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. ON STOPPING TIMES FOR n DIMENSIONAL BROWNIAN MOTION
by

BURGESS DAVIS1

1. Introduction. Let X(t) = (X (£, X, (t),...,X (t)),t > O be standard n
dimensional Brownian motion, that is Xl(t),X (t),.,.,Xn(t) are independent
Wiener processes. The following theorems and related results are proved,

Theorem 1.1 For each positive number p there ii_g'constant’cp not

depending on n such that if T is a stopping time for X(t) then .

_ 1 /2
(1.1) E sup, <ten HXt) |- ((m-1)t) 2 ¢, gl °,

n 1 .
Here IX(t)I = ( z Xi(t)z)zis the usual absolute value. As shown in Section 2,
i=1
Theorem 1.1 can be viewed as a refinement of the recent result of D. L. Burkholder
([1}, Theorem 2.1) that there are constants cp n and Cp I both approaching 1 as

3

n -+ «© such that

» »

p/2 (1) |P p/2
(1.2) cp n E(nT) <E sup,, <t<r IX(t)I < Cp n E(nT) .

Of course, for n=1, inequality (1.1) is the right hand side of the following well
known inequality of Burkholder and P. W. Millar (for tﬁe exponents>p > 1) and
Burkholder aﬁd R. F. Gundy (for the exponents 0 < p < 1). If Z(t), t > 0,is a
Wiener process there are constants Kp and kp such that if T is a stopping time
for Z(t) then

p/2 . v|P p/2
(1.3) k, ET*"" < E sup, <t iTIZ(t,, < Ky ETEC

The paper [2] is a good reference for these and related inequalities.

1Supported by a National Science Foundation grant. AMS 1970 subject
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The following thecorem is also proved:
Theorem 1.2, Let k be a positive integer and € > 0, There is an integer

i(k,e) = j not depend1ng on n such that if t is a stopplng time for X(t) then for

all but j of the indices i = 1,2,...,n
k

(1.4) (1-¢)Et k/2 < %2?)' EX (T) < (1 + g)ET /2,
if k is even and ET%/? < o,

and |

(1.5) -¢ ETk/Z E_Exi(r)k <e Erk/z,

k/2

if k ié'odd and ET < oo,

Of course if ET < « then Ex-(r) = ET for all i and if ET2 < » then EX. (r)

for all i so there is nothlng new here for the exponents k = 1,2, If Y is a

nonnegative random variable which is independent of Y(t) it is not hard to show

that Exicy)k = (2k) 1 EYK/2

k : ’
EY /2 < @, so that Theorem 1.2 says that in some sense the stopping times Tt

/2XK1 if K is even and EX, (0¥ = 0 if k is odd and

don't pay much attention to most of the components Xi(t) of fIt).

It is an observation of Poincare that if (zl,...,zn) is a point uniformly
distributed on the surface Sn'of the ball of radius vn about 0 in R" then, if n
is large, z is about normally distributed. This has a trivial proof: Let

Xl,Xz,... be independent standard normal random variables. Then (X

(Xf + o0+ X )2 is uniformly distributed on the surface of the unit ball, and
2

1

character of this result and since it is not hard to give an alternative proof

2:---';Xn)/

(X7 +...+ Xn)z//n-+ 1 a.s. as n + «, Both Theorems 1.1 and 1.2 have some of the
of it using Theorem 1.1 we do this now. Let Zl(t),Zz(tj,... be a sequence of

n
independent Wiener processes, and let TS inf{t > 0: Z Zl(t)z = n}. Then
ETn‘= 1 and (Zl(rn),zz(rn),...,Zn(Tn)) is uniformly dlstnlbuted on Sn' Using
(1.1) with p=2,

2 12 ik 2.2 1.2
PO (n-De) )T = BT 2, R (-1 )

i=1

Thus Tn * 1in probability and Z,(t_) + Z,(1) in distribution. as n + w,



3

The following generalization of this is proved at the end of Section 3.

If 2k is any fixed positive even integer, if Tn is the surface {(21,221,...,zhj:
Zzik = n(2k)l/2kk!} and if Mo is harmonic measure relative to (0,0,...,0) (i.e. bn
under

is the first hitting of Tn distribution of X(t)) then the distribution of Z
My is about standard normal, :f o s LLV3¢,

.In the fina1 section a simple proof of the inequalities (1.3) for the
exponents 0 < p < 1 is given. There are a number of proofs of (1.3) includiné
the original one, for the exponents p > 1 which do not extend to the exponents
0<‘pil.

The proofs of Theorems 1.1 and 1.2 are based on Ifo's stochastic

calculus and the methods and results of Burkholder and Gundy = which deal with

one dimensional Brownian motion.

2. Inequalities for lf{t)l. The integer n will always stand for the dimension

v

of the Brownian motion X(t). If Z(t), t > 0, is a stochastic process (possibly

. *
multi-dimensional) we let Z(t) = SUPy < ¢ < tlZ(s)l. The LP norm of a random

s
variable Y will be defined by ||Y|]p = (EIYlp)l/p for all p > 0. If Q <p <1 the

triangle inequality doesn't hold but the weaker ||X + Y||p :-ZP(||Xl]p + |lY||p)
is always a sufficient substitute for our purposes. EfP will always mean E(fp),
not (Ef)p.

A technical point that comes up several times can be illustrated by the
following example. Inequality (1.3) is stated for stopping times for Z(t) and
does not apply directly to prove E SUPG ¢ ¢ < T|X1(t)|p : KPE-rp/2 if v is a
stopping time with respect to the o-fields o(X(s), s <-t) = Q(t). Nonetheless
this inequality is still true since the only thing used about 1 in the original

proof of (1.3) (and all other proofs) is that Xl(T+s)—X1(r), s > 0, is standard

Brownian motion which is independent of Q(t).
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For future refercnee we state now a generalization ef (1.3) also due to
Burkholder and Gundy (sec [21). Lot ¢ be any positive incrcasing function on
[0,=) satisfying ¢(0) = 0 and ¢(2)) < a®(A) for some constant A, = @ and all
positive numbers A. Then there are constants k and K depending only on ag
such that if Z(t) is a Wiener process and T is a stopplng time for Z(t) then
(2.1) kE¢(12) < Eo(Z(1) ) < KE¢(T2)
The following theorem extends Theorem 1.1,

Theorem 2.1 .Let % be a function of the type described just above. There

is a constant A depending on a, but not on n such that if T is a stopping time

for X(t) then

(2.2) Ee(sup, . TH'ﬂ.t)l-((n-l)t)%l) < AEe(1%).

Proof. For n=i, (2.2) is the right side of (2.1). Thus we assume n > 2.
We use the notation of McKean's book [3]. See especially page 47. Thus let
r(t) = |X(t)|. - The stochastic differentiel of r is
| dr = da + (n-1)(2r)"}
where a(t) is the one dimensional Brownian motion given by
t in(s)dxi(s)

(2.3) a(t) = fo 1)

" This is problem 6 on page 47 of [3]. Of course the stochastic differential of
1 :
the non-random function ((n-1)t)= is
: » 1 1 1
d((n-1)t)* = ((n-1)%/2t®)dt

Thus y(t) r(t)-((n—l)t)% satisfies

dy

da‘+ [(n-1)/2r- (n-l)%/Zt%]dt

1.
da-(y/2rt<)dt.
Using Ito's lemma
2 . 2 J
dy” = 2yda-[2(y /2rt%)+ 1]dt,
so that

. ]
Ay%-t) = 2yda-2(y2/2rt)dt



[#2]

which implies that Yz—t is a submartingale since y2/2rt is nonegative. We note

that yz—t is a submartingale with respect to the o-fields (X(s), s < t) so that

the results which follow are applicable to stopping times for X(t). In the

paper [2], p.27, D.L. Burkholder outlines a proof of (2.1) in which the only

property of Z(t) that is used is that Z(t)z—t is a martingale. This proof is

rgadily adapted to the present case, and the adaption will not be given here.

It yields the resuit that there is a constant A depending only on g such that

if T is a stopping time for X(t) then E¢(Y(T)*) < AE¢(T%), which is Theorem 2.1.
We remark that, in the statement of Theorem 2.1, ((n—l)t)% may be replaced

by (nt)%, although'the constant A must be increased a little. We have

v 1
(2.4) E¢(sup, _ . _ Tll'i(t)l-(nt)el)

Eo(y(t) + (n%-(n-l)%)r%)

| A

1

Eo(y(t) + 12)

| A

Ee(2y(1)") + Eo(212)

| A

i A

Q°E¢(Y(T)*) + G¢E¢(T%)
1
ao(A+l)E¢(T2).

| A

Note that
* : ‘ 1

¥ T z
(2.5) [X(1) -me| < supy o (JIXCO]-(0)F],
so that (2.4) strengthens (1.2) by showing that not only are the LP norms of
_ 1 — £ }
]X(r)l and (nt)* close but the random variables !X(T)| and (nt)* are close in LP.
It is remarked that the constants in the analogue of (1.2) for functions ¢ of
the type discussed above need not approach 1 as n+e, for some of these ¢. See
[1]. The following inequality also holds.

L
¢ < /X -t 3],

(2.6) ||X(0)|-(n1)?| < sup,

<

Burkholdef proves (Theorem 2.2 of [1l]) that if p > 0 there are constants bp I

which approach 1 as n»» such that

2.7 EX@HP b E[XC) [P

b,



This can be derived, under the additional assumption that E(Y(T)*)p < =  from
(2.4). The proof goes like this. If E(ifr)*)p,< © then E(nr)p/2 < ®, using
(1.2). Using (2.4) and (2.6) it is éhown that EIXIT)IP/E(nT)p/z is close to 1
if n is large, and Qsing Theorem (2.4) and (2.5) it is shown that E(X(T)*)p/E(n‘.)p/2
is close to 1 if n is large, so that E(X(T)*)p/E}X(T)Ip is close to 1 if n is

large.

2. Proof of Theorem 1.2. Unless otherwise indicated, sums will be taken over
. n
i=1,2,...,n, so that Z will be shortened to 5. As before, n is the dimension
i=1 :
of the Brownian motion. For each nonnegative integer k we define Gk n(s) =
3

Gk(s) and Hk,n(s) = Hk(s) by

G, (s)

ZXi(s)k, and

s k
H, (s) fo IX; (1) "dX, (¢).

The following extension of (1.2), dqe‘to the same people responsible for

(1.2), will be needed. Only the iight hand side will be stéted. Let Z(t) be a
Wiener process and f(t,w) be a non-anticipating fﬁnctional. Then for each
number p > 0

t «© o
(3.1) E SUPy . 4 < T]f f(s,w)dZ(S)lp j_KpE(f f(t,uﬂzdt)p/z,
- - 0 . 0 .

where Kp is the same constant as in (1.3).
By Ito's lemma, for each integer k >2

t
(3.2) G (1) = ki, (1) + KEL) jo G,_,(s)ds.

The next lemma estimates the first of these components. The constants Kq are
those of (1.3).

Lemma 3.1. Let j be a positive integer and p > 1. Then, if 7 is a

stopping time for i(t),




P e (G /2
(3.3) E sup, <t TIHj(t)I < g(p,n,j)Et ,

J(+1) /2 4

wh ,N,j) = K- >-
ere g(p,n,J3) = Kje5.9y

p 22,

gpn,5) = KT n, if 1ep < 2, and g(1,m,5)

- (e, (I3,

Proof. It can be shown, using the same reasoning suggested by McKean
to prove that the process a(t) of (2.3) is a Browniaﬁ motion and that the
equation preceeding (2.3) holds, that W(s) = Hj(s)/(sz(S))é is a standard
Brownian motion and that

t . b
= - 2
Hy(0) = fo(czjcs)) dw(s) ,

3
Thus applying (3.1) to the functional (sz(s))‘d I(0 <s < 1) we get

T
P p/2
(3.4) E sup, <t :.TlHj(t)I < xp E(fO.GZj(s)ds) .

Let v, = sup < TIXi(t)I. Then

0 <t

T T o
3.5) E(J sz(s)ds)p/z = B2 X, () as)P/?
0 0
< E(ZTyij)p/z.

If p > 2 we have, using (1.3),

. . 2/p p/2
E(zTny)P/z_i (z[E(rny)p/Z] /p)

< np/2 max t(ryij)p/z

- 1l <i<n

nP/2 pax(gcP(3*1)/2y1/(G+1) E(Yg(j+1$j/(j+1)

| A

nP/2 (g P(3+1)/2)1/ (G+1) g gP(3+1)/2y3/(3+1)

| A

p(3+1)

WP/2 /G (D2,



If 1 <p<2,
. 23 2 .23 2
h(ZTYiJ)p/ < ZE(TTiJ)p/

EP(3+1)/2)3/(j+1)

| A

p(j+1)/2,1/(j+1)
L (Et ) (Kp(j+1)
J(3+1) - _p(i+1)/2
Kp(j+1) Et .

n
If p=1, we let M=M(n) be for the moment an arbitrary positive number.
1 1
- - E _ 2
Define a; =y I(yi < M7€) and Bi Y5 I(yi > Mt=<).
Then
P | . .1
(3.6) E(zryi))® =E(r(a]) + 629))%
.1 P
< E(Zragj)n + E(ZTB?J)z.
Now

.1 s s.q . 2 .
E(zrafJ)z < E(emMAIdth2 L yip2 g (3172

Also, for each q > 0,

1
MqETq/ZI(yi > Mt%) :'Eyg :_KqETq/z,

so that

23 2 a 23 ‘
E(eri3)2 E(ItI(y; > Mrz)yiJ)d

L
<

|A

2 .
TE(TI(y; > Me2)y2d)

E[ECEICy; > we®)) MD/2)1/ G0 g 3013/ (o)

| A

< i(K+

j 1ET(j+1)/2/Mj+1)1/(j+l)(Kj+1ET(j+1)/2)j/(_j+1)

- (j+1)/2
= nKj+1ET /M.

Taking M=n|/i(3+1) and using (3.6) we get the desired value for g(l,n,j).
Define 2(k) = 2"k1/(2K)! if k > 1, and define A(0) = 1.

Lemma 3.3, For each nonnegative integer j and each p > 1 there are

——

constants C(p,n,j) which approach 0 as n approaches infinity such that if

T is a stopping time for X(t) then




- kip - kp
(3.7) B supy ¢ . ARGy, () /n-t7|P < C(p,n,2K)Er
and

T o ._kp
(3.8) E sup,, <ts< T|sz+l(t)/nl < C(p,n,2k+1)ET" ",

Proof. Let I'(p,n,j) denote the smallest possible value for C(p,n,j)
such that (3.7) and (3.8) hold for all stopping times 1. Clearly C(p,n,0) = 0
for all p and n. Using equation (3.2),

€ supy . A6, (2)/n-t¥Py1/P

fA

.
Kip.1
2K aoH, (6 /n 4 k(zk-l)x(k)fo Gy o (s)ds/m-t" [P /P

H

(E sup, £

| A

< (E sup, . T|2kA(k)H2k_1(t)/n|p)l/p

t k(p 1/
+ (E sup, T;k(zk-l)x(k)fo G,y 5 (s)ds/n-t[P)*/P

| A
-+
[ A

=1 + II.
Using Lemma 3.1
I < 2K glp,n,2k-1)YPEP P/ unite

1P

fl

t t
' k-1, p
E supg . ¢ iTIk(Zk-l)A(k)jO G2k_2(s)ds/n-foks ds|

(s)/n - ksk-llds)p

A

T
E(f [k(2k-1)A(K)Gyy _,
0

| A

E(t sup, . . . [K(ZK-DA(K)Gy ,(s)/n-ks**1[)P

P o1 _k-1yyp
k¥ E(T sup,, <s :.le(k l)GZk_Z(s)/n S I).

k-11kp/(k-1) (k-1) /k

)

I A

kp, 1/k '
kP (E¢*Py /X (E supy < :_le(k-l)(sz_zCS)/n-S
:_kp(ETkp)l/k(d%?T,n,Zk-Z)ETkp)(k—l)/k

- kP F(E?T,n,Zk—Z)(k_l)/k ErXP .
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Thus
(1 + 1P < 2P(fP 4 1P

(2PAk)Pg(p,n,2k-1)/nP + 2pkpr(%?T,n,2k—2)p(k-1)/k Ec¥

I A

< 2Py Pg(p,n, 2k-1)nP + 2Pkpr(§?f,n,2k-2)P(k‘1)/k)Erkp

= M(p;k,n)ETkp

|
<

The rest of the proof of (3.7) is by induction. Since F(%?Tun, 2k-2) =

if k=l and since as n + o g(p,n,l)/np-> 0 for each p 1,‘we have M(p,2,n) » 0

|'v

as n > ® so that I'(n,p,2) - 0 for each p>1, as n > o, This fact and the fact

that g(p,n,3) >0 as n » » give that I'(p,n,4) > 0 as n + = for each p > 1, and

so on.
G (s) :
The proof of (3.8) is similar. Slnce-—-jI— is 'standard Brownian motion,
n< '

L’Tl (S)

E supO <5 < rl n

P < 0P/ g P2,
- p
so that P(n,p,l).& 0asn—+eo Ifk > 1,.

' Gkl 1
(E SUPO < . < Tl_______lp) /P

t

1/
SUPp < ¢ < T,fo 2K-1(s)ds Py F

< L2k 1)(}3(H2 NN V) I (2k+1)k(e

=1+ II,
The first of these terms goes to 0 as n ~ » for each fixed k and p by Lemma 3.1,

and
t

E sup,, <t f.Tlfo sz_l(s)ds/nlp

<E(r 6y 1 (s) /m)P

l/k l(s)*/n)pk/(k—l))(k—l)/k

< (Ec*Py /K g (G,

(BePy /R BE n oke1yp.PKy (k=D /K

fa

= r (@0, 2k-1) KD /g ke

and (3.8) follows by induction.
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Proof of Theorem 1.2. Inequality (3.7) with p=1'imp1ies

A(K)G,y, (T)

B - Er¥| < C(1,n,2K)ET",

£ 3(1),i(2),...,j(m) is any subset of 1,2,...,n then Y(t) = (Xj(l)(t),..

L ]

xj(m)(t)) is standard m dimensional Brownian motion so that

(3.9) |

NOBE 2k K K
m iZl Exj (1) (T) - Et I _<_ C(l,m,Zk)ET .

This holds even though 1 is a stopping time for X(t) and not Y(t), by reasoninyg
similar to that used in the second puragraph of Section 2. Thus if Nfe) is the
number of i such that A(k)EXi(A)Zk > (1+E)Erk, we havé, by picking these i for
il),...,j(m) in (3.9), |
l(1+€)Erk-Erk} _<__C(1,N(€),2k)Erk

Thus N(e) can at most Le the largest integer £ such that C(1,2,2k) > e. Since
C(1,n,2k) > 0 as n + « this is a finite integer, and gives an estimate which
does not depend on n. The proof of the rest of Theorem 2.1 is similar.

Now let k be a fixed integer > 1 and let Tn(k) =lTh = {(21’22""’Zﬁ):
Zzik = n(2k)!/2kk!}. Let Zl(t),Z (t),... be an infinite sequence of independent

Wiener processes, and let

s, = inflt > 0: (Z,(),...,Z (£))¢ Tn};

Then, using (3.7) with p=1,

- n
k 2k k
E[l-s | = E]a(k) | Z.(s) /n-s_|
i=1
k
i’C(p,n,Zk)Esn,
implying ‘

k C(p,n,2k) -
E|1—snl i_L———"l-C(p,n,Zk) + 0 as n > «,

Thus sﬁ + 1 in probability implying Sy 1 in probability so that Xl(sn)-a X](l)

in distribution.
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4. A proof of (1.3) for 0 <‘p 2 1o We first prove the right hand side. lLet

il

. . n . ! N
Bp = E sup, <t < 1]Z(t)] . Note Bp is a lower bound for K . Let v

i

inf{t > T: t=2K for some integer k}. Then v < 2T, and z P(v=2k)
. . - k=-e

P(v > 0). We have E(Z(T) )P < E(z(v)")P

=]

k k
< 3 E-supzk < s < gk+112(s)-2(2|P1 (v > 29

k=-

o]

Z E sup, s < zkIZ(s),p P(v > 2k)

k=-co

= T 8 X2 ppy s ok
k=-o P

1]

[ A

® k-1 .
BT (7 2P 2)piaaky
p k=-o j::.oo

o kp/2

D S Y Y

ky
p k=-o 2p/2_1

It

8/ (222 1) P/

2Pg

__75___ETP/2.
2Pre

The left hand side is similar. Let u(A) = inf{t > 0: Z(t)] = 2} and 1e-

| A

oy = Eu(l)p/z. Note ap is an upper bound for kp. Let ri = inf{t > 0: |z(¢)] =

Zi}, and let n = inf{t

| v

* *
T: t = T for some integer i}. - Then Z(n) < 2Z(T)

I

oo * - * . )
and }J Pz =2Y =pam” > 0). Also, T, , -1, is smaller in distribution

= = O

than u(213 ). We have
grP/2 EnP/2



I A

| A

[

Z_m E(ry,;-)° 10 > 1))

i

I Ew@3)Pemo> 1)

im-co

I o 2'3)Ppzm’ > 2h

.
=00

ap3P P
—E—l_zp E(Z(n) )

o _3P2P *
2 < Ez(m) )P
1-2P )
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