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4. %NI%QQQQX{QQ.' Consider a population which reproduces according to a
Bellman-Harris age—dependent branching process (B.H.P.) (see Harris [21).

Let G(*) be the common distribution function (D.F.) of the random length
of life of an object, which produces j progeny with probability pj
(j=0,1,2,...) at the_end of its life. The objects are assumed to develop
ihdependent of each other. Again, it is assumed that the population is being
augmented by an independent immigration process defined below, where each
immigrant, independent of others, generate a B.H.P. The immigration
epochs occur in time according to a renewal process with D.F. of inter-immi-
. gration times given by H(-). Also, at each immigration epoch, j immigrants
enter the population with probability hi (3=0,1,2,...). These immigrant numbers

are independent of each other and of everything else. Let for lsl <1,

) £6)= ] ps? 5 h(s) = T ne,
: j=0 7 j=0 J
and
) a=f£ (1), g=h (1), Ao = [ tdH(), A = [ edo(e).
0 0 .

It is assumed that Py h0 <-1 and G(0+) = H(0+) = 0. Let X(t) denote the
population size at time t. The process {X(t)} as defined above will be

called Bellman-Harris process with immigration (B.H.I.). We assume that

X(0) = 0.




Again let Y(t) denote the population size at time t in a B.H.P.
governed by £(+) and G(+), with Y(0)=1. Let F(s,t) and &(s,t) denote the
probability generating functions (p.g.f.) of Y(t) and X(t) respectively.
Recently Pakes and Kaplan [14] (see also Kaplan and Pakes [10]) have
considered the problem of existence of a limiting distribution of X(t) as

t+¥.. In particular, among other results, they proved the following theorem.

THEOREM 1. (Pakes and Kaplan) If A0<w and H(*) is nonlattice,

X(t) has a limiting distribution iff

(3) . [ [1-n(F(0,t))1dt < w
0

More specifically, if (3) holds then as t== , &(s,t)>0(s) (0<s<1), a

- p.-g.f. given by

@) Co(s) = 1 - 3 [ (s, t) [1-h(F(s,t)) ]dt,
0 0

and if (3) fails to hold then X(t) 5.

Jager [3], séveral years earlier, proved similar results under somewhat
restrictive assumptions. Reéently there has been a considerable interest
shown in literature in processes with immigration. Kaplan [8] has considered
avp—dimensional analog of the above process originally coﬁsidered by Jager
[3], and has generalized the above theorem. In the other direction
Kaplan [9] has proved some results while specialising the above process.tb
a GI/G/~ queue, ‘Again, Pakes [11] and Pakes and Pa}thasarthy [15] have
considered Bellman-Harris processes with immigration, where‘the immigrations
are assumed to occur not at the epoch of a renewal process, but instead at
those of a nonhomogeneous Poisson process. For this case, in [11], Pakes
also considers the problem of existence of a limit distribution of the

process, somewhat analogous to the above theorem. Earlier, in a context



rélevant to a biological problem, Puri [16] considered and proved certain
results in the case of a time homogeneous Markov branching processes with
immigration also governed by a nonhomogeneous Poisson process. In the
)

discrete time case, for Galton-Watson processes with immigration, the
reader may refer to similar results and problems to Heathcote (41, [5],
followed by Pakes [12], [13] and Kaplan [6], [7] (see these papers for
other referencesj. However, in the présent paper, we shall, for convenience,
restrict ourselves only to the continuous time case. The discrete time
case can be dealt with in an analogous manner.

| The present work was in part‘motivated by the results such as the
one given in the above theorem, where, whenever the limit distribution
exists, its p.g.f. &(s) unfortunately is given only by an implicit equation
(4), which itself in turn needs ¢(s,t). As we shall see later, the
solution ¢(s) in fact has an interesting structure and can be explicitly
written down in a rather curious but interesting form. (See section 6.0
and in particular equation (55)). The proof of Theorem 1 as given by
Pakes and Kaplan [14] follows in part the lines of proof adopted earlier
by Jager [3], and is based on setting up a renewal equation satisfied
by ®(s,t) and then using the key renewal theorem. By contrast, our proof
is quite different. Also we shall prove in the next section a fundamental
limit theorem 2, valid for a large class of point processes, which in par-
ticular includes, among others, renewal, nonhomﬁgeneous Poisson, and
stationary point processes. fhe results similar to the above theorem, and
also related to many other éhgracteristics of these processes (see for

example section 6.1), follow then by a simple application of this theorem



These applications are qarried through in sevefal contexts in sections 3,
5, 6 and 7. Also, section 4.1 deals with the question of positivity of
the limit (11) of theorem 2. Section 4.2, gives an approximation to the
limit (11), whenever it is positive, for a commonly occurring case. Also
in Section 6.1, we study certain charactefistics of a GI/G/~ queue,

apparently not studied before.

2 QAxﬁﬁQRRMAQNARR;NIAR§Q§§§§§§, Let N(t) be a point process representing

the number of 'some' events occurring during [0,t] and .defined on some

underlying probability space. It is assumed that almost every sample path

of N(t) is continuous from the right. Let 0 f-Tl §_T2 < ... be the epochs
of occurrences of the events, so that
(5) N(t) = sup {k: Tk < t}.

Let U(t) = EN(t). We list below some of the conditions that occassionally
we shall impose on the process N(t).
(Al) For every finite t, U(t) < .

(A)) N(t) 5 o, as t o,

2)
(ASJ There exist positive constants 61, 62 independent of t and a,

such that
(6) Ut - U(t-a) < 8,3 + 6,, yt > a > 0.
(A4) For évery k >1, as t -+,

: : £
(7) (t-TN(t)-’ t'TN(t)_l:---.,t'TN(t)_k+1)+ (gl, £2,°-':gk),

where the distribution of §k = (El, gz,...,gk) is necessarily

such that P(0 < &, < &, < ... &)= 1.



Note that the condition'(AS) easily implies the following condition

needed later.

(8) U(t) - U(t-a-) < 8.a + 62, vyt>a>0.

1

REMARK 1 In condition (A4), the random variables (r.v.) ¢ , are not

1’ 5,2,...
necessarily defined on the same probability space as N(t) and hence their
introduction may appear an abuse of notation. Nevertheiess we shall find
them convenient even though we shall mostly be using them for their joint
distribution, with thé only exception, when El, EZ -»El, 53 —'gz,... are
mutually independent, the case where we see no problem (see section 4.1).
Besides, intfoduction of sﬁch iandom variables even fdr convergence
in law as in the above case, is not an uncommon practice in probability
literature. Also, even though condition (Al) is implied by (A3) (assuming
that U(0) < =), nevertheless it is stéted here separately, for there will
be occassions where only (Al) suffices without the need of the'stronger
condition (AS)' ,
Again we shall talk of an arbitrary function R(t) defined for t >0,
for which we let |

9) R,(t) = inf R(u), t>0,
' : ' u>t

and fqr every finite T >0,

. sup R(u), t>1>0
(10) O R(w) - TIust
T
R(t) T>t>0.

We shall write simply R*(t) for R;(t), whenever T = 0. Also we shall

occasionally impose the foilowing conditions on the function R(t).



(B) O0<R(t) <1, yO0<t<w

(B,) lim R(t) = 1.
2 400
(83) For every k > 1, the set Sk of the discontinuity points of the
- k
function Wk(ul?""uk) = igi R(ui), defined for uy 310, i=1,2,...,k,

satisfies Pk(Sk) = 0, where Pk(-) is the probability measure associated
with the random vectgf §k = (El";"gk) of (A4).

(B,) The integral [ udR,(u) = ({(l-R*(u))du, is finite.
0

It can be easily shown that for any R satisfying (Bl) and (Bz), both
R, and R* also satisfy (Bl) and (BZ). Furthermore, both R, and R* are

nondecreasing with R, continuous from the left and R* continuous from the

right, while satisfying R*(t) > R(t) and R, (t) <R(t), v t > 0. In fact
for an R satisfying (Bl), R, is the maximal function of the class C, of

functions defined over [0,*) and given.by

C, = {r(-): r nondecreasing, satisfies (Blj and}
r(t) <R(t), v t > 0.

Similarly R* is the minimal function of the class C* defined by

C* = {r(.): r nondecreasing, satisfies (B,) and}
r(t) > R(t), v t > 0.
Similar remarks hold for the function R:(t), for every T > 0 and for
N(t)

t > 1. Again, we shall consider the products of the form 1 R(t-Ti),
i=1

which by convention will always be defined as unity, whenever N(t) = 0.

We now state our fundamental result,

THEOREM 2. For a point process N(t) satisfying conditions (Al) Eg_(A4)



and an arbitrary function R(t) satisfying conditions (Bl) to (B4), we have

N(t) o
(11) lim E{ T R(t-T.)}=E{ T R(E)},
o i=1 1 i=1 1

n
where the right side is defined as lim E{ I R(Ei)}.
n* i=1

The proof is accomplished by lemmas 2 and 3, given below. But first
we need to prove the following lemma.

LEMMA 1. Under the conditions (Al) and (AS) imposed on the process N(t),

and conditions (Blj, (B2) and (B4) on _the function R, for every € > 0,

q tO > 0, such that

N(t-t,)
(12) E{ 1 R(t-T.)} > 1-¢, v t>¢t..
. i —_ 0]
i=1
Proof. Since
N(t-t,) N(t-t,)
(13) E{ =« R(t-T.)} > E{ I R (t-T.)} ,
’ i=1 1 i=1 1

We shall show the existence of a tO > 0, such that the right side of (13)
is no 1less than 1-¢ for all t > tO. Using (AS),'it can be easily shown

that U(t)/t remains bounded as t*~ ., And because of (B4), since t log R, (t)

v

tends to zero as i»-5 it follows that U(t) log R,(t) tends to zero
as t+e. Thus, using (B4) and the fact that R,(t)Al as tow, it is possible
to choose a tO > 0, such that

[+ <]

() 25, [ udR,(uw) < €/4 (i1) R,(ty) > max (1/2, 1- &,

t6 2

and (iii) |U(t) 1log R,(t)] <€/2, vt >t We shall show that such a t

0° 0



works. For t > t , the following representations can be easily justified.

0
. N(t-t,) N&t—to)
(14) _— II R*(t—Ti) = exp|[ log R*(t—Ti)]
i=1 i=1
N(t-t.) )
=expl- ) 0 [ Ryw) ldr,(w)]
i=1 [t—Ti,°°) ’
N(tt)) )
= exp[- [ 0 Iy > por,p Re(@) lar, (w1
—_ 1

[0,%) i=1
= exp[- [ IN(t-t)) - N(t-u-) }(R, () "LdR, (u)
[tgst)

+ N(t-to) log R, (t)].

Here I[A] denotes the indicator function of the set A. Thus using Jenson

inequality, it follows that yt > tO’
N(t-to) C -1 '

(15) E { I .R*(t-Ti)} > exp[- / {U(t-to)-U(t-u-)}(R,(u)) dR, (u)
i=1 [ty,t) -

+ U(t—to) log R*(f)]

| v

exp[—261[{O,E?-to)dR*(u)-262(1—R*(t0))-€/2]

|v

exp[-261 {t u ?R*(u)-e/47€/2]
t
0’

> exp(-€) > 1 - ¢,

where the second inequality follows from condition (AS) (in particular from

(8)), (ii), and (iii); third inequality from (ii) and fourth from (i). ]

LEMMA 2. Under the conditions (Al), (ASJ’ (A4) and (Bl) Eg_(B4), we have



(1,6) lim‘ inf E { ngt) R(t—Ti)} > E{

o

1 R(E.)}.
i=1 i=1 1

PROOF. Let Ei = é be an arbitrary positive number. Then choose t0 > 0 as in

lemmall, such that (12) holds. Let t > t_, and

0
‘ - N(t-t )
17y n(t) = I R(t-Ti),
o i=1
then we may write
N(t) Nét)-N(t—tO)
(18) 7RG - n(t){i=1 R(t—TN(t)_i+1)}.
Again from Markov inequé.lity we have
(19) P(I- n(t) <€) > 1 - 1:%?151.
From this and (12), it follows that
(20) PO < 1 -€)) < €.
Thus from (18),‘We have
N(t) ' _ :
_ _ N(t)-N(t-t,.)
(21) E iT=Il R(t Ti)} 2 (1 El)E {I[n(t) >1 - 61] i_g]_ R(tQTN(t)—i+l)}
'N(t)-N(t-tO) 7 | ' ’
i (l—el)E{ I R(t—TN(t)—i+1)} V"P(n(t) <1- 61) -
i=1 '
N(t)-N(t-t,)
2 (1-€,)E {I[N(t)-N(t-tO) <K L R(t_TN(t)-i+1)’-El
k .
> Qeps {1 REe-Ty) ) Gee PN Nt k€

1
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where the above is valid Yk > 1. Letting t»» , in view of conditions (A4)

and (BS) and on using a weak convergence theorem, we have

- (22) lim inf E‘N(;) R(t-T, ?} 3_(1—61)E{-§ R(gij}'—

o =1 i=1

1 '-
& €D (yegrsy) - €.

Here we have also used the fact that by Markov inequality and (AS)’
8.t +6
(23) P(N(t) - N(t-tp) > k) < u(t) - Ut-to) . _1__]((’_2 :

Finally, letting k. -« in (22) and since El is arbitrary, (16) follows. (=)

LEMMA 3. Under the conditions (Az), (A4), (Bl) and (BS)’ we have

N(t)
(24) lim sup E { )| R(t—T.)} < E { 1 R(g )
to i=1 v i=1

o

ROOF. It is easily seen using (Bl)'that

N(t) .
(2%) E{ [ RETS D) - E{“[N(t)>k1 F AN <k
N(t)
ifl R(E-Ty gy i+1)}
) |
E{ I R(t-T . + P(N k),
< {1=1 Tyeey - 1+1)} .

valid Vk > 1. Letting first t-e and then k»w, (24) now easily follows in

view of (Az); (A4) and (BS)' O

REMARK 2. The limit result (11) of theorem 2 lends itself to the following
interesting interpretation. Note that starting from t (t being infinitely
large) and moving béckward in time (so that taking t as the origin), £1 is

the point in time when the immediately preceding event occurs, 52 is the



11

point when next to the preceding event occurs, and so on. This is
essentially looking af the process in the reverse direction beginning from
t but after an infinitely large t. Now in an infinite server queue (see
Kaplan [9]), if R(u) repfesents the probability that an arriving customer
completes his service within a length u of time after arrival, and if the
customers are independently being served, then E{ﬁéz)R(t_Ti)} is just the
i= :
probability that -at time t, no customer is getting served. On the other

hand its limit E { i R(gi)} is also the probability that no customer is
i=1

getting served at an infinitely large time t, while using however the back-

ward "reverse process' based on the sequence{Ei}.

b ANARRIAGARIN IR, STATASNARY, PROCESSES
We consider bfiefly in this section, the case where N{(t) is a
stationary process.with N(0) = 0, so fhat for every k > 1, and
0<t) <t,<....c< t <= the joint distribution of N(t,) - N(ty), . oN(t ) -N(t, 1)
is the same as ;hat_of N(tz-tl)-N(O),...,N(tk-tl)-N(tk_l-tlj. We
assume that N(t)-« , and that U(1l) = EN(1) <=, Evidently U(t) = tU(1), so
that (Al) is satisfied. Furthermore, because of statiénarity
, U(tj - U(t-a) = U(a) = al(1), t 3_é > 0, so that condition (AS) is élso
satisfied. Finally, the event [t_TN(t) > u] is the same as [N(t)-N(t-u)=0],

so that due to statibnarity we have
P(t - TN(t) >u) = P(N(u) - N(0) = 0),

which is independent>of t. Similarly for 0 :_ul < Uy,
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> u

[t-Tyeey > W1 t-Tyey-1 > U2l

= [N(t)-N(t—u2)=O]U[N(t)—N(t-ul) = 0, N(t-ul)-N(tfu2)=1],

so that from stationarity it follows that

P(t-T t >1u

1C B R ¢S IS B
= P(N(t)-N(t-up) = 0) + PN(£)-N(t-u)) = 0, N(t-u)-N(t-u)) = 1)

= P(N(uz)-N(O) =0) + P(N(uz)—N(uz—ul) = 0, N(uz—ul)-N(O) = 1),

which is again independent of t. Similar but somewhat more involved argument

shows that for every k > 1, the joint distribution of (t-T t

N(E)? BTNy ok D)

is independent of t, so that the condition (A4) is trivially satisfied. Thus,
since conditions (Al) to (A4) are all satisfied, the results of section 2 hold

for all stationary point processes with U(1l)<e~ and satisfying the condition (Az).

4.1 ON THE QUESTION OF POSITIVITY OF THE LIMIT {(11):

AVaVaY) mmwnmmwmmmmmmvmmwmm

Having proved theorem 2, it is natural to ask about the conditions under which
the limit (11) will be positive. We answer this question in detail first for

the commonly occuring case, where in' condition (A4),.the process N(t) is

such that the nonnegative random variables n,= gl, M = Ek _‘Ek—l’ k=2,3,...,

are mutually independent. We prove the following theorem 3 for this case. Later

in theorem 4 we treat the more general case briefly.

THEOREM 3. Let np =81 Nk T g T Eplgo k > 2, be mutually independent random

variables with gk/k+u > a.5.(g), as ks, for some positive u, possibly a r.v. Then for

an R satisfying_(Bl), the following hold.

(1) Let [ (1-R,(u))du < ». Then T R(g;) > 0, a.s (£), so that
0 . : : i=1 ~ T
1

E{ 1 R(gi2} is positive.
i=
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(ii) Let f (l—R:(u))du = =, for some finite © > 0. Then I R(Ei) =-0,
_ 0 o - i=1
a.s (&), so that E{ I R(Ei)} = 0.
i=1

(iii) Let R be such that either simultaneously the integrals f (1-R, (u))du
0

o0

*
and f (l—RT(u))du, (for some t > 0), are both finite, or they are
— 3 ; —_
both infinite, then,

g (1-R(u))du = °°¢>E{‘LI R(Ei)} = 0.

i=1

PROQE. Since Ek/k+u, a.s(&), as k>, almost for every sample path of {Ek}, q k0

for an € satisfying 0 < € < yu, such that
(26) (u-€)k f-gk < (m+€)k, YV k 3_ko.
Also note that

(27) E{ifll R(gi)}' - oaiirl R(;i) = 0, a.s(g)

& ] (1-R(E))) =eo, a.s(E).
isl ¥

It is sufficient to prove (i) and' (ii), since (iii) follows from these two.

In view of (27), using (26), we have for k > kO’ and a.s(£&),

[2o]

@9 1 O-RED)S T ORG0-0))
L |

i<k
= IR ee-eldx < e [ per @y,
k-1 (k-1) (u-€)

from which (i) folloWs‘using (27). Again choose_k1 large enough such that

(u—E)kl > t. Then using (26), we have a.s(£), for k z_max(ko,klj,
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(29) L RG> T a-re,))
i=1 i=k
2 1 aRie))

[=]

TR (3 (ue€))]

i=k

|v

® * - 1 ® *
2 L [1-R_(x(u+€))]dx = o= J (=R (uw))du,
k+1 : (k+1) (u+€)
from which (ii) follows using (27). (]
I't may be remarked that the additional condition imposed on R in theorem 3
(iii), is not so uncommon. For instance, it will hold whenever R is non-
decreasing (see also sections 6.0 and 6.1 for other examples). The following

corollary immediately follows in part from Theorem 3 and lemma 3. 1In particular,

part (ii) of the corollary follows from cond1t10n (B ) and theorem 3(1).

COROLLARY 1. (i) Under the conditions of lemma 3 and theorenm 3,

» N(t)
(30) lim E{ I R(t-T.)} = o,
t-so0 i=1 1

*
whenever f [l—RT(u)]du = », for some finite t > 0.

(ii) Under the conditions of theorems 2 and 3, we have

. N(t)
(31) lim E{ I R(t-T. )
T i=1 n

8
=]

=
ol
Py
o~
3
5
p—
oy
.

which is always positive.

THEOREM 4. For an R satisfying condltlon (B )}, the expression E{ T R(g. )}
: 1=]lw
is positive prov1ded either (a) Z E[log R(k. )l is finite, or (b) Z (l—ER(gi))
= i=1
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is less than one. Thus each of these conditions is sufficient for the limit (11)

to be positive.

PROOF. Let (a) hold. Then for every n > 1, by Jenson inequality, we have

n n
E{igl RG] > expl ] E log R(s)],

so that the result follows by letting n »=. For the case when (b) holds,

the result follows from the inequality

n n
TR 21 - ] (A-R(g)), Von o>,
i=1 i=1

after taking expectation and letting n-w, O

4,47 AN APPR X{Mﬁ;%gNﬂXgﬂIﬁEﬂk%%}Imgkkk: For the case where the random variables
n = gl, O S Ero1? k > 2, are mutually independent with distribution functions
Hk('), k=1,2,..., respectively, we give in the following an approximate method
of evaluating the expression M = E { I R(&i) corresponding to an R satisfying
i=1
conditions (Bl), (B2) and (B4). This expression in view of theorem 3(i),
is of course positive. We define for u > 0, the functions
n k
(32) M, p(W) = E{ I R(u+_§_ni)},
k=j i=j
for j = 1,2,...,n, and n = 1,2,..., and 1let
33 M. u) = lim M. u).
(33) | 3,0 Lim 5,
Since M = M1 co(0), we can approximate it by Ml n(O) by taking n large enough.

On the other hand, it is easy to establish that for,j=l,2,...,n,

(34) Mj,n(u) = E{%(u+nj) Mj+1,n(u+nj{}
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= g R(u+v) Mj+1,n(u+v)d“j(v)' n > 2,
(35) My @ = E{R(u+n )} = (f)'R(uw)«dHn(v), n> 1.

Thus for ény n, we can at least in principle, solve (34) and (35) recursively

backward, to finally yield M1 n(u). For the special case, where n's are

identically distributed with Hk H, k > 1, let for u >0,

(36) T =M ) Jq) - My (u).

Then, since Mj’n(u) = Ml,n-j+1(u)’ (34) and (35) simplify to

(37) Jp(u) = Ru+vy J__, (u+v)dH(v), n>1,

O— 8

with Jo(u) =1 These equations can now be solved in a forward recursive manner
to yield Jn(u) for any n, to approximate_M = J(0). Also, letting n+w, it follows

that J(u) itself satisfies the integral equation

(38) J(u) = [ R(u+v) J(usv)dHEv), u > 0.
| 0

This equation, but with u = 0, is essentially an analog»of equation (4). As
before, for an appropriate function R, (38) in general does not lend itself to

an easy nonzero solution, if there exists one, subject to 0 < J) < 1.

REMARK 3. Not unexpectedly, under suitable conditions on R, (38) does lend
itself to a nonzero solution, when the common H(-) is an exponential distribution

given by
(39) H(x) =1 - exp(-vx), x>0, v >0.

For this from (38) we have
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(40) J(u) =y exp(yu) [ R(W)I(W)exp(-w)dv; u > 0.
u

Let R be continuous with f (1-R(u))du < «. Then (40) easily yields the
0

differential equation

(41) LW -y swa-rw), u > 0.

The right side of (41), being nonnegative, implies that J(u) is nondecreasing.
Also, since in our case J(0) = M1 »(0) =M, is positive, we have J(u) > 0,

Vu > 0. Thus dividing both sides of (41) by J(u), we have

dlog J(u)

£ = Y(1-RW).

(42)

Let lim J(u) = c, where 0 < c < 1. Then subject to this (42) yields the
u->
solution,

(43) J) = c exp[-y [ (1-R(v))dv].
u
In particular, when ¢ = 1, we have

(44) J(0) = E{‘H R(Ei)} = exp[- ¥ f(l—R(u))du],
‘ i=1 0

which is a familiar formuia, known to arise when the immigration process is

governed by a Poisson process with parameter Y. Of course the above derivation

is intended to be only heuristic in spirit.

é. QNEQMMONLY ARISING FUNCTION R IN APPLICATIONS:
WMAA/\A/M%’V\MM%%’VVVW%%MM%%

In applications, as we shall see later, it often happens that the function R is

a probability generating function (p.g.f.), so that besides depending on t > 0,

it also depends on a dummy variable s = (sl,..{,sk) with 0O j_si <1, i=1,2,...,k.

Thus in what we have considered so far, the function R may be regarded as a
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function R(s,t) of two arguments s and t, with s considered fixed and hence

7]
(A
—

suppressed. We shall now invoke the variation in s, subject to 0 <

1

The conditions (Bl) to (B4) could now be visualised for every fixed

o
EY))
| A
1
-

with R, (s,u) = inf R(s,t). Thus under the conditions of theorems 2 and 3, the
- t>u ~
result (31) now becomes

. N(t) o n
(45) lim Ei T R(s,t-T,)r = EJ I R(s, } n;) ¥
©i=l

tro (i=1 n=1

for 0 < s < 1, where s <'1 means H <1, Vi=1,2,...,k. When R(s,t) is a p.g.f.,
the question that we now pose and answer is whether or not the right side of
(45) is also a p.g.f. This is done in the next theorem, lemma 4 and corollaries

2 and 3.

THEOREM 5. Let R(s,t) (not necessarily a p.g.f.) be a function defined for

=]
| A
W0

<1, t > 0, nondecreasing in each.si, i=1,2,...,k, and satisfying

0 < R(s,t) < 1. Then under the conditions of theorem 3,

=) n o n '
(46) lim El 1 R(f, E nk)} = EZ I R(}: Z nk) s
M n=1 k=1 n=1 k=1

0 < 1, such that

whenever there exists an 0 <s
47 f (1-R, (s5,u))du < =
0 -

PROQF. By monotone convergence theorem it follows that

o n © . n
(48) lim E4 1 R(s, ) mJp = E4lim 1 R(s, } ny)
s>l- n=1 ~ k=1 Efl' n=1 ~ k=1
Note that since (47) implies that f (1-R,(s,u))du< =, ¥ Sp S <1, in view of
n 0 - ~ ~ -
theorem 3(i), the product I R(s,gi) converges a.s.(g), for every fixed s

i=1
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satisfying Sp =8 < 1, to a positive limit as n»w. That
(49) lim I R{s,£.) = I R(1,&.) , a.s.(&),
. N § . iR 1 2
s»1- i=1 i=1

and hence the theorem will follow, once we show that for every sequence of

values of{gi},vwith the exception of a set of probability zero, the convergence

of the product .E R(s,gi) as n»», is uniform in s, for EO f—f 52{. For every such
sequence{gi}, t;;i follows from the uniform convergence as n+» of the series

-E (I_R(f’gi))’ shown below. From an argument similar to the one used in (28),
i:lfollows that for the given sequence{gi} and 0 < 61 <y, d k0 2> for k z_ko,

50

(50) J (1-R(s,£,)) < le [ (1-R,(s,u))du
i=k R BN S

< uie ' f (1-R, (s,,u))du.

1 (k-1) (n-€4

Since in view of (47), by taking k large enough, the right side can be made
arbitrarily small, this establishes the desired uniform convergence and hence

the theorem. ' (]

REMARK 4. Note that theorem 5 is applicable also to the case where R(s,t)
instead is a Laplace Stieltjes transform (L.S.T.) of nonnegative random variables.
For this all one needs to do is to replace S5 in R(f,t) by exp(-ei) with ei >0,
i=1,2,...,k (see section 6.1, for an example).

We shall need the following lemma, the proof of which is based on an argument

due to Pakes (see for instance [14]).

LEMMA 4. Let R(s,t) be a p.g.f. for each t. Then (i) the integral f (1I-R,(s,t))dt
— - 0 ~

is finite for some 0 < s < 1, if and only if it is finite for all 0 j_s'< 1.

~ ~
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* . -
(ii) Furthermore, (i) also holds with R, replaced by Rr’ for every finite t > 0.

(iii) If R(O,t) is a nondecreasing function of t, then the integral

[ (1-R,(9,t))dt is finite (infinite) if and only if the integrals
5 v

f (1-R,(s,t))dt and f.(l—Rz(S,t))dt for finite t > 0, are alllfinite (infinite)
0 ) 0 "

o

and hence if and only if the integral f (1—R(§,t))dt, is finite. (infinite),
0

VvOo<s<l1. e )

PROOF. Following [14], the proof of (i) follows from the fact that being a

p.g.f., R(s,t) satisfies V 0 <s<1l,and V t >0,

*

R(0,t) < R(s,t) < s + (1-s")R(0,t),
so that
*
(1-s ) (1-R,(0,t)) < 1 - R,(s,t) < 1 -R,(0,t),

* %*
where for each s, s = max(slj...,sk). A similar argument holds for RT and
hence for (ii). Also (iii) follows from (i) and (ii) and the fact that R, (0,t) =
*
RT(O,t) = R(0,t). ' , a

The following corollary now immediately follows.

COROLIARY 2. Let R(s,t) be a p.g.f. for each t > 0. Then under the conditions

of theorems 2 and 3 with (B4) replaced by (47), the limit (45) exists and is a

valid p.g.f., so that there exists a limit distribution.

Following corollary follows from lemmas 3 and 4 and theorem 3(ii).

COROLL652:3. Let R(s,t) be a p.g.f. for each t > 0. Then under the conditions

of lemma 3 and theorem 3,

N(t)
.H R(s,t-Ti) = 0,

(51) lim E{
i=1

t >0
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w, for some 0 < s < 1]

e %*
holds whenever for some finite t > 0, f (l—RT(s,u))du
: 0 -

and hence V 0 <'s <1, so that the random variable X(t) corresponding to the
N(t) -
_ . ‘1 infinity. .
p-g.-f. E{iyl R(é,t Tii} tends in probability to infinity, a§ t

REMARK 5. Let us assume fhat the limit (45) exists and is a valid p.g.f. Also
we introduce a random vector % = (Zl,...,Zk), where each Zi is nonnegative
integer valued, such that the p.g.f. of % is same as the limit (45). Then the
form of (45) lends itself to the foliowing representation for Z, which is quite
-helpful in studying the behavior, computing moments etc., of this limit
distribution (see section 6.1). Let for each t >0, Y(t) = (Yl(t),...,Yk(t))
be‘a nonnegative integer valued vector r.v., such that its p.g.f. is R(s,t).

Then from (45) it follows that Z has the same distribution as that of the random

vector Q = (Ql,...,Qk),'where

(52) Q= ¥ .Y ny, is1,2,..00k,
Y o B

n=1

and conditionally given the random sequence {ni}, the vectors
n n n
(53) YTy = o, ™, ™ T,
- =1 =1 =1

for n = 1,2,..., are mutually independent and are distributed as Y(t), with
n , -

argument t replaced by Z ure for each n. Thus to construct Q, we first observe
=1 ~o

the sequence of independent random variables {ni}. Given these we then observe

n
the sequence Y(n)( z nz), n=1,2,....
- 2=1

£+0. SPECIALIZATION TO RENEWAL PROCESSES.
’VWVV\:’\N%NM'\:’VV\/V\N%’\AAM/MWVVVVVM
We now consider the case discussed in the introduction, where N(t) is a

renewal process with the common distribution of (Ti—Ti_l),i=2,3,..., given by
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H(-) and that of T1 possibly different. The following theorem is more or

less known.

THEOREM 6. Let H be a nonlattice distribution with H(0) < 1 and AO = f t dH(t) < o .
0

Then the renewal process N(t) satisfies the conditions (Al) Eg_(A4).

1

Furthermore in (A4), the random variables n, = 51’ n. = Ei - Ei-l’ i>2, are

all mutually independent. The distribution of ny is given by the probability

density Xl-(l—H(x)), for x > 0, whereas Ny i > 2, all have the same distribution

function H.

OUTLINE_OF PROOF. That N(t) satisfies (Al) and (Az), is well known. Also it

satisfies (AJ) with 8, = (cd)_1 and 6, = d-l, where ¢ and d are two positive

constants chosen so that 1-H(c) > d, which is always possible since H(0) < 1

(sée Feller [1}]). That.it satisfies (A4) in the manner stated in the theorem

should also be a known result. It is well known for k = 1, however for any k > 1,

it must be burried somewhere in literatufe,'although the author failed to find

it. Nevertheless, it can be easily proven in a rather standard manner, using

the key renewal theorem. D
Thus under the conditions on H as stated in theorem 6, all the results of

Sections 4 and 5 Qold for the renewal processes. In particular, since gl =7

and hence gk = Z n; s k > 2, all admit probability densities, the condition

i=1 .
(BS) for the commonly arising R is automatically satisfied. Also, theorem 1

1

of Pakes and Kaplan [14] as stated in the introuduction and a generalised
version due to Kaplan [8] for the case of multidimensional age-dependent
branching processes, now eésily follow from our corollaries 2 and 3 and lemma

4(iii), while taking

(54) R(s,t) = h(F(S:t))'
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However, our approach goes further in giving an explicit solution for the
limiting p.g.f. ¢(s) which satisfies equation of the type (4). For instance,

in the one dimensional case we have the solution of (4) given by

] k
(55) o(s) = E{kn hees, 1 on)

=1 i

where NysNys---5 3TE as defined in theorem 6. Also, for practical purposes, this

could be approximated by

n k
(56) E {knlh(F(s,_ 1
= 1=

for large enough n, for the cases where (56) may be more convenient than

(55) for computation (see also section 4.2).

ke ANEANERRARE G1/6/~ QUENE.

Consider a GI/G/» queue (also sometihes called as Type II counter), where
customers arrive at the epochs of a renewal process N(t), and are served
immediately upon arrival by one of an infinite number of servers.. Let the
common distribution function of the interarrival times Ti_Ti—l’ i=2,3,..., be
given by H(-) and that.of T1 may be different. The service times for
various customers are I.I.D. with common distribution function G, and are
élso independent of the arrival process N(t). Let X(t) denote the number of
customers in service at time t. Let Ll(t) and Lz(t) denote respectively the
cumulative length of time of service received until time t, and the residual
cumulative length of tihe of service yet to be received, by those in service
at time t. The purpose of this section is to determine the limiting joint

distribution of Ll(t), Lz(t) and X(t) as tse. For this we define the transform

(57) V(el,éz,s;t) = E{sx(t)exp[—elLl(t)-esz(t)]:,
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for Re(ei) >0, i=1,2, and ]sl < 1. Then it is easy to establish that

N(t)
(58) V(elxez’S;t) = E{kgl R(el’ez’S;t'TN(t)-kﬂ)}’
where
(59) R(6.,8,,55t) = G(t) + s exp(-6,t) [ exp(-6,u)dG(u+t). -
1°°2 17 2 ,

We now have the following theoren.

THEOREM 7. Let H be a nonlattice distribution with H{0) < 1 and AO = f u dH(u)< o,
0

Then for Re(s.) > 0, i=1,2, |s| < 1, with (8,,8,,8) # (0,0,1),

(60) lim V(el,ez,s;t) = V(el,ez,s)

to

exists. In particular

(o]

_ k
(61) V(8,,6,,s) = E4 T R(8,,6,,s; } n.i},
1’72 el 1°72 !

which is a bonafide transform (of a proper distribution) with V(0,0,1) = 1, if

and only if

(62) Ay o=

. (1-G(t)dt < o.

o 8

If (62) fails to hold,‘then limit (60) is zero, and Ll(t), Lz(t) and X(t),

each converges in probability to o, as to»e . The ni's of (61) are as defined

in theorem 5.
PROOF. 1In view of theorem 6, the above theorem follows from corollary 1 and

theorem 5, once we show that for (61,92,5) # (0,0,1),and Tt > 0,



25

(63) A < =&>f (1-R,(1))dt< = &D[ (1R (1))dt <=,
0 0

*
where we have suppressed the arguments 91,62 and s in R, and RT, which are
defined as in (9) and (10). Here in order to apply theorem 5, we take k=3 and
identify $155, and Ss of theorem 5 with exp(—el), exp(-ez) and s respectively

(see remark 4, following theorem 5). Consider first the csse when 61 =IO,

but (6,,s) # (0,1). ‘Then from (59) we easily have

o

(64) R(0,6,,5;u) = G(u)(1-5) + s8, [ exp(-0,v)G(u+v)dv;
0

which is a nondecreasing function of u, so that for t >0,
*
(65) R(0,6,,s;t) = R,(0,8,,5;t) = R_(0,8,,s;t).
On the other hand, using (64) and after some simplificationé, it follows that
(66) f(l—R(O,Gz,s;t))dt = [ [(1-s) + s(1-exp{-0,8)](1-G(t))dt.
0 _ 0 :

Since (92,5) # (0,1), the last integral in (66) can easily be shown to be finite

if and only if f (1-G(t))dt <=. Thus in view of (65), the relations (63) follow.
0
Consider now the case when el # 0. Since from (59) we have

(67) R(el,ez,s;t)= G(t)(1-s exp(—elt))
+ 562 exp(—elt) é exp(—ezv)G(t+v)dv,
it follows that for t >0,

(68) (1-exp(-6,£)) (1-G(t)) < 1 - R(8,6,,55t) < 1-G(t).
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Using this we have for t > v > 0,
. * .
(69) (l—exp(—elT))(l-G(t)) j_l—RT(t) < I-R(t) < 1-R,(t) < 1-G(t).

Finally, since T > 0, the relations (63) now easily follow from (69). O

o

REMARK 6. For the case, where Al = f (1-G(u)) du is finite and the interarrival
: 0

time distribution H is exponential given by (39) with a parameter y > 0, it
can be shown either directly or by using the heuristic argument mentioned earlier
(see remark 3, section 4.2) and in particular (44), that the limiting p.g.f.

(61) takes the form
(70) V(6,,6,55) = exp[-y é (l—R(el,ez,s;g))du],

which, using (59), further simplifies to

(71) V(8,,6,,5) = exp[-y é.(I—Gft)j(l—g(el,ez,s;t))dt],
where
(72) g(el,ez,s;t) = gzégz'[eleXP(-elt) - 8,exp(-6,t)].

Following the approach suggested in remark 5 at the end of sectién 5, we shall
now indicate briefly how one could find the moments of the limit distribution
corresﬁonding to the transform (61), assuming that (62) holds. Let (LI; L;, X*)
be a nonnegative random vector, where X* is nonnegative integer-valued, such

that the transform

*

X * *
E{s exp[-elLl—esz]},

*

(73) V' (8,,6,,5)
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with Re(ei) > 0, i=1,2, and |s| < 1, coincides with (61). Let for each t > O,
(il(t), ﬁz(t), i(t)) be a nonnegative random vector, with X(t) nonnegative integer
valued, such that its transform analogous to (73) is given by R(el,ez,s,t) of

. * * *
(59). Then it follows from (61) that the (Ll, L2, X ) has the same joint

distribution as that of the random vector (51,82,53), where for i=1,2,

o]

nd; Sy =]
1 n=

e~

<] - ~ n
(74) s, = 7 1, (™ xM 7 ng )
. = 2,=1

1

and conditionally given the sequence {nz}, the vectors

“m), oo, T m, MU
(75) (L, C Ing 3s Ly C D)y XEE(T ng))
2=1 2=1 =1
for n=1,2,..., are mutually independent and are distributed as (Ll(t),iz(t),i(t)),
n
with the argument t replaced by X P for each n. Note that, given the
2=1 ‘ '
sequence {ng}, we have for each n > 1, the conditional expectations

B, ™ T a1 b b
E {L ( n,) [{n = [1-G( n,)1( n,),
1 2=1 % % 2=1 % ] 2=1 .
(76) E {iz(“)( E ny) [{n,}} = ? (t- % n,)"dG(e),
' 2=1 0 2=1

Ex™¢ % n,) [ {n 1} [1-G( E n)1,
g=1 ¥4 g=1 %

where a’ = max(0,a).  Thus from (74), (76) and the fact that the fandomlvariables

are all nonnegative, we have

* . ® n n
E(L) = ] E{C In)[1-G( Jn )13,
n=1 2=1 2=1 .
% oo o n +
(77) E(Ly) = ] [ E(t- ]n,)" dG(t),
n=l 0 2=1
%* ® n.
E(X) = ] E{1-G( Jn,)}-
n=1 2=1
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Again, under the conditions of theorem 7 on H and from theorem 6, the random
variables nl,nz,..., are mdtually independent, with the distribution of nys

given by the p.d.f. Xﬁ—-(l-H(x)) for x 210’ whereas n s i>2, éll have the

same distribution function H. Let H(n) denote the n-fold convolution of H,

and for t > 0,

(78) M) = 5 B,

n=0

Ut

the corresponding reﬁewal function, with H(O)(t) 1. Also, let F(t) = P(n1 < t) =

1 t
5= [ (1-H(x))dx, and
0 0

(79) M (t) = FaM(t),

the convolution between F and M. Then it easily follows from (77) that

oo

(80) E(L)) = £ u(1-G(u)) dM’ (w),

(81) E(L;) - :f Z (t-u)* dG(t)aM” (u)
- Z (1-G(w)M (u) du,

and

(82) E(x") = Z (1-G(u))dM" (u).

Of course, these expressions for the means may or may not be finite. Similar

expressions can be obtained for higher moments using the above approach.

7. A FEW CONCLUDING REMARKS. One can think of many more interesting situations

where the results of this paper are applicable. However, in order not to
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overload this paper, we shall only discuss briefly the case of nonhomogeneous
Poisson processes.

(a) NON-HOMOGENEOUS POISSON PROCESSES. Let us consider the case where N(t) is

governed by a nonhomogeneous Poisson process with intensity functioh Y(t),'
about which we assume that (i) y(t)»y, as t-=, where y >0, and that (ii) the |
integral }y(u)du»exists‘and is finite for every t>0. Thus, since N(t) has a
Poisson dgstribution with u(t) = E Ntt) = } v(u)du, which tends to infinity as
t>o, it follows that coﬁditions (Al) and (22) are satisfied. Again using the
condition (i), one easily finds that the condition (A3) is also satisfied.
Finally using a standard analysis and the conditions (i) and (ii), one can
also show that for every k > 1,

(83) (t—TN(t),TN(t)—TN(t)_l,...,TN(t)_k+2—TN(t)_k+1) > (nl,nz,...,nk)f

as t-wo, where ni's are I.I.D. with a common exponential distribution given by
(39), so that the condition (A4) is also satisfied. Thus the results
developed here are applicable. In particular, in the limit, this fits into
the case discussed earlier in remarks 3 (section 4.2) and 6 (seétion 6.1), and
consequently the results mentioned there also hold in the present case.

(b) Under the conditions of corollary 1(i), when the limit (30) is zero,

one may like to study the rate of its convergence. For the same reason, when
this limit is zero, one may also like to develop some local limit theorems
(as done in special casés by several authors quoted in the introduction) in
the present generality for the case, where R is a p.g.f. or a L.S.T.

(c¢) Again occassionélly situations arise, where in

I R(t-T

N(t)
£ {k=z_ N(E) ke
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the function R itself may vary with k. It should be possible to extend the
present results to cover such situations as well. These and other related

investigations will be reported elsewhere.
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