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Remark: If f € Cg(Rf) and satisfies the boundary condition f'(0) = 0 then
obviously f € D(G),
Definition 1.3. The Bessel process of order Y+l is the Markov process y(t)
with state space R, whose Kolmogorov backward differential equation is given
by

u_(t,x) = Gu(t,x), G as in definition 1.2,
(1.3) t

lim wu(t,x) = u(0,x) = £ € p(G).

t->0+
Remark: The choiée Yy = (n-1)/2 corresponds to the radial component of
n-dimensional Brownian motion. For additional details concerning existence
and uniqueness of‘501utions to the parabolic partial diffeiential equation
(1.3) the reader may insult Brezis, Rosenkrantz and Singer [1]. We can now
state our extension of Theorem 1.1.
Theofem 1.4, Let 1 be a stopping time for the Bessel process y(t). Then for
each p > 1 there exist constants a(p,y),‘A(p,y), independent of T, such that
.4 a(p,E () < E iy} < A(p,MEy (<P},
tn addition a(p,y) > ((2v+1)/p)® for p > 2 and A(p,q) < (2py + p(2p-1))P,
P> 1 and a(l,y) = A(l,y) = 2y + 1.

Although there are some technical details that are not completely trivial
the basic idea of the proof is extremely simple. All one needs to do is check
that the function (t,x) = tP - cxztp_l,p >1, C>p/2y + 1), satisfies the
differehtial inequality
(1.5) Vt(t,x)+ Gv(t,x) < 0.

In part II we show that this implies v(t,y(t)) is a supermartingale and hence
for bounded Stopping times t, using Doob's optional stopping theorem [4], we

deduce the inequality



(1.6)  Eglv(r,y(1)} = ByleP-cy(0) %P1} < 0. o
Eo{tP} < CE {y(x) TP !
< CEy{y (1) P} /P By (P} P 1/P op

y 2p )
1.7 By P < cE iy P P, p > 1, ¢ > o/ (2y+1)).

The other inequality is deduced in the same way by con51der1ng the function
v(t,x) = x?P_cex?P~? where p > 2. The case 1 < p < 2 is more delicate and
requires a more careful constfuction of the supermartingale generating
function vy (t,x). Finally the case p=1 follows from the fact that v(t,x) =
x2—(2y+1)t satisfies the partial differential equation
{(1.8) vt(t,x) + Gv(t,x) =
and then, as shown in part II, v(t,y(t))is a martingale.. Thus for every
bounded stopping t we have

Eo{v(r,y(T))} = EO{y(T)2 - (2y+1)t} =0, i.e.,
(1.9) Eo{y(r)z} = (2Y+1)50(T). But this is the case p=1 of theorem 1.4,
This result has a consequence of independent interest. Consider the process
Z(t) = y(t)/(2y+1)%. It not only has continuous sample paths but in addition
has the property that
(1.10) E {Z(T) } E {T} for every bounded stopping time t. Professors D.
Burkholder and B. Davis have pointed out to the authors, that this implies
that Burkholder's distribution inequalities . for Brownian motion (see
Burkholder [2] chapter II) extend immediately to the class of Bessel

processes considered here.

II. Some Martingales associated with the Bessel process.
The principal difficulty in establishing the supermartingale property
for the process v(t,y(t)) is that ITO's formula cannot be applied for the

simple reason that the drift term Y/x is unbounded in a neighborhood of the

origin. 1In fact it cannot be applied even when Y=0. In this case y(t) =



|W(t)|, the reflected Brownian motion process. If one appiies Ito's formula

to v(t,x)=x one obtains Vt(t,x)+Gv(t,x) = 0 and hence one might be tempted to
conclude v(t,y(t)) = y(t) = |w(t)l is a martingale, which is obviously false.
The reason for this is v(t,x)_¢ D(G) because v(t,x) does not satisfy the
boundary condition-vx(t,O) = d. For this reason a semi group version of Ito's
formula due to Rosenkrantz [6] is not without interest.

Theorem 2.1. Suppose v(t,x) and vt(t,x) are both jointly coﬂtinuous in R+ X R+
and that as functions of x we have v(t,x) € D(G), vt(t,x)G-D(G) all t > 0.

Then the stochastic process

2.1 V(t,y(tj) - Z{vs(s,y(s)) + Gv(s,y(s))}ds is a martingale.

Corollary 2.2. (a) If, in addition to the hypotheses of theorem 2.1, v satisfies
the differential inequality

(2.2) vt(t,x) + Gv(t,x) < 0 then v(t,y(t)) is a supermargingale.

I1f v satisfies the partial diffefential equation
(2.3) vt(t,x) + Gv(t,x) = 0 then v(t,y(t)) is a martingale.

It often happens that v(t,x) satisfies the smoothness conditions and
boundary conditions of Theorem 2.1 but as a function of x, v(t,x) q CO(R+)'
This difficulty is circumvented by means of the foliowing device. Let
qh(x) € CE(R+) and havé the additional property that qh(x) é 1, 0 <x <n.

Let T devote the first passage time of the y(t) process to the point n.> 0.
Clearly vn(t,x) ='v(t,x)qh(x) now satisfies the hypotheses of Theorem 2.1.
We are thus led to the following result which is more useful in the
applications to come.

Theorem 2.3, Suppose v(t,x)E€ CO’Z(R+), Vt(t,x)E CO’Z(R+); vx(t,O) =0,
Vtx(t’o) = 0. Then V(tfwn,y(tﬁwn)) - }Aqn{vs(s,y(s)) + Gv(s,y(s))} ds is a

0
martingale.
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Corollary 2.4. (a) If in addition to the hypotheses of theorem 2.3 v satisfies
the differential inequality (2.2) then v(tfwn, y(tﬁwn) is a supermartingale,.
®). If v satisfies the differential equation (2.3) then v(tﬁwn, y(tﬁmn)) is
a martingale.

A question which naturally arises in the present context is under what
conditions is v(t,y' (t)) itself a suﬁermartingale (or martingale)? More
precisely can we let n»>~ in corollary 2.4? To answer this question we derive
the following estimate:

(2.4) lim inx(Tn < t) = 0 for every fixed x,t.

n->ee .
To derive this estimate bring in the function g(x,A) which is mohotonic
increasing in x, satisfies the boundary condition g'(0,A) = 0 and the
differential equation Gg(x,A) = Ag(x,\). This is just a second order

linear differential equation with the origin a regular singular point.

A routine calculation which we omit (see Rosenkrantz [6] p. 277-278) yields

(2.5) g(x,)) = ) gkxkak where
0
k -1
g = (KIT(y + k + (BN
Now v(t,x) = exp(-At)g(x,)) satisfies the differential equation v, + Gv = 0

t

as well as the other conditions of corollary (2.4), so we may conclude
exp(-x(tﬁmn))g(y(tﬁmn), ) is a martingale - in fact uniformly bounded b} g(n,2).

Thus g(x,A) = 1lim Ex{exp(—x(tﬂwn))g(y(t/wn),A)}

t

Ex{exp(—ATn)g(n,A)}. So
(2.6) Ex{exp(—lrn)} = g(x,A)/g(n,A).
In particular Ex{exp(-ATn); ?n < t} ::g(x,x)/g(n,k), and Ex{exp(-xrn);

T <t} z_exp(—kt‘)Px(Tn < t).



(2.7) P (1 < t) < exp(At)g(x,2)/g(n, ).

From (2.5) we easily derive the result lim np/g(n,x) = 0 and this suffices to
nroe

to establish (2.4). We now proceed to the proof of Theorem 1.4.
Lemma 2.5.

(a) If v(t,x) x2—(2y+1)t then v(t,y(t)) is a martingale

(®) If v(t,x) = tP- c)xtPT!, c(p) = p/(2v+1), then v(t,y(t)) is a

supermartingale
(¢) If v(t,x) = sz-c(p)tXZP_z, where c(p) = 2py + p(2p-1) then

v(t,y(t)) is a supermartingale for p > 2.
Remark: The case 1 < p < 2 requires a separate, more delicate, argument and
is therefore postponed.
Proof of Lemma 2.5. (a): It is clear that vx(t,O) =0, Vtx(t’o) =0 so
v(t,x) = x2-(2y+1)t satisfies the conditions of corollary 2.4(6). Thus
v(tﬁnn,y(tfwn)).is a martingale. Noﬁ

Ex{y(tfwn)z—(Zy+l)(tfwn)} = Ex{nz—(Zy+1)Tn;Tn j_t}

+ B {y(t)2-(2y+1)t; v >t} = X
Now 1im E {nz—(2y+1)1 ;T <t} = 0. The first summand is just n2 P(t_ < t)

pow X n’ ' n — n —

and tends to zero by (2.4). The second summand in absolute value is less
than (2Y+1)tP(Tn j;t) which also goes to zero as n*», This proves
Exv(t,y(t)) = v(0,x) which implies that v(t,y(t)) is a martingale.
Proof of lemma 2.5. (b): A straight forward computation which we omit
shows that ve(t,x) = v(t+€,x) satisfies the hypotheses of corollary“2.4 (a)

and hence Ve(tATn,Y(tATn)) is a supermartingale. Now Ex{ve(tATn,y(tATn)) =

E L rOP-cpn® (r + P75 1 < £} 4+ B+ 0P-cpy () (04 P75 1 > 11,



Exactly the same reasoning used in the proof of (a) shows that the first

summand goes to zero as n+~. Thus Ex{ve(t,y(t))} j-ve(o,x) which proves

that ve(t,y(t)) is a supermartingale. Now we let € decrease to 0 and conclude
E {v(t,y(t))} = v(0,x).

Proof of lemma 2.5. (c): Once again it is easy to check that v(t,x)

satisfies the differential inequality (2.2) as well as the ofher conclusions

of corollary 2.4 (a). Thus v(tﬁwn,y(tﬁwn)) is a supermartingale. Just as in

the proofs of parts (a) and (b) we may let n+=, using estimate (2.4), and

conclude that v(t,y(t)) itself is a supermartingale.

As we observed in part I (just after the statement of Theorem 1.4) the
inequality a(p,y)EO{Tp} j_EO{y(T)Zp}, p > 1, follows at and from the fact that
x2—(2Y+1)t, and tp-C(p)xz'cp_1 generate martingales and supermartingales
respectively. To get the inequality-EO{y(T)ZP} j_A(p,y)EO(Tp), p > 2 we use
the supermartingale generating function v(t,x) = x2p—c(p)tx2p_2 of lemma 2.5
(c). For ta boundéd-stopping time Doob's optimal stopping theorem yields

E {y(ijP-C(p)y(r)ZP—zr} < 0 - equivalently
B ly (1) %P} < CpIE Iy (1) PP 7%
< C(p)E {y(1) P}(P /p E {TP} /P

where Holder's inequality has been used at the last step. Dividing both
sides through by Eo{y(T)ZP}(p_l)/p completes the proof, at least in the
~case p > 2.

Lemma 2,6, For every.bounded stopping time T

2 I 2p-2
Eoly(0) P} = c(@E [ y(s)P “ds}.
0
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Proof: Apply Theorem 2.1 to v(t,x) = xzp, p >1 and taking note of the fact
that Ve = 0, Gv(t,x) = .c:(p)x2p"2 we deduce y(t)zP—Z c(p)y(s)Sp_zds is a
martingale. An application of Doob!s optional stopping theorem completes the
proof. We now assume 1 < P < 2 and in particular that (n+1)_1 < p-1 < n-l.
For such p set v(t,x) = tl—n(p-l)XZ(n+l)(p—1) and ve(t,x) = v(t+€,(x2+€)%).
An elementary but tedious computation yields the inequality vs(t,x) +
Gve(t,x) 3_ax2p_2 where a is a constant depending only on p,y;n. By

theorem 2.1 we have

T .
Bolv Sy} = @ 4k Uy + o5,y 1as

jv

&P . EO{}ay(s)ZP_zds}
= & 4 (a/g(p))ﬁo{y(r)ZP}, by lemma 2.6.
Let € decrease to 0 and include
Bolr NP Dy 2D @Dy 5 (/e m))e 1y (1) PPy,
The proof is now completed by applying Holder's iﬁequality to the left hand
side with exponents a,B so chosen that (n+1)(p-1)a = p, B = a/(a-1) =
p/(1-n(p-1)). The details are left to the reader. Incidentally the idea

of this proof is due to L. Gordon [5].

ITI. Concluding remafks.

The methods used in part II are easily extended to a more general class
of diffusion proceéses x(t) whose infinitesimal generater we denote by A.
Suppose for example Ag(x) = 1 and ¢(x) > 0. Then v(t,x) = tp-pt:p(x)tp_1
satisfies the differential inequality Ve o+ Av < 0. Thus v(t,x(t)) is a
supermartingale and proceeding along a by now familiar route we get

E(tP) < pPE{o(x(1))P}.



Finally we observe that in the case y = (n-1)/2 the supermartingales
of the form v(t,y(t)j constructed in part II are actually supermartingales
with respect to the.larger sigma fields generated by the n-dimensional
Brownian motion process itself. Hence theorem 2.1 remains valid for all
T which are stopping times relative to the n-dimensional Brownian

motion process.
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