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1. Introduction
In this paper we study the selection problems and some other.

related statistical inference problems for k double exponential
(Laplace) populations. Before we do this, we give some discussion of
the Laplace distribution, its characteristics (vs. normal, logistic and
Cauchy) and its use as a model in statistics and probability.

The double exponential distribution arises as a model in some-
statistical problems as exblained later. Thfs distribution is also
censidered in robustness studies,'which suggests that it provides a
model with differént characteristics than some of the other commonly
used models such as the ﬁormal distribution. In particular, the tails
of the double exponential distribution are thicker than the tails of
the normel or Iogist}c, bdt not as thick as the Cauchy (see p. 43,

Hajek [14]). Yet the double exponential has not been used very ex-
tensively as a model. This could be due in part to the jack of available
statistical techniques for this distribution, although it is likely that
the experimenter has shied away from using the double exponential be-
cause it has a sHarp peak in the center. Howewver, many applications

would be primarily concerned with tail probabili'ties, and it would seem

*This research was supported by the 0ffice of Naval Research contract
NO0O14~75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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that the double exponential would be a useful model If exponential tails
are required. o

- The double exponential has some application as a model in the area
of Actuarial Science, and It has been-suggeéted as a.model for the
distribution of the strength of flaws in materials by Epstein [8 ].
Uéing the weakest link principle, the strength of the material should
decrease as the number of flaws or volume increases. In particular,
from extreme-value theory the double exponential assdmption leads to
the result that the mode or most probable strength decreases in bro-
portion to log n, where n represents the size or number of flaws of the
material.i In comparison, the assumption of a normal model leads to a

decrease in proportion to (log n . For most applications to material -
strength, only the minimum flaw strength would ordinarily.be observable;
however, Epstgin t 8] suggests‘that there may be many other types of
problems, such as a system of components in serleé, which might_be
similar from a statistical point of view. Other possible apbliéations
of the double exponential are suggested by the fact that therdifferenée
of two independent (not necessary identical) two parameter exponential
variables follows the double exponential distributfon, and that the
logarithm of thé ratios of uniform or Pareto variables follows the
double exponentfal distribution.

In classical theory, once having assumed the form of the parent
distribﬁtion, we can derive a criterion which is appropriate to this
assuhption. For example, under the assuﬁption of normality, for the

comparison of two means we would derive the t-statistic. It is then

customary to justify the use of such a normal theory criterion in the



practical circumstance in which normality cannot be guaranteéd by
arguing that the distribution of the characteristic is but little
affected by»non-normality-of the parent distribufion - that is, it is
robust under nqn-normality. However, this argumeﬁt ignores the fact
that if the parent distriﬁution really differed froﬁ the normal, the
appropriate criterion would no longer be the normal-theory statistic.
Box and Tiao [ 4] reconsidered the énalysis of Darwin's paired data

on the heights of self and cross-fertilized plants quoted by Fisher

in '"'The Design of Experfments (1935)". In this development the parent
distribution is not assumed to be normal,'but‘only a member of the

following class of symmetric distributions

p(yle,c,B)v = ! ] exp {- %— Il’-:-e-l } (1.1)
: 145 (1+48)

I‘[I+%(l+6)]2 o
where ~ ® <y <w , 0 <g<w, ~®w<Ph<w, =] <B<I, This class of
distributions includes the normal (B=0) and the double exponential (B=1),
and its kurtosis parameter is B.

If the probability density function of the double exponential is

given by
-8
f(x,e,_()')=%a-e ¢ .,-_00<x<oo’-oo<6<oo’ o>0

i

(1.2)
then the mode of the distribution is x = 6 where it has a sharp peak.

’ !
The expected value and standard deviation of . (1.2) are 6 and Y2 o

respectively. Moments of the standardized double exponential order

statistics can be obtained by using the closed-form expressions for the

!



moments of the standardized negative exponential order statistics
derived by Epstein and Sobel [9]. Govindarajulu [10] has given
the expressions for these moments.

Chew [6 ] gives the graphs of the standardized density functions
of normal, logistic and double exponential distributions, from which
it is clear that the talls of the double exponential distribution are
thicker than that of the normal or logistic, in the sense that the
curve of double exponential is above that of the others to the left
and right of some points. In the case of the normal distribution this

point ‘is 2.6k,

SRRV B,
If the cumulative distribution functions GI(X) =— [ e du
' V2T =
%_efﬁx ,x <0 |
and Gz(x) = { of the standardized normal and double
| =V2x ‘
]--i'e »y X220

‘exponential distributions are compared, (also similar comparison between

- e

standardized logistic G3(x) =1/(1 +e 3 ) and the double exponential
‘distribution) the differences Gz(x) - Gl(x) (as well as Gz(x) - G3(x))
vary in the way shown in the graph below. Since G](x), Gz(x)‘and
G3(x) are Symmetric about x = 0 only the values for x 3_0 are shown.

With regard to point estimation, if is well known that the maximum

likelihood estimates based on the complete sample of size n are given

~

|Xi - X|, where X denotes the sample median.
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Also best linear estimators (based on order statistics) under symmetric
censoring are given by Govindarajulu [11] for sample sizes up to 20,

and some alternate estimates are suggested by Raghunandanan and

Srinivasan [16]. Interval estimation for the parameters of the



7 , Gz(x)-G;(X)
------- 6, (x)-6,(x)
.060 +
©.056

.052 |

048 T
. .0bh 1
040 T
036 |
.032 .

.028

024
.020 +
.016
012 |

-.008 ¢

~ (in multiples of the

.004 |
standard deviation)

t—t X

+ ~ } ¢ } + t Nt + t - _
2 b 6 .8 1.0 1.2 1.4 1.6 N8 2.0 2.2 2.4 2.6 2.8

-.004 |

T -

-.008 | o




two-parameter double exponential distribution is considered by Bain
and Engelhardt [ 1].

Now we discuss the problem of comparison of k(z 2) double
exponential distributions. First we study the selection problem for

the largest mean (location).

2 Selecting a Subset Containing the Best of Several Double

Exponential Populations with Respect to the Location Parameter

(A) Formulation of the Problem:

Let Xi, i=1,2,...,k be k independent random variables from
double exponential population T i =1,2,...,k respectively, with

probability density function
f(X; 6,,0) = %E-exp [-]x-0;1/0], ~2<x<®, -w<B <= 0>0

where 0 is a common, known constant for each of tﬁe‘k populations. We
may,'wlthout loss of generalify, assume O to be one. The'ranked para-
meters are denoted by B[I] 5_6[2] < oo f_e[k]. As beforé; ﬁt is
assumed that there is no a'prlori information available about the
correct pairing of the ordered B[i] and the k given populations from
which observations are taken. Any population whose parameter value
equais e[k] will be defined as a best population. A correct selection
(cs) is defined as the selection of any subset of the k given popula-
tions which contains at least one best population.

Suppose we take (2n+1) independent observations from Tis

I =1,2,.00,k; thé sample size (2n+1) is assumed to be given in the

primary problem below. Let P*(l-< P* < 1) be a preassigned constant.
_ k -
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Let P(CS; k, n, 8, R) denote the probability of a correct selection
when the procedure R is used with the given k, n and when the true
configuration of parameter values is 6 = (61, 62,...,9k); let the space
of all possible values of 0 be denoted by Q.

The problem of primary interest fs to define a procedure R which
selects a subset of the k given populations that is small, never
empty, and large enough so that it contains the best population with.
probability at'best P*, regardless of the true configurations g;in
Q, i.e., so that |

inf P(CS; k, n, 8, R) > P* , | o (2a)
9 .

After having defined a particular procedure R = R(k, n, P*) for each
possible set of values of k, n and P*, we discuss the expected size

E{S; k, n, 8, P%, R} of the selected subset when the procedure R is

used with the.given k, n, P* and wﬁere 8 is the true parameter con-

figuration in Q.

Let Y, denote the sample median of the (2n+l) observations

i
X",...,Xi’2n+',-from the ith population, and let Y(i) Qenote that
unknown variable which is associated with B[i]. The probability density

gn(-) and the cumulative distribution Gn(-) of Yl are given by

2 {2n+1)! 1 'Iy'eil)'"'” a -1 -ly-6;1 n

g, (v 8;) = == (e 1-7e ) (2.2)
n y=0. j y=-8. 2n+l-j
-z ™hde Ho-Le D . y<o,
T 2 i
s o) = (-6,) (-6,)
n =(y=6.) ] =(y=-6.) 2n+l-j
5 CThge " T 0me T T ey

(2.3)



Mow, we propose the selection procedure RI as follows:

R]: Retaln In the selected subset only those populatIOns_ﬂ‘
for which
Y, > max Y, - d , ' (2.4)
15k |

where d = d(k, n, P*) Is the smallest non-negative constant to be
determined that will satisfy the basic probability requirement (2.1)

for all configurations 6 = (9],'62,...,6k).

(8) Probablllty of a Correct Selection and lts Inflmum

The following result concerning the rule Rl can be proved
) o
Theorem 2.1. inf Py(CS|R}) = inf P (CS|R ) = f G (y+d)g (y)dy
' 0efd — 0ef

€
-_—0 7
where 2 = {8 = (BI,...,Bk)F 8, =0, = ... = ek = 0}, Gn(y), gn(y).are

‘the cdf and pdf of the sample median of (2n+1) observations from the
standard double exponential distribution.

Proof. For 8 € Q,

fg(cisl) P {Y(k) > max Yoy - d}

1<izk

k=-1}

Pol¥ )01kl 2 Y5011 * Cy1rkgnds T2

0 LA A ST

[ |1

.00 j=l =00

g,(z)-dz g (y) dy. (2.5)

Note that 9[k] - B[j] >0 for j = 1,000,k=1; thus the reshlt follows.

Hence, if we choose d to be the smallest constant to satisfy

‘0o

[ Gt-](v+d) g,(y) dy = P, o (2.6)

-00



then we have determined the constant d for which

inf P (csln ) = Px | _ (2.7)
feft —

(c) Some Properties of RI»

For 8 € R and 6 = (e[I],...,e[k]) define Pe(l)-= Pg {R select

population “(i)}’ and recall the following definitions (see Santner

h7 1.

Definition 2.1. The rule R is strongly monotone in "(i) means

M) 4 in 6[ ] when all other components of 8 are fixed
pal(i) is {
9- ¥ in 9[ 1 (j#i) when all other components of 0 are fixed

Definition 2.2. R is a monotone procedure means for every 8eQ

and 1 <i <j< k, P(i) < Py(j).

Definition 2.3. R is an unbiased'procedure means for every f8eq
and 1 < j <k,

Pe{R does not select “(i)} Z_ngR does not select “(k)}

Of course, if R is monotone it is also unbiased.

Theorem 2.2. For any i =1,2,...,k, the procedure R] is strongly
monotone in T ; .
(i)

Proof. The proof follows easily from the expression
- _ 3 ) |

pa (i) = {1 ¢ (y + 0 = 0p.q +d)} g (y) dy .

8 o =1 M [i] (] n

J#i

Corollary 2.1. The rule RI is monotone and unbiased.

Proof. It is known and easy to see that if R is strongly monotone in
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"(i)’ for all i = 1,2,...,k, then it is monotone.

Now we consider some special configurations of 8 e Q.

8r.h =0 sy 1 =1,2,...,k-1
( [i] (2.8)

e[k] =0+A, A>0
6y =0+ (i-DA, A>0, 1= 12,000 ke (2.9)
Under (2.8),
. ® k-2 . ; .
pe(l) = f [Gn(y+d)] Gn(y+d-A) gn(y) dy for i=1,2,...,k-1
(2.10)
Pe(k)_= f [Gn(y+d+A)]k-l gn(y) dy . | | (2.11)
While under (2.9),
o k : v
pe(i) = [ { .n] G, (y+d+(i-j)A)} g (v) dy, i=1,2,...,k.
- . = J= )
j#i

From the above equations we can make the following remarks:

Remark 2.1. For fixed P*, k, n, i (i =1,2,...,k-1), the probability

of selecting population “(i) decreases from P* to zero as A increases

4

from zero to infinity.

Remark 2.2. For fixed P%, k and n, the probabiiity of selecting H(k)

increases from P* to one as A Increases from zero to infinity.

Remark _2.3. For fixed P*, k, i(i=1,...,k=1) and A, the probability

of selecting population LIS tends to zero as n > », While the
probability of selecting ﬂ(k)'tends to one as n + =,

Conclusion: Under either configuration (2.8), (2.9),

T LTMA A =t o amere e o
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| k
Eg(SIRY) - ;fn

n > o for fixed A.

Pgll) >+ 1 as A+ for fixed n and Ey(S|R}) > 1 as

(D) Asymptotic Results for the Procedure R,

It suffices to consider the parameter space Qo. For n large,
we discuss an asymptotic property of the procedure as follows. Let Y
be the sample median from a sample of size (2n+1) with pdf

f(x;0) = %-e-lx-el, - w< x <o, Then it Is known (see Chu [7 1) that

| Y-6 . o istri 2 = -
under Q_, Tir is asymptotically normally distributed (here On = 2n+l)'

Let Z denote a random variable which has a standard normal distributfon,

then é:g-fs asymptotically distributed as Z. Hence, under Qo’ the
n

- probability

Y, > max Y, - d
“Trgs

is asymptotically, the same as the probability

Zk > max Z, - ¥2n+l d , (2.13)
1<j<k
where Zl, i =1,2,...,k, are iid standard normal variables. "Hence,

R

Inf Po(CS|R,) % Pglz, > max Z. - /Zn#1 d}
8eq — = 1<j<k
©0

k-1
| [¢(z + /I d):l 46 (2)

-00

where ®(.) is the cdf of the standard normal distribution.

(E) The Monotone Likelihood Ratio Property of the Sample Median

Suppose Y is the sample median of (2n+1) observations from the

population with double exponential density function f(x;6) = %-e-lx-el.
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 The pdfvgn(y;e) and cdf Gn(y;e) of Y are given by equations (2.2)
and (2.3). |

After so'me‘algebraic computations, we see that Gn(e;e) = -;— ; also
it is vea'sy to show that gn(y;e) 'is differentiable at y = 6.

Let gn(y;e) = -g-n(y-e). It is shown in.Lehmann [15, p.330] that a
necessary and sufficient condition for En (y-rG) to have monotone likeli-

hood ratio in y is that -log -g-n is convex. Our main goal in this

section is to prove this assertion. Now

=y = (L =lylynt1 0 1 =|ylyn = (2n+1)!
gn_(Y) = cn(2 e ) Q1 7 e ) where c, = - so,

- log En(y) ==-logc + (n+1) log 2 + (n+1)]y|-n log (l-% e-lyl).
Let h(y) = (n+1)]|y] = n log (1 - %—e-l”) = { h](y) , ¥y <0 which is
hz(y) , ¥y >0
a continuous function. For y <0,

hiy) = hl.(y) = -(n+l)y = n log (1 - ;— e’), we have

n oy ' 1y
-a —-—e
hily) = - (n+l)+—£—— < 0 since for <0 -l—-——<l
1Y Ty e vy <0 Ty
]»-—e ]—_e
2 2
s ) %ey ) i
and h] (y) = T3 >0 .
(l"z‘e) i

Hence, for y <0, h](y) is a decreasing, convex function. Similarly;

for y > 0,

}

h{y) = h (h)-(n+l)y-nlog (1 --;-ey)

h;(y) = n+l - _LT-—:?) 0 since for Y2 0, -2—-‘——
1l ->e
7 ,
Y
ha/ y) = - S0 .
2 (1 - 3e)?



13

Hence, for y > 0, hz(y) is an increasing, convex function. Note that
h{y) Is continuous at y = 0, decreasing, convex for y < 0 and increas-
ing, convex for y > 0. Hence, this concludes that h{y) is a convex

function, which implies - log an(y) is also a convex function.

Theorem 2.3. g_(y;6) has monotone likelihood ratio in y.
- °n

(F) Expected Size of the Selected Subset

The procedure R]satisfies the ba;ic prosability requirement
(2.1) and is defined by (2.4). Consistent with the basic probability
requirement, we would like the size of the selected subset to be small.
Now S, the size of the selected subset is a random variable which takes
" integer values l,2,...,k. Hence, one criterion of the efficiency of
the procedure R‘is the expected value of the size of the subset. Now,
we derive an expression for E(SlR]); the expected size of the selected

subset using procedure R].

E(SlRi) = T P{Selecting the population with parameter e[i]}
i=1

k .

= X P{Y . > max Y . - d}
o ) = gac G
k © k .

= H . - ) .
t J =1 Gly +d + 0y - 0pyq) | 9,0 dy. (2:16)

j#i
If we set the m smallest parameters Bi (1 <m< k) equal to a common

value 0(say) and define

Q= E(S | Oy = 0 " O1ml = 8) (2.1._7)
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then by an analogous argument as in Gupta [13] one can prove the
following theorem.

Theorem 2.#; For given k, P*(%-< P*¥ < 1), the expected size of the

‘selected subset E(S | e[]] = 6[2] = .., = e[m] =0, m< k) in using the

. procedure R, is strictly increasing in 6,

] 00
Corollary 2.2. sup Eg(S[R) =k | 6KV (y+d) g (y) dy = k P,
fef} — ! w 0 L

Corollary 2.3. In the subset Q(8) = {6: e[i] f.e[k] '-6’

i =1,2,...,k=1}, the function Ee(S|R]) takes on its maximum value when

9['] = e[k] - 6, 1 = l,2,...,k-], and so

sup  Eg(S|R) = [ 65T (y+and) g (v) dy
0eQ(s) — Bl

+ ) [ 62 (yed) 6, (yed=) g (v) dy .

() Minimax Property of the Rule R;

Suppose that YiseeesY) are the sample medians from the k populations
“l""’nk’ respectively, and with this set of observations, we select
the ith population with probability ¢i(y],...,yk). Then the selection

rule R is said to be invariant or symmetric if
¢i(y"ool,yi’u..,yj’o-.’yk) = ¢j(y]’...’yj,...’yi’...,yk)

for all i and j, i.e. if yj is observed from T and yi'ffom “j’ then
we select the jth population with the same probability ¢i(y],...,yk).

Notice that the rule RI: Y. > max Y, - d satisfies the equations

T <<k
inf Py(CS|R,) = inf Py (CSIR,) = Pgo(cglkl) = P (2.20)

[ geq =
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and sup E, (SIR ) = sup Ee(SIRl) = Eq (SIR]) = k P* (2.21)
fet —~ GeQO - -0 -

where 90 = (90,...,60).

For any invariant rule R”, 90 €,

' k
Eq (s|r”) = = Pq {select population nilR‘}
<o i=] =o
k k _
= Z I ¢i(y]’0'.,yk) H gn(yj) dy] LI dyk
i=1 j=1
=k Py (cs|rR”).
-0
Hence for 6 ¢ Q ,
"0 (o]
Eq (S|R”) - Eq (SIR]) =k [P (cs|R ) - P (csln )] (2.22)
-0 =0 0

If the rule R” satisfies the basfc‘P* condition, it follows from (2.20)

that the right hand side of (2.22) is non-negative. Thus

g (SIR7) > E (SIR ) = sup Eg(S[R;) .
-o Beq 8

So that  sup Eg (S|R’)> sup E (SIR )
fefd . 6eQ

i.e. the rule Rl is minimax among all invariant rules satisfying the

P*condition.

3. Selecting the Pdpulation with the Largest Location

Parameter - Indifference Zone Approach

In this section, we would like to use the indifference zone
approach of Bechhofer [ 3] to select one population which is guaranteed
to be associated with the largest location parameter with a fixed

probability P* whenever the unknown parameters lie outside some subset,
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or zone of indifference, of the entire parameter space. The goal is
to define a sequence of rules {Rz(n)} each of which selects a single

population n(

k) and find the smallest n so that

Py (CS|R, (n)) > P, v geR(s™) = {g: 'e['k] - 8 2 &) (3.1

where P* and 6* are preassigned numbers.

For the sake of clérity, we will use the notation Y[k]n to denote
the largest of the sample medians each based on (2n+1) observations.
R,(n): Select the population corresponding to Y[k]n'

* *
Let QO(G ) = {0: 6[1] = ... = e[k_]] = e[k] - 8'}. Then we have the

following theorem.

Theorem 3.1‘., égg(s*) PQ(CSIRZ(n)) = . ;lnis*)Pg(.cisz(n))»

Proof. For 6 € Q(G*),

P (C5IR () = Pl mex | V(n < Yoa?

P_B_{Y(j)n < Y(k)n, j = |,2,...,k"l}

= Pl (13n0151 < Yon Pk *Ona O 4 7 T2 okl
© - k=1 ; : . v _
I Galy + ij'):ld 6 (v) (3.2)

e

where Gn(y) = Gn(y; 0) is the cdf of the sample median of (2n+1)
independent observation from the standard double exponential distribu-
. . 1 -|x| _ : _ -
tion with density function 5 e ’ © < x <o, and ij = e[k] 6[j] > 0.
- Hence the infimum of the probability of a correct selection occurs when
* x
= = L. = = - i - > -

This proves -the theorem.
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The minimum sample size required to achieve the P* condition

(3.1) s the smallest Integer n such that
[}

[ le ly+ 6171 4 G (y) > P . (3.3)

-0

. 4 Selecting the t-Best Populations - Indifference Zone Approach

Now, we consider the problem of selecting the best t populations,
i.e., the popujations with location parameters e[k-t+l]'e[k-t+2]’""e[k]’
without regard to order. We are using the indifference zone approach
based on the sample median Yi of 2n+l independent observations from
population Tis i=1,...,k. Define a sequence of procedures as follows:

R3(n): Select the t populations associated with t largest values of Yi'

et @°(87) = {8: 04y - Op t]- > 6} and let
Q;(S") = {9_: e[]]='°'=e[k_t]=69 e[k_t+1]=--.=e[k] = 9+<5*}..
Theorem L.1. inf PolCs[Ry(n)} = inf P'e{cs|R3(n)}

9eR”(8%) = 8e(87) —
Proof. It was shown in Theorem 2.3 that the pdf gn(y;_O)‘of the
sample median has monotone likelihood ratio in vy, which implies that
it is stochastically increasing in 6. Using a theorem of Barr and
Rizvi [2], it follows that, for 8 € 7 (8")

P.{CS|R,(n)} =P { max Y < min Y, .\}

g Sicizk-t ) ke )
is a non-increasing function of 6[]],...,6[k_t] and a non-decreasing
function of e[k t+l]""’ [k]* Thus P {CSIR (n)} attains its infimum

when 9[]], eeyd [k-t] attain their maximum possible values, whlle
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e[k_tH],._..,e[k] a;tain their minimum possiblg values subject to
> Q’(G*). The proof is thus completed.

Using the same notation as in Section 2, , let Gn (y;ei) denote t,ﬁe
cdf of the sample median Yi with parametet Gi. Since Bi is the location
parameter, Gn(y; Gi) = Gn(y - 0.3 0) and G, is stochastically increasing,

continuous ' in both y and 8,. For 6 e Q° (6%),

P_e_{CSIR3(n)} = P.{ max Yy < min Y(z)}_

&<kt k- t+1 <0<k
k
=pP.{ U {Y,.. =  min Y and
,9‘j=k-t+l () k- t+1<8<k ()
Y,  <Y,.
e ) Y0P
k © k-t ok

= I I G (y;6p,) T
jek-t+] I-w_8=l n B et
' a#j
v -6,0v300))} d 6 (v; o151

In particular, for 8 e 9;(6*) c Q7 (8%),

. o0 L t..] ’ "
PolCSIR (M)} = ¢ [ 6K (y;0) {1 - & (y;046™)} 4G, (y,648)
@ k=t % t=1 *
=t G, ~(y-6;0) {1-6_(y-6-67;0)} d6_(y-6-6";0)

=00

o _
- % N - .
t [ Gt Yy+s"50) (1 - Gn(y;O)}t Va6 (y;0)
=00 . n
which is independent of the parémeter 0. Hence for specified values of
8* and P* ( -Z-'l-)-<-P* < 1), we can solve the equation
t

® k-t % ) Cyat=l Loy ok
t [ G, (y+850 0 6 (y; 0)} dé_(y; 0) =P

=00

for n.
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5. Subset Selection with Respect to the Scale Parameter ©

Let Xi, i =,l,2;...,k be k independent random variables from double
exponential population Tis i=1,2,...,k, respectively, with up having

“the probability density function

— ] - - -00 - 00 o«
f(x;0,,0;) = -20—iexp [-1x-8, /0,1, == < x < o, <8 <=, o >0.

Take n independent observations from LI i=1,2,e0.,ke From these
data one wishes to select a subset contains the population with the
largest oi; Let U[I] L eee f_o[k] be the ordered parameters. We
consider two different cases.

Case (i): 9],62,...,6k known.

In this case, the maximum likelihood estimator of oi is

n
Y. = %- N P eil which is distributed as a gamma variable with
S -0y

oi ‘ n E‘.X.n-l oi
parameters n and -, i.e. Y, has density E?TTFT' (oi) e , Yy > 0.

Thus the problem reduces to the one considered by Gupta [12]. The
selection procedure is

R: Select the population ™ in the subset if and only if

Yi > ¢ max Y..
lfjfy

Case (ii): ei's are unknown.

When Gi is unknown, it is well known that the maximum 1ikelihood
A n - ‘-~ .
estimate of o, is given by 0, = %- z |Xij - Xil, where X, denotes the
j=1
sample median from population L For this problem, we propose the

following selection procedure.

Rh: Select the population ™ in the subset if and only if

8' > c max 8.
12 S
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where 0 < éh < 1 Is so determined as to satisfy the basic probability

requirement reggrdleSs of what the unknown oi's may be.
no, '
Let V; =-a-'-, i =1,2,...,k. Then
i

1<j<k=1
w [k=-1 o '
= [n P, (- -[—k-l-x):lvdF (x)
o Li=t Yy e 1 4 Ve
So _ _
inf P(CS|R,) = inf P(CSR)=°°F"" &) dF,(x),
51’.29 IRy, ézﬂg L fo v &) R

 where ©° = {0 = (ol',...,ok), g, > 0, i =1,...,kl},

9;\=.{2 = (0,...,0), 0 > 0} and FV(.)’ FV (), j=1,..0,k are the

oy J
~ nc,.
cdf!s of V = EE_, Voo, = -iil-, J=1,...,k, respectively.
o] (J) 0[.] ‘
J
Hence if the distribution FV(-) is known, then the constant <

can be determined by the equation
o0

k-1 ,x *
Fo (=) dF,(x) =P,

The exact distribution F of V is worked out for n = 3 by Bain and
Engelhardt [1], and a chi-square approximation is also given by
them which is quite good even for small n. However, it follows froh

Chernoff, Gastwirth and Johns [ 5], that'iz (y-n) = v/n [ %--.l]
n .

is asymptotically a standard normal variable. When all o, are identical

{
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P(cS|R,) = Pl > c, SJ., Jo=1,eea,k-1}

o o | ’
PIR(=E = 1) 2 ¢ YAk = 1) + /ilg,=1), § = 1,.eu,ke1)

o k-1 x-/n-(cl'-l)

e

) do(x),

- cy

6. A Test of Homogeneity Based on the Sample Median Range

Let ﬂl,ﬂz,...,ﬂk be k independent double exponential populations

-such that the observations xil""’xi,2n+l from M has density .

-|x-8.| _
%-e ' , for i =1,2,...,k. As before, let the sample median of

these (2n+1) observations be denoted as Yi’ i = I,.;.;k. In some
practical situations one wishes to know whether Oi are'signifféantly
different or not. This problem is to test the homogeneity of the double
exponential populatidns. We are interested in using é test based on the
sample range of Y's and hence we wish to derive the distribution of the

sample median range R = max Y, =~ min Y., considering all ei to be

1<isk J1gisk
equal to a common unknown 6. When the value of R is Iafge, the
“hypothesis of homogeneity is rejected. Vle wish to find-a constant r,
such that P(R >‘r) <a under the hypothesis H_: 6, = ... = 6, = 6. This

will provide an a-level test.

Theorem 6.1. For o, 0.<a <1, let r be a constant su;h that

P {Y > max Y, - f} >1 - %,
b k= gjek-1 -k

Then P (R>r) <a,
)

Proof. When Ho is true, i.e., under 96’



22

p(R>r)=P(max Y. - min Y >r}
gk gk )

> max Y, = r}

p{Y
P

1

< k -

nx

=k =-kP{y > max Y, -r}
1<j<k-1 4

A

k - ke(1 'OT:')
=a.
The above theorem establishes a connection between the selection

rule Rl and the above test for equality of 6's.

7. On the Distribution of the Statistic Assdciated with R]

Let Y, (i = 0,1,...,p) be (ptl) independent and identically
distributed random variables each representing the.median in a random

sample of size (2n+1) from a population with standard double exponential

density function f(x) = %-e-lxl. Consider the differences Z, = Y; = Y,
(t =1,2,...,p). The random variables Z, (i =1,2,...,p) are correlated .

and the distribution of the maximum of Zi is of interest in problems of
selection ‘and ranking for double exponential distribution as explained

earlier when discussing RI’ In this section, we give a closed form of

the distribution of Z = max Z, for some special cases. We have also
1<i<p .
computed tables of the upper percentage points of Z = max Z'
1<i<p -

corresponding to the probability levels a = P* = 0.75, 0.90, 0.95, 0.99
for p = 1(1) 9, n=1Q)10.

For the special case P = 1 (k=2), n =1 (sample size = 3), straight
forward integration gives the cdf of Z(see formulae (2.2), (2.3))

as
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P(Z< Z)‘= I G(x + z) g(x) dx
=1 - %- e 2% - %3- 26 32 4 %6- e2z - %% e 3z,

o Again, for p =1 (k=2), n =2 (sample size = 5),

3z _ 225 _-hz _ 45 __ -57 , 10975 -3
—mze -2-5—6-ze + 1792 e %

- ?5 ze”
5225 -hz _ 203 -5z
77896 © 256 ¢ -

P(Z < z) = I 1%

All computations related to and given at_thg end of this chapter
were made on a CDC 6500 using Gauss Laguerre quadratue based on
_ fifteen nodes to perform the numerical integfation. Checks on the
accuracy of the program for p =1, n =1 showed that these values seem

to be correct to three decimal places.
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