-Fe) /1]

n=0 n=m
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(n)

Here, pj‘ is the jth component of the vector g?n, or, what is the same,
it is the probability of being in state j after n Poisson-events. Clearly,

(n)

P <1, and R ., the jth element of R becomes:
J - ‘mj ' m

R .= 1 p™[(Ft)"exp(-Ft)/n1] < ] (Ft)exp(-Ft)/n!
b qp=m T n=m
The sum to the right is the complementary cumulative Poisson distribution.
It follows:
m-1 n
(Ft) "exp(-Ft)/n!
n=0
For small Ft, the sum to the right'can easily be evaluated for all m of interest,
and m can thus be determined such that ij is below a prescribed value o.

For large Ft, one can approximate the Poisson distribution by the normal

distribution. In our programs, we set m equal to:
m=Ft + 4/Ft + 5 o (10)

We found from Poisson tables (Ft < 20) and from normal tables (Ft > 20) that
this choice of m guaranties that ij is less than 10-4.

Equation (10) suggests that F should be as small as possible. Consequently,
we set:

F = max]aiil, (11)

which is the smallest value F can assume.

When calculating p(t) for two values of t, say ti aﬁd t2, one can apply
randomizafion twice, as is suggested by equation (7). Preferably, one
calculates B{tl)-and Bﬁtz) simultaneously from equation (9). This requires
an additional one-dimensional array to store Eﬂtz), buﬁ.it avoids some

calculations because of the nature of (10): m as a function of t ETOwWS
slower when t is high than when it is low, making it advantageous to have

long intervals before restarting randomization in the fashion suggested by (7).



11

For a given m, the storage requirements and the calculation times of
randomization and Liou's‘method are practically identical. In both cases,
one has (m-1) vector-matrix multiplications, (m-1) scalar multiplications
and (m-1) vector additipns. To see this, note the an can be calculated
recursively, giving one vector-matrix multiplication for each term, the
resultingbvector can be multiplied by the Poisson—distributien, a scalar,
and added;'giving the operations just mentioned before. The storage
requirement is also 3 vectors ( provided, of course, one calculates p(t)
for one t only).

By numerieal experimentation and theoretical cohsiderations, we found
tﬁat for givem m,.the trancation error Rm in randomization is usually
smaller than in Liou's method. This is what one would expect. Really, P,
being a stochastic matrix, resembles the result matrix, exp(At), which is
also stochastic. These two matrices are in a way close together, whereas
A, which is not stochastic, is more distant. Unfortunately, we cannot give
more.details on the topic of convergency because the numerical results do
not make sense without the theoretical background, aﬁd the theoretical

vbackground involves complex arguments based on the Eigenvalues of the
matrices in question. Also, compared with the problem of roundoffeerrors,

the question of convergency is not that crucial.
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Numerical results.

We wrote a program to implement the method of:randomization, and solved
a number of problems with this program. The program was written in FORTRAN G
and run on an IBM 370/158.

The results of these runs are given in table 1. The actual nature of
the problems run is of minor importance. We just note that the structure of
thesevproblems was varied. The first problem deals with 3 parallel queues,
the second with 3 sequential queues, the third is the M/M/l queue, the
fourth problem is the M/E3/2 queue, etc.

The perforﬁance of the algorithm depends on the size of the transition
hatrix A as it is determined by the number of states.: More important than.
‘the size of A are the number of non-zero entries, since only they are used
when calculatihg the vectors g?n recursively. | :

Of the problems considered, two were of such a dimehsion that storing

the entire transition matrix would have been problematic. In particular,

the transition matrix of problem 7 has 625x625 = 390,625 elements, whereas

the transition matrix of problem 8 has 459x459 210,681 elements. In both
cases, matrix inversion or calculation of Eigenvectors is close to impossible.
Since the method suggested above preserves sparsity, the problem of storing
and/or calculating matrices of such huge dimensions is unnecessaryl

All the problems summarized in table 1 were run with a‘high value
for Ft. In particular, problem 2 has an Ft 10000, and problem 7, the
largest problem as far as the number of states is concerned; has an Ft of
390. The usage of high Ft is necessary in processes that converge slowly

toward equilibrium, and these processes are exactly the ones for which the

transient behaviour is interesting.
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The value m for which the power series was trancated was calculated
according to equation (10). This value converges toward Ft as Ft becomes

large. Then highest value for m was 10,405, followed by 474,

Table 1: Summary of some problems solyed.
Problem number 1 2 3 4 5 6 7 - 8
humbér'of states 216 7221 240 121 125 625 459
non-zero entries |

in transition .
matrix , 971 144 61 725 461 525 4625 1681

F o 9 4 13 15 23 19 39 9
Ft 36 10000 52 60 115 95 390 36
m 65 10405 86 96 163 139 474 65

CPU-time 6.2  34.7 0.7 8.3 4.2 3.8 77.0 17.8
(seconds) .

P> the Poisson probabilities, were calculated as follows: First,
[(Ft)n/n!]/[(Ft)i/i!] was evaluated recursively, for n > i, Afterwérds,
the numbers obtained this way were divided by én appropriate constant, such
that their sum was one. Thus, we really calculated P, (except for a
scaling factor) for n > i. Here, i was chosen such that the sum of the -
P> N < i, was negligible. In this way, exponent underflows and'overroQs
are avoided. On the other hand, the sum of the Poisson probabilities
under the method is always 1.

We mention this numerical detail for the following reason:

To check the accuracy of the results, we added all probabilities of
some of the problems, and calculated by how much this sum deviates from 1.
In problem 1, this deviation was e.g. 0.000036, and in problem 2 it was

0.000016. These deviations are due to roundoff-errors, and, because of the
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way the Poissoh distribution was calculated, from roundoff-errors arising
from calculation g?n. These roundoff-errors are small.‘ To see this, note
that the IBM>370/158 has only 8 significant digits. Furthermore when the
sum of all dev1at10ns added together is only 0.000036 respectively,
0.000016, the dev1at10ns of the individual probab111t1es from their correct
values are presumably much smaller.

The execution times on the IBM were negligible. in particular, it took
only 0.7 seconds to find the transient solution of the M/M/1 queue. Even
the largest'prdblem, problem 7, required only 77 seconds.

The numbérs presented in table 1 clearly indicate that it is feasible
to calculate transient solutions for a wide variety of queueing problems.
The M/M/1 queue; e.g., turns out to be a trivial problem. However, none
of the other problems taxéd the capabilities of the program fully. The
times recorded seem to indicate thatlit is still feasible to solve problems
10 times as large as the largest problem solved by us. In other words: Even
for problems having 6000 states and 5000 non-zero transitions, it should be

feasible'td find transient solutions.
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