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INTRODUCTION

Statistical analyses in most predator-prey experiments is limited
to determining whether a particular stress or toxicant affects prey
vulnerability by either increasing or decreasing the probability that
treated organisms will be differentially preyed upon. This paper
proposes methods which (1) estimate how much a treatment increases or
decreases prey vulnerability and (2) find significant differences
between treatments. The additional calculations that are required more
than double the information obtained from earlier analyses, yet remain
a small fraction of the overall effort.

The typical predator-prey study, utilizing fish as the test
organisms, exposes randomly selected members of a prey population to a
sublethal level of a stress or toxicant. Following exposure, M members
of the treated group and N members of the control group (usually M = N)
are placed in each of L experimental predator-prey chambers. After the
prey fish have become acclimated to their surroundings a predator is
added. When approximately half the prey have been consumed the number
T of treated fish eaten and the number C of control fish eaten is
recorded for each tank. The above process is repeated for as many
treatment levels as the investigator wishes to test.

The predator-prey study on which the following techniques were
first applied was undertaken by Jacquelyn F. Sullivan as part of her
Ph.D. research for the Bionucleonics Department of Purdue University.
This research was conducted in an innovative manner that recommends

itself as a model for future predator-prey studies. Primary innovations



consisted of utiliiing model ecosystems and sustained behavioral obser-
vations. Data from this experiment are used in examples throughout this

paper; therefore, the essential results are provided in Table 1.
A STANDARD ANALYSIS

Predator—-prey experiments provoke two main inquiries. The first
inquiry concerns whether a particular treatment or level of treatment
influences prey vulnerability. Normally, the investigator assumes that
a treatment either will have no effect or will increase prey vulnerability.
In such cases a one-sided hypothesis test is appropriate. An investigator,
having knowledge of similar studies, may be fairly certain that a given
treatment will double prey vulnerability; then a two-sided hypothesis
test becomes appropriate. The latter section of this paper contains
statistical procedures which test appropriate hypotheses and give point
estimates and confidence intervals for the increase in prey vulnerability
due to treatment. The second inquiry asks whether the treatments vary
in their affect on prey wvulnerability. Answering this inquiry is the
purpose of this section.

The use of standard techniques to find significant differences
between treatments will be illustrated with an example. In the Sullivan
experiment, nine treatments were used. Common sense dictated that
comparisons of interest be made among three subsets of the nine treatments:
(1) acute exposure treatments; (2) chronic exposure treatments; and
(3) the 0.05 mg Cd/liter treatments. The values of T/R (R equals the
number of prey fish eaten during a subexperiment) for each treatment are

listed in Table 2.



TABLE 1

Experimental results, maximum likelihood,estimators of K, Z, and z!
confidence limits for K, and H : K=1 versus H,: K>1 P values. Positions
where an asterisk appears indilate that M#N=l% for that subexperiment.
Elsewhere, M=N=20. R denotes the number of fish eaten during the course
of a subexperiment.

Mg Cd/ Exposure 90%

liter Time Tank R T, ME®  C.I.(K) P(zlgpl,exle=1)

.500 48 hr. 1 18 12 2.55  (1.8,6.7) .000
48 hr. 2 16 11
48 hr. 3 20 13

.375 48 hr. 1 20 13 3.33  (2.1,6.9) .000
48 hr. 2 21 15
48 hr. 3 19 14

.250 48 hr. 1 16 9 .77 (0.4,1.3) .820
48 hr 2 19 8
48 hr. 3 16 6

.050 48 hr. 1* 16 8 49 (.4,.8) .937
48 hr. 2% 12 3
48 hr. 3 18 6

.050 21 d. 1 24 14 1.84  (1.3,4.0) . 004
21 d. 2 20 12
21 d. 3 21 13

.025 21 d. 1 21 15 3.95  (1.7,5.2) .000
21 d. 2 20 12
21 d. 3 20 17

.019 21 d. 1 21 11 1.36  (.8,1.9) .214
21 d. 2 26 11
21 d. 3 20 14

.013 21 d. 1 20 8 .89  (0.5,1.4) .614
21 d. 2 17 11
21 d. 3 21 9

.050 R 21 d. 1 22 13 2,02 (1.4,4.3) .002
21 d. 2 22 14
21 d. 3 21 13




TABLE 2

Cd Conc. Exposure T/R

(mg/liter) Time Tank 1 Tank 2 Tank 3
0.500 48 hr 12/18 11/16 13/20
0.375 48 hr 13/20 15/21 14/19
0.250 48 hr 9/16 8/19 6/16
0.050 48 hr 8/16 3/12 6/18
0.050 21 day 14/24 . 12/20 13/21
0.025 21 day 15/21 12/20 17/20
0.019 21 day 11/21 11/24 14/20
0.013 21 day 8/20 11/17 9/21
0.050% 21 day 13/22 14/22 13/21

The proportion T/R or a variance stabilizing transformation of T/R
is commonly used as the basic statistic for the analysis of variance of
binomial type data. Although data from this experiment is not binomially
distributed, the value T/R was chosen as the basic statistic for the
following reasons. As prey vulnerability increases from treatment to
treatment, the E[T/R]R] increases. A conservative estimate for the
variance of (T/RIR) can easily be computed for each observation; subse-
quently, these variances can be used to estimate the residual mean
square. Data from studies of this sort tends to become binomial as M
and N (M = N) are allowed to increase toward infinity while R is held
below an upper bound. Finally, assumptions of homogeneity of variance
and normality were met sufficiently well to ensure robustness for

analysis of variance techniques.



Since T/R given R is discrete, it cannot have a normal distribu-
tion. But it is approximately normal for a wide range of prey vulner-
ability levels K in the sense that a normal approximation using the
mean and variance of T/R|R,K yields a good estimate of the actual T/R
probability density function (PDF). Table 3 compares the actual PDF of
T/R for M = N = 20, R = 20 when K = 1.00 and 0.20. The value of K is
1.00 when a treatment has no effect; K = 0.20 when a treatment decreases

prey vulnerability five-fold.

TABLE 3. M=N=R = 20

K =1.00 K = 0.20
T/R PDF NORM. APP. T/R PDF NORM. APP.
.25 .002 .002 .00 .000 .001
.30 .011 .012 .05 . 004 .008
.35 . 044 .045 .10 .034 .039
.40 .115 .115 .15 .126 .120
.45 .205 .204 .20 .245 .231
.50 .248 244 .25 .275 274
.55 .205 .204 .30 .193 .203
.60 .115 .115 .35 .089 .093
.65 .044 . 045 .40 .027 .026
.70 .011 .012 .45 . 006 .005
.75 .002 .002 .50 .001 .001

A tabular study of the influence of K and R on the variance of
T/R [= P], arc sin P[= ASP] andarc sin (2P-1) [ = A2P] is presented in
Tables 4 and 5. Table 4 examines the variance stabilizing effect of

arcsine transformations when M=N=R. The function B is defined for

argument X as follows:



{Var(X) |K,M,N,R}]
{Var (X) |K,M,N,R}]

[MaxKeK interval
[ManeK interval

B(X) =

Values of B(X) near one indicate excellent homogeneity of variance.
Table 4 indicates a strong variance stabilizing effect for both arcsine
transformations as M = N = R increases. Note, however, that variances
remain nearly homogeneous as long as treatment effects K stay in a

range from 0.20 to 5.00-

TABLE 4
M=N=R K Interval E(P) Interval B(P) B(ASP) B(A2P)
5 0.10 - 10.0 .152 - .848 1.53 1.97 1.97
0.20 - 5.0 .236 -~ .764 1.24 1.67 1.67
0.30 - 3.3 .295 ~ ,705 1.13 1.40 1.40
10 0.10 - 10.0 .160 - .840 1.60 1.74 1.74
0.20 - 5.0 .241 - .759 1.27 1.24 1.24
0.30 - 3.3 .299 - 701 1.14 1.10 1.10
15 0.10 - 10.0 .162 - .838 1.62 - 1.38 1.38
0.20 - 5.0 .243 - ,757 1.27 1.12 1.12
0.30 - 3.3 .300 - .700 1.15 1.06 1.06
20 0.10 - 10.0 .163 ~ .837 1.63 1.23 1.23
0.20 - 5.0 .243 -~ ,757 1.28 1.09 1.09
0.30 - 3.3 .300 - .700 1.15 1.05 1.05
25 0.10 - 10.0 .163 - .837 1.63 1.18 1.18
0.20 - 5.0 244 - 756 1.28 1.08 1.08
0.30 ~ 3.3 .301 - .699 1.15 1.04 1.04

Table 5 examines the efficacy of arcsine transformations when
M =N = 20 for various K intervals and R ranges. Here the function

B(X) is defined:



B(X) = Maxgek interval, ReR values{var(X)IK’M?N=20’R}]

Ming ¢ interval, ReR values{var(X)IK’M?N=20,R}]

This table indicates a general increase in heterogeneity of variance for
P, ASP and A2P as R is permitted to fluctuate about twenty. The arcsine
transformations also tend to lose their variance stabilizing effect

under these circumstances, at least for the K intervals examined here.

TABLE 5

R Values K int. B(P) B(ASP) B(A2P)
20 1.00 1.00 1.00 1.00
5~ 2.0 1.05 1.02 1.02

.2 -5.0 1.28 1.09 1.09

19,20,21 1.00 1.22 1.23 1.23
.5 -2.0 1.28 1.25 1.25

.2 - 5.0 1.58 1.39 1.39

18,...,22 1.00 1.49 1.51 1.51
.5 -2.0 1.57 1.55 1.55

.2 - 5.0 1.97 1.78 1.78

17,...,23 1.00 1.83 1.86 1.86
.5 -2.0 1.93 1.93 1.93

.2 - 5.0 2.50 2.42 2.42

16,...,24 1.00 2.25 2.30 2.30
.5 -2.0 2.39 2.42 2,42

.2 ~-5.0 3.24 3.35 3.35




The foregoing study implies that considerable heterogeneity of
variance exists between T/R values from predator-prey experiments. In
the most extreme case from Table 5, it was possible for variances to
differ by a ratio of 3.24 to 1.00. Since analysis of variance tech-
niques remain robust for variance heterogeneity of this sizel, we are
justified in proceeding with an analysis of variance on the Sullivan data
for maximum likelihood estimators of K (next section) remain between 0.20
and 5.00 and R fluctuations about 20 remained between 16 and 24. The
data, including the treatment cell where some tanks started with fourteen
control and fourteen treated fish, easily passed Cochran's test for
homogeneity of variance (P = .962).

A conservative estimate of the variance of each T/R value may be
obtained by assuming that K = 1 (i.e. no treatment effect exists).

Then the distribution of T is hypergeometric so that:

Var (T/R|K=1,R,M,N) Var(TlK=1,R,M,N)/R2

[MNR (M+N-R) ] / [ Q4HN) 2 #N-1) R ]

One may also generate these variances with the program of Appendix A.
Variances for the example data are listed in Table 6.
An estimate of the residual mean square is calculated in the

following manner:

, _ 5 10 10 . _
Residual M§ = I, _, (F,V,)/Z,_. F, = 0.006865

1Anderson, p. 17.
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Since this is a conservative (i.e. high) estimate of the average variance
among observed results, the degrees of freedom for this residual mean

square are assumed to be infinite.

TABLE 6

Variance estimates for tank~treatment results of the Sullivan experiment.

i M=N R F (frequency) V[Var(T/R|K=1,R,M,N)]
1 14 12 1 .012346
2 14 16 1 . 006944
3 20 16 3 .009615
4 20 17 1 .008673
5 20 18 2 .007835
6 20 19 2 .007085
7 20 20 7 .006410
8 20 21 6 .005800
9 20 22 2 .005245
10 20 24 2

.004274

The analysis of variance provided in Table 7 assumes that the
three tanks as well as the nine treatments may influence the outcome of
each subexperiment. As it turns out neither tanks nor the tank-treatment
interaction is significant. Treatments, however, are significantly

different.
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TABLE 7

Analysis of variance for Sullivan experiment. The symbol **% denotes
0.001 significance.

DF Source Sum of Squares Mean Square F
2 Tank .005 .0025 0.36
8 Trt .348 .043 6.34%%%
16 Tank x Trt .152 .010 1.38
Infinite Residual . 006865

A Newman Keuls multiple comparison test2 produces the following treat-—
ment ranking:
TRT 50A 250A 13Ch 19Ch 50Ch 50Res 500A 375A  25Ch

Mean .3611 .4529 .4919 .5607 .6008 .6154 .6681 .7004 .7214

This ranking may be subdivided into three meaningful subrankings:

(1) 50A 50Ch __ 50Res

(2) 50A 250A 500A  375A

3) 13Ch _ 19Ch _ 50Ch  25Ch

Treatments which are connected by the same line are not significantly

different.

2Anderson, p. 10.
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In summary, analysis of variance techniques utilizing T/R as the
response variable seem appropriate when M equals N with both greater
than nineteen (normality and homogeneity of variance assumptions were
examined here chiefly for M=N=20) and when R values are kept near M.
The residual mean square for the analysis of variance and multiple

comparisons should be calculated in the manner discussed.

SPECIAL ANALYSIS

An important parameter in the following pages is the measure K of
increased prey vulnerability due to treatment. If M treated and N

control prey inhabit a tank with a predator, it is assumed that:

P =P ees =P

£,1 £,2 P and

t,M t

Pc,l = Pc,2 = L., = Pc,N = Pc

where P
t,1

(Pc,i) is the probability that the predator will prey upon
the ith treated (control) fish next. Parameter K can now be defined by
the equation Pt = K'Pc. Thus, when a treatment has no effect on prey
vulnerability, K=1; when it doubles prey vulnerability, K=2; when it
halves prey vulnerability K=0.5, etc.

Since MPt + NPC = 1 and Pt = KPc’ we have Pt = K/ (MK+N) and
Pc = 1/(MK+N). Note, however, that Pt and Pc change after each
successful predatory attack.

The parameter K is closely related to the binomial parameters P and

Q. To see this let M=N=R=1l; then P = Pt =K and Q = Pc Recall

1
K+1 K+1 °
that a binomial distribution with parameters n, P, and Q is equivalent to
the distribution of the sum of N independent Beinoulli trials with

parameters P and Q. The reader, however, is cautioned against designing
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an experiment consisting of Bernoulli trials since there is evidence
that learning is involved in the predator-prey process. Although treat-
ment with a stress or toxicant strongly increases prey vulnerability,
this effect may not be present until after the first strike.

A maximum likelihood estimator for K is easily obtained by using
the program and instructions of Appendix B. The general procedure
consists of finding a MLE(K) value such that the likelihood or proba-
bility of observing the experimental results for MLE(K) is greater
than for any other K value. Algebraically,

L

L
MLE(K) = [K: i:iP(T=Ti,exp|M,N,Ri,K) > izlP(T=T

M,N,R,,K'")

i,exp i’

for every K' > 0]

The statistical procedures which follow are based on one-sided hypothesis

. . ¥m= . ' o= .
tests like HO' K K0 vs Hl' K>K0 or HO K KO vs Hl : K>K0. For most

predator-prey studies KO will equal one and the alternative hypothesis
will be Hl: K>1. ©Nonetheless, the methods and programs that follow are

versatile enough to handle a wide range of KO values and both one-sided

and two-sided hypothesis tests.

Consider an experiment where a treatment A is being examined for
its effect on prey vulnerability. In each of I. tanks, M treated and N
control fish have been placed. The experiment is performed with results
(Ti’Ri) for i=1, ... , L. Suppose L equals one; then

P1 = P(T z_TllRl,M,N,KO) is the Type I error for testing HO: K=K0

versus Hl: K>K0. Thus, P1 by direct comparison with the a-level for

the above hypothesis determines whether we regard K. as plausible or

0

conclude K0 is too low to account for the experimental results. For
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example, in an experiment where M=N=R_=20 and L=1, a result of T =15

1 1

should be regarded as very strong evidence that K>1.00 since the

P(T > 15|M=N=R.=20, K=1) = 0.002.

1

When L is greater than one, this suggests that some function of Pi

K=K_. vs H,: K>K.. The random

0° 0 1 0

L
> =

P(T TilKo,M,N,Ri) Z,01 Py is preferred

values should be used for testing H

variable L where I_ = Z_L
KO K0 i=1

in this paper since it gives equal emphasis to each Pi value. Values

which ZK may assume are finite and range from zero to L. Once K
0

N, Rl’ cee RL are given the true K value completely determines the

O’ M’

probabilities assigned to values which I, may assume; therefore we may

Ko

make inferences about K by examining the experimental result ZK exp
0’ :

A computer program which calculates the ZK distribution for arbitrary

0
K values is provided in Appendix C.

O: K.=KO vs le K>K0. The basic idea

is that the experimental result I
0 Ko

will tend to be improbably low when K is substantially greater than K

Recall the hypothesis test H

behind using the statistic I

K €xp

OI
Suppose an experimenter intended to conduct a predator-prey experiment

where M?N=R1=R2=R3=20, but was not sure whether the treatment would

increase prey vulnerability. Then K0=l and:

P(Z; < 0.92|k=1) = 0.043

P(L; < 0.92|k=1.5) = 0.415

P(Z, < 0.92]|KR=2.0) = 0.795

If the investigator knew the treatment would at least double prey

vulnerability, K =2.0 would be hypothesized and:

0
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P(Z, < 0.94[K=2) = 0.041
P(Z, < 0.94|R=3) = 0.375
P(Z, < 0.94|K=4) = 0.739

These probabilities indicate that HO: K=K0

of the time when the true K value is twice the hypothesized K value.

will be rejected roughly 75%

There are three possible hypothesis tests for predator-prey

studies, and a different method applies to each. Test 1: HO: K=K0 vs

le K>K0 is most common. If P(ZKO f'ZKO,EXP K=KO,M,N,R1,...,RL) < 0,

Test 2 is H.: K=K, vs H,: K<K.. If

reject HO; otherwise accept HO. 0 0 1 0

/ /

g <g
0 O,EXP

(Z'will be defined later). For test 3: HO: K=K0 vs le K=K0,

’M’N’Rl""’RL) < o/2 or when

P(x |K=K M,N,R "RL)-i a, reject HO; otherwise accept H

0, 1!" 0

reject

when P(Z, < I
%o = Ko

|K=KO,M,N,R1,...,RL) < o/2; otherwise accept H

exle:KO

P(Z, <1I .
KO Ko,exp 0

Appendices A and C describe how to conduct these tests utilizing a
computer.,

The statistic ZK also provides a lower confidence limit for K.
0

If the one-sided test HO: K=K0 vS. le K>K0 is appropriate, find:
h

) EKO’eXPIK,M,N,Rl,...,RL) < d

For a two-sided test of HO: K=K0 at level o, find:
z

KL = max[K: P(ZK

KL = max[K: P(ZKO_i

The practical implementation of these procedures is described in

Ko,eprK’M’N’Rl’ v 0R)) < 0/2]

Appendices A and C.
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Obtaining upper confidence limits for K requires usage of the new

/
random variable I’/ where I. = Z.E P(T < T,|K.,M,N,R,). If the one-
K0 KO i=1 i’ o i
sided test HO: K=K0 vs le K<KO is appropriate, then:
é

4

K, = min[K: P(ZKO < ZKO’EXPIK,M,N,RI,...,RL) < d
For a two-~sided test of HO: K=KO at level &, find:

z

KU = min[K: P(ZK <

IK,M,N,R.,...,R.) < a/2]
0 Ko,exp 1 RL

In the Sullivan experiment a one-sided test of H.: K=1 vs H.: K>1 at

0 1
level o = 0.05 seemed proper; therefore, to get a confidence interval
for K consistent with the hypothesis test, two-sided methods with
a = 0.10 were used. The I and % methods are summarized in Table 8.
For some experimental designs % and 3’ methods for finding confidence
intervals and testing hypotheses are too costly. 1In an experiment where

M=N=20 and R values are kept close to 20, determining confidence limits

for L

3 on the Purdue CDC processor costs roughly $1.00 per treatment.

For L

4, the cost would approach $20.00 per treatment. A very rough

formula for cost per treatment is: COST = ML/SOOO dollars.
Fortunately, when I and 2 methods become too expensive, maximum

order statistics of Pi and Pi' can be used. Let P(l) and le) denote

these maximum order statistics. Then the following relations express

the essential ideas upon which the P(l) and le) methods are based:

(1) Py, = Mg L P(T> TiIK,M,N,Ri)
' —3
) Pl ¢ max, , [ P(T< TiIK,M,N,Ri)



17

TABLE 8

Summarj of I and I’ tests.

Ho H1 Test Rule
K=K, K>K, Reject Hy if P(zKo < ZKO’exle=KO,M,N,Rl,...,R.L) < a,
Otherwise, accept HO.
_ . . / I4 -
=X, R<K, Reject Hy if P(zKO < zKO’eXle K sM;N,R 50000R ) < a,
Otherwise, accept HO.
K=K0 K=K0 Reject HO if P(ZKo 5_ZKO,eXp|K=KO,M,N,Rl,...,RL) < al2
7 s
or P(ZKO < ZKO,eXp|K—K0,M,N,R1,...,R.L) < a/2.

Otherwise, accept HO.

Two-sided confidence interval (KL,KU):

/2]

| A

KL = max [K: P(ZK < I

. |R,M,N,R 500 LR))

Ko,exp

’

Ky»exp

IA

K, = min [K: P(Z; <X |R,M,N,R 500 bR < 0/2]
0

One-sided confidence interval (KL,w):

K, = max[K: P(zKO < ZKO’eXPlK,M,N,Rl,...,RL) < d

One-sided confidence interval (O,KU):

K, = min[K: P():K’ <z’

.5 Ko,exle’M’N’R soesRp) < d

A one-sided confidence interval of the form (KL,w) can be used if HO:
K=K0 vs Hl: K>K0 is the appropriate hypothesis test and if the

investigator is not interested in setting an upper limit for K.



3 PCy,x < P,k exp)

= P( P

P < P < P < P
L =T (1),K,exp; T2,k =T (1),K,exps. .05 LK = T (1),K, exp)

P( )P(P2 P(P

PlsK = P(l) s K, exp

< #%], (Fortran notation)

P
(1) ,K,exp

(P *%L,)

RR], =
S P(l),K,eXP L Ay, ee,L i,K,exp

Since P(l) and le) methods are included primarily for completeness,

18

< P < P
K — (1),K,exp)...” V' L,K — (1),K,exp)

the test methods are presented in Table 9 without further explanation.

Appendix D provedes a computer program and practical procedures

regarding P( and P, . tests.

1) (L

TABLE 9. P and P' Tests

(1) (1)
Hypothesis Testing:
HO: le Test Rule
K=K0 K>K0 Reject HO if P(l),KO**L < o; otherwise accept HO.
K=KO K<KO Reject H0 if le),KO**L < o; otherwise accept HO’
K=K, K=K, Reject Hy if P(l),KO**L <oy or le)’Ko**L <al2.

Two Sided Confidence Interval (KL,KU):

K, = max[K: max(P{T > Ti|K,M,N,R }**L) < a/2]
i=1...L

= min[K: max(P{T < Ti|K,M,N,R, }**L) <o/2]
v i=l...L * B

One Sided Confidence Interval (KL,w):

K = max[K: max(P{T _>_TilK,M,N,Ri}**L) <a]
i=1...L

One sided Confidence Interval (O,KU):

Ky = min[K: max(P{T <Ti IK,M,N,Ri}**L) <o]
i=1...L
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Appendix A: Program PDE

Program PDE computes the probability density and cumulative distri-
bution functions for random variable T given K, M, N and R. Included in
the output are M,N,R,K,E(T/R|M,N,R,K) and Var(T/R|M,N,R,K). The computa-

tions rely on the recursion formula:

P(T=1|R,M,N,K) = P(T=i|(R-1),M,N,K)P(R"® fish eaten is a control fish)
+ P(T=1i-1| (R-1),M,N,K)P(R™" fish eaten is a treated fish)
= P(T=1i|(R-1),M,N,K)* (N-R+i+1)/[K(M-1i)+(N-R+i+1) ]

+ P(T=i~1| (R-1) ,M,N,K)*K (M-i+1)/[K(M-1+1)+(N-R+1) ]

The important probabilities, P,

iR " P(T > TiIK,M,N,Ri) and

’

PiK

= P(T f_TilK,M,N,Ri), are easily extracted from the PDE output.

Thus, using this program is a first step for I and 2’ methods since

L ¢ L ’

= =Z
z:Ko,exp zi=l Pi,KO and Z:Ko,exp i=1 Pi,K

0
Program PDE may require some modification before it can be used on
your computer system. The Program PDE card may need to be removed, in
which case Tape 5 and Tape 6 must be set as input and output on your
control cards. The format statements which are non-Hollerith will
cause no problems on most systems. Otherwise, Program PDE is written
in standard Fortran. Note: Modificétions which must be made for
Program PDE will also need to be made for other programs in this paper.
Program input 1s provided by using the following data deck:
Card Information Format
1 RMIN,RMAX,NT,NC,K,KINC,KMAX(212,X,5F5.0)

LAST Blank
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Fortran variables in the above list have the following meanings:

(1) RMIN is the minimum R value for which a cumulative distribution
table will be printed.

(2) RMAX is the maximum R value for which a CDF table will be printed.

(3) NT(NT=M) is the number of treated fish per tank at the beginning of
an experiment.

(4) NC(NC=N) is the number of control fish per tank at the beginning of
an experiment.

(5) K is an dinitial value for which a CDF table is desired.
(6) KMAX is the maximum value for which a CDF table is desired.
(7) KINC is the amount K is incremented until KMAX is reached.
Tables are printed for all combinations of (RMIN,RMIN+1,...,RMAX) and
(K,K+KINC,K+(2%KINC), ..., KMAX).
Example: The experimental results for the Sullivan experiment for

0.025 mg, Cd/liter and 21 days exposure (M?N=20,K0=1) are:

Tank: 1 2 3
R, 21 20 20
T, 15 12 17

The data cards should be:

Card/Cols: 123456789012345678901234567890

1 2021 20.0 20.0 1.00 1.00 1.00
2 A blank card,
The resultant Pi and Pi' values are:

Tank: 1 2 3

P, =1 .005193 .171534 . 000010
1,K0 v

p,' =1 .999384 .943583 1.000000
i ,K0

Program Limitations:

1. 2 < M,N,RMAX < 33
2. RMAX < M4N

3. K> 0.001
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In the programs that follow the three above restrictions must also
be met; otherwise, the programs require‘modification. In addition,
the programs of Appendices B, C and D require that the pair (M,N)

for a given treatment remain the same for all L subexperiments.

'Thus, without serious changes, programs of these latter appendices
cannot be used to analyze the 0.05 mg. Cd/1., 48 hr. treatment of
Table 1. The reader is therefore advised to avoid such complications
by designing experiments with all (M,N) pairs the same for the L

subexperiments of each treatment.

An entire program deck will consist of the following:

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8

Jobecard

Password card

Control card(s)

7/8/9 multi-punch in column one
Program cards

7/8/9 multi-punch in column one
Data cards

6/7/8/9 multi-punch in column one

Program PDE follows on the next page.
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PROGRAM PDE(INPUT,0UTPUT,TAPES=INPUT,TAPEG=CUTPUT)

REAL P(35) yREG(35) 4PDF(35) 4CDF (35)

REAL NTsNCyKyKINCoKMAX9FIZRHyEPLEPSQ.VARP

INTEGER T{35)y IMyRMAXyRMIN,R2,LO,HI

READ(5410) RMIN RMAX9yNTyNG 9Ky KINGCyKMAX

FORMAT (212X 95F540)

IFINT.6T.33.0) STOP

IFINC.GT.33.0) STOP

IF{RMAXAGT.33) sTOP

IF{KINC.LT.04001) STOP

RMIN=RMIN+2

RMAX=RMAX+2

HI=IFIX{NT+2,.,1)

CONTINUE

DO 55 I=1,35

REG(I)=0.0

PDF{I)=0.0

COF{I)=0.0

CONTINUE

POF (2) =NC/ (NT*K+NC)

POF{3)=NT*K/ {NT*K+NC)

DO 44 L=44RMAX

R2=L

R=FLOAT(R2-2)

LO=IFIX{R=-NC+2.1)

DO 11 1I=24R2

FI=FLOAT(I)

PLI)=(FI-2.0}/R

T(1)=1-2

REGI{TI)=0,0

IF{{I.LT.LO) «OR.{I«GT4HI)) GO TO 12

iM=I-1

REGII)=PDF{IMI¥{INT=FI+3.0)*K/({NT=-FI43.0)*K+NC-R+FI=-2.0))

+PDF(I)¥* ((NC-R+FI=-1.0) /7 (ANT-FI+2.0) *K¥NC~-R+FI-1,0))

CONTINUE

CONTINUE

DO 66 I=2,R2

POF({I)=REG(I)

CONTINUE

JF(R2.LT.RMIN) GO TO &5

EP=0.0

EPSQ=0.0

DO 22 1I=2,4R2

IM=1-1

COF(I)=CDF(IM)+POF(TI)

EP=EP+PDFIID)*P{ 1)

EPSQ=EPSQ+PDF(I)*P(I)*P(I)

CONTINUE

VARP=EPSQ-EP¥EP

WRITE(H933) NTsNCyR9KIEPSYARP, (P({I),PLF(I)COFII),T(I),1I=2,R2)

FORMAT(//7/5Xs2TOTAL(T)=£4F5.24% TOTAL{C)=Z24F5.29% Rz%,4F5,.2,
7 K=Z23F6439% EI(P)=£,F8404%2 VARIP)I=Z,F84B6//5X,
EN{T) /N(RIZ S TX s ZP {TeEQa TEXP) 2y uX 3y 2P { T LELTEXP)Y 2y UXy 2 TEXP 2/ /
(5XyFQebD 37X 9FFe69H6X9FF.6497%X451I2))

CONTINUE

CONTINUE

K=K+KING

IF(Ks GTo KMAX) GO TO 1000

GO0 TO 20400

END
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Appendix B: Program MLE

Program MLE computes the likelihood of an experimental result for
selected K values. Computer searching techniques can yield a maximum
likelihood estimate of K which is accurate to two or three decimal places.

The data deck for this program should be as follows:

Card Information Format
1 TANKS (=L value) (11)
2 RMIN,RMAX,NT,NC,K,KINC,KMAX(2I2,X,5F5.0)
3 R15Ty (212)
4 Ry,T,
1+2 Ry, Ty,
*% Cards 2 thru IL+2 form a set which may be repeated if one wishes

to conduct more than one search per program ryp., The TANKS value
is listed only once.
Last 10 Ten blank data cards,

Explanation:

(1) RMIN is set to mlni=l,...,L Ri

(2) RMAX is set to maxi=l,”.’L Ri

(3) X,KINC,KMAX define K values for which the likelihood of the experi-
mental result will be listed.

Example: The first step in getting a MLE of K is to guess roughly
L L
173724214

which equals 2.59 in our example. We therefore search K = 2.5,3.0,...,5.0

where the MLE(K) will be. A fair initial guess is G = Zi

using the following data deck:

Card/Cols: 123456789012345678901234567890

1 3

2 2021 20.0 20.0 2.50 0.50 5.00
3 2115

4 2012

5 2017

6~15 Blank cards

We get output:

K = 2.500 Likelihood = .000312
K = 3.000 Likelihood = .000708
K = 3.500 Likelihood = .001019
K = 4.000 Likelihood = .001109
K = 4.500 Likelihood = .001008
K = 5.000 Likelihood = '.000815



Since the zenith is near 4.00, we run K = 3.80,3.85,...,4.20.
The result is MLE(K) = 3.95.

Program MLE follows on the next page.

B2
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PROGRAM MLE(INPUT, OUTPUT, TAPES=INPUT,TAPE6=0UTPUT)
REAL P{35),REG(35),PDF(35)4,CDF(35)
REAL NT4NCaKsKINCHsKMAX 9 FIZRyEP,EPSQyVARP
INTEGER T(35) 3 IMyRMAXyRMINYRZ2HLOsHI
REAL LIKE(3),LIKELY p
INTEGER TANKSyRR(3) 4TT(3) 4RM,IR,TTJ2
READ{(S5,40) TANKS
40 FORMAT(I1)
1000 READ(54910) RMINSRMAXsNT4yNGyKyKINGsKMAX -
10 FORMAT(2I24Xy5F5.0)
IF(NT.GT.33.0) STOP
IF(NC.G6T«33.0) STOP
IFIRMAX.6T.33) ST0P
IF(KING.LT.0.,001) s{oP
READ(5450) (RR{J)yTT{Y) 4J=1, TANKS)
50 FORMAT (212)
' DO 77 Ji=1,TANKS
’ TT{JU1)=TT(Jy1) +2
77 CONTINUE
RM=RMAX
RMIN=RMIN+2
RMAX=RMAX+2
HI=IFIX(NT+2.1)
20080 CONTINUE
D0 55 I=1,35
REG(I)=0.0
PDF(I)=0.0
CDF(I)=0.0
55 CONTINUE
PDF{2)=NC/ (NT*K+NC)
PDF{3) =NT*K/{NT*K+NC)
DO 44 L=4,RMAX
R2=L
R=FLOAT{R2~2)
LO=IFIX(R-NC+2.1)
DO 11 I=24R2
FI=FLOAT(I)
P{I)={(FI=-2.0)/R

Ti{I)=1=-2

REG(I)=0.0

IF({IaLTeL0)aORL(I.GToHI)) GO TO 12

IM=1I-1

REG{I)=PDF(IMI* ((INT=-FTI+3.0)*K/((NT=-FI+3,0) *¥K+NC-R¢FI-2,.0))
* +PDF{I) ¥ ({NC-R4FI-1.0)/ {(NT-FI+2.0) *K+NC=-R+FI-1.0)) -

12 CONTINUE

11 CONTINUE
DO 66 I=2,4R2
PDF(I)=REG(I)

66 CONTINUE
IF(RZLLT.RMIN) GO TO 45
IR=IFIX(R+0.1)
DO 88 J2=1,TANKS



88

30
45
4

TTJ2=TT(J2)

IF(IR.EQ.RR{J2)) LIKE{(J2)=PDF(TTJ2)
CONTINUE

IF{IRCEQe.RM) LIKELY=LIKE(1) *LIKE(2)*¥LIKE(3)
IF(IR.EQ.RM) - HWRITE(6430) KyLIKELY

FORMAT (S X9 ZK=Z29F 03 95Xy ZLIKELTHOOD=%24F B4 6)
CONTINUE

CONTINUE

K=K+KINC

IF{K.GT.KMAX) GO TO 1800

GO TO 2000

END

B4
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Appendix C: Program SIGMAD

Program SIGMAD computes the cumulative distribution functions of

ZK and Zé . It may be used in conjunction with a computer search to
0 0

find upper and/or lower confidence limits for K.

The data deck for SIGMAD should be as follows:

Card Information , Format
1 KO’EKO,exp or ZKO,EXP (whichever is applicable) (F5.0,F10.0)
2 Tanks,RMAX,NT,NC,KO,l.OO,K0 (I1,12,5F5.0)
3 SMIN,SMAX (2¥5.0)
4 Ry (12)
5 R (12)
2
L+3 RL (12)
L+4 Tanks, RMAX,NT,NC,K,KINC,KMAX (I12,12,5F5.0)
L+5 SMIN, SMAX (2F5.0)
EI? gl Repeat of cards Eigg
2 3 thru IL+3
2145 RL (12)

LAST 10 Ten blank cards
Explanation:
) KL and KN for a given treatment must be sought after one at a time.

When seeking KL’ the L value is listed on card 1. List

Ko,ex
’ on card 1 ﬁhén'séarching for KU.

Ko,exp

(2) RMAX = max]._=1’”.’L Ri

(3) SMIN and SMAX specify the values of L. or zé for which the CDF
0 0

values are desired. For example, setting SMIN = .58 and SMAX = .59

when ZK , exp = ,586 will cause P(ZK 5_.586[K,M,N,Rl,...,RL) and
0 0

P(Zlé .f_ '586IK’M’NsR s'--sR.L) to be printed.
0
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3

=1,exp _ ’i=1 Ti,K =1

Example (cont'd): From Appendix A we know ZK
0

0
‘ =53 p! = 2.942967. Thus, for a
K0=1,exp i=1 i,KO=1 ' ) s

= .176737 and that Z

two-sided 907 confidence interval,

K = max[K: P(%, < 0.17674|M=N=20,R_=21,R
Ky ~ 1

=20,K)

| A

2=R3 .05]
and

K, = min[K: P(ZKO 5_2.94297]M:=N=20,Rl=21,R2=R3

The first step in finding KL and KU is to guess at a wide region for

=20,K) < .05]

their location. For KL we search at K = 1.0,1.5,...,3.5; for KU we

search at K = 5.0,6.0,10.0. The correct data decks are (A) the KL deck:

Card/Cols: 1234567890123456789012345678

1 1.00 0.176737

2 321 20.0 20.0 1.00 1.00 1.00
3 0.17 0.18

4 21

5 20

6 20

7 321 20.0 20.0 1.00 0.50 3.50
8 0.17 0.18

9 21

10 20
11 20
12-21 Ten blank cards

(B) the KU deck:

Card/Cols: 123456789012345678901234567890
1.00 2,942967

321 20.0 20.0 1.00 1.00 1.00
2,94 2.95

21

20

20

321 20.0 20.0 5.00 1.00 10.0
2.94 2,95

21

20

11 20

12-21 Ten blank cards

=
owoo~NoTUL R~

These two decks must be run separately.
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The output reveals that KL is between 1.5 and 2.0 since

P(z, < .1767|k=1.5) = .0169 and P(I, < .1767|K~2.0) = .1252; it also

0 0
shows that K is between 5.0 and 6.0 since P(Zé < 2.9430|R=5) = .0574
0
and P(Zé < 2.9430|K=6) = .0201. Therefore we continue our search by
0

replacing data cards A7 and B7 by cards A and B, respectively:

Cards/Cols: 12345678901234567890123456789
A 321 20.0 20.0 1.60 0.10 1.90
B 321 20.0 20.0 5.10 0.10 5.90

After reviewing the output, we conclude that (KL,KU) z (1.7,5.2)

since the P(Z, < .1767|k=1.7) = .0452 and P(Z, < 2.9430|K=5.2) = .0464.
0 0
Bonuses from the output of data decks A and B are:

(1) P < 0.1767 |M=N=20,R
0

1=21,R2=R3=20,K=K0=1) = ,0002.

Since this probability is less than .05, we reject HO: K=1 in
favor of Hl:K > 1.
4
(2) P(zKO 5_2.9430IM?N=20,Rl=21,R2=R3=20,K=K0=1) = .9996.
If we were testing HO: K=1 vs. le K < 1, we would accept the null
hypothesis.

The & and I° methods presented here are designed to ensure that
100(1-a)?% confidence intervals are their given size or larger. This
has been done by making the Fortran variable ADJUST 0.0l smaller than
it should be if the computer calculations were arithmetically precise.
But this protective measure can cause the confidence intervals to become

V4 Py
r X are near zero or L. This problemn,

overly large when I exp o Ko,exp

KO,

however, can be overcome by using the MLE(X) in place of KO' Simply use
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’ . .
Program PDE to compute ZMLE(K),exp and ZMLE(K),exp’ then find

K, = [K: P(ZM_LE(K) < ZMLE(K),eXPIK,M,N,Rl,...',RL) < af2] and
KU = [K: P(ZQLE(K) 5—ZﬁiE(K),exle’M’N’Rl"'"RL) < o/2] using Program
SIGMAD.

At this point the I and 2’ methods offer an infinite number of
procedures (one for every K0 > 0) for finding a confidence interval for
K. This represents an uncomfortable situation since each procedure may
yield somewhat different confidence intervals. Originally no such
problem existed because K0 was postulated to equal one in all predator-
prey experiments. When the authors decided to allow K0 to assume any
value an experimenter believed to be appropriate, the problem of

multiple confidence intervals arose. To resolve the multiple interval

and computer accuracy problems simultaneously, the authors suggest that

F
experimenters use exclusively the ZMLE(K) and ZMLE(K) methods for
calculating confidence intervals. The ZK and Zé methods must still
0 0 :

be used to get hypothesis test P values.

Program SIGMAD, as presented, works for experiments where the
number of tanks per treatment is three. When the number of tanks is two
or four (five tanks probably makes this program too expensive to use),
amend this program as follows:

(a) For L=TANKS=2, (1) replace the 3 in 3I4 of format statement 40 with

a 2; (2) replace all statements between "DO 1 ... Big" and

"1 Continue" by:
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DO 1 I1 = Small, Big

DO 2 I2 = Small, Big

Symp = Ifix(100.0%*(FF(I1l,1) + FF(I12,2)) + Adjust)
Pdist(Sump) = Pdist(Sump) + (PP(I1,1)*PP(I2,2))
Spofg = Ifix(100.0*(GG(I1,1)+GG(I12,2)) + Adjust)
Pdofg(Spofg) = Pdofg(Spofg)+(PP(I1,1)*PP(12,2))
Continue

1 Continue

[

(b) For L=TANKS=4, (1) replace the 3 in 314 of format statement 40 with
a 4; (2) replace all statements between "DO 1 ... Big" and
"1l Continue" by:

DO 1 I1= Small, Big

DO 2 I2= Small, Big

DO 3 I3= Small, Big

DO 4 T4= Small, Big

Sump = Ifix (100.0%[FF(I1,1) + FF(I2,2) + FF(I3,3) + FF(I4,4)] + ADJUST)
Pdist (Sump) = Pdist(Sump) + (PP(I1,1)*PP(12,2)*PP(I3,3)*PP(I4,4))

Spofg = Ifix(100.0%[GG(I1l,1) + GG(I2,2) + GG(I3.3) + GG(I4&.4)] + ADJUST)
Pdofg(Spofg) = Pdofg(Spofg) + (PP(I1,1)*PP(I2,2)*PP(I3.3)*PP(I14,4))
Continue

Continue

Continue

Continue

oo o

Program SIGMAD starts on the next page.
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PROGRAM SIGMAD(INPUT,QUTPUT, TAPES=INPUT, TAPEG=0UTPUT)
REAL ADJUSTLEXCESS,SIGEXP

REAL KZERO,KZEROL yKZEROH

REAL PP(35,5)3FF(3545)y661(35,5) ’

REAL PODIST(502),CDIST(502),VI(502)

REAL NTyNCyKyKINC KMAX9FIHR

REAL P(35)43REG(35) 4POF(35),COF(35)4,6(35),4CDOFG(502) 4yPDOFG(502)
INTEGER RS(5)4 TANKS,LINDX

INTEGER SPOFGsSUMPyRRIS) yRMAX9R23TIMyL 4L 0yHI

INTEGER BIG,SMALL,RMAX2

READ(5460) KZEROSSIGEXP

FORMAT(F5.0,F10.0)

EXCESS=((100,0*SIGEXPYI-FLOAT(IFIX{100 .0*SIGEXP)))*0.01

ADJUST=1.99-(10 0. 0*EXTESS)

KZEROL=KZERO-0, 0001
KZEROH=KZERO+0. 0001
READ{5,10) TANKSyRMAXyNTy NC 4Ky KINCyKMAX
FORMAT (T1,12,5F5.0)
IF(NT.56T.33.0) SToOP
IFINC.6T.33.0) STOP
IF{RMAX.6T.33) STOP
IF(KINC.LT.0.001) SToP
L=TANKS

LINDX=(100*L)+1
RMAX=RMAX+2
HI=IFIX{NT+2.1)

READ(5,797) SMIN,SMAX

FORMAT (2F5.0)

DO 11 I=1,1
READ{5,20) RS(I)
FORMAT (I2)
RR{I)=RS(I)+2
CONTINUE

CONT INUE

DO 22 I=1,35
REG(TI)=0,0
PDF(I)=0.0
CDF(1)=0.0

CONTINUE
PDF(2)=NC/ (NT*K+NC)
POF(3)=(NT*K) /7 (NT*K+NT)
DO 33 LL=4,RMAX
R2=L1

R=FLOAT (R2-2)
LO=TFIX{R-NC+2.1)
DO 44 I=24R2
FI=SFLOAT(I)
PIT)={FI=-2.0)/R
REG{TI)=0.0
IF((I.LTeL0)eOR(I.6T4HI)) GO TO 12
IM=I~-1
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REG(I)=PDF{IM)* (INT=FI+3.0)%K/ ((NT-FI+3.0) *K+NC-R+FI-2.0))
* +PDF(I)* ((NC-R4FI-1,0)/ ((NT-FI+2.0) *K+NC-R+FI~1.0))
CONT INUE

CONT INUE

DO 55 I=2,R2

PDF (1) =REG(I) -

CONT INUE

D0 780 JJ=1,L
IF(R2.,EQ.RR{JJ)} GO TO 35
CONTINUE

GO TO 3&

CONTINUE

DO 66 I=2,R2

IM=I-1

CDF (1) =CDF (IM) +PDF (1)
G(I)=1.0-CDF(IM)

CONTINUE

D0 111 JA=1,1
IF(R2.NE.RR(JA)) GO TO 333
DO 222 JB8=2,R2
PP(JByJA)=PDF (JB)

IF (KoL ToKZERDOL. OReKoGToKZEROH) GO TO 44k
FF(JBsJA)=CDF(JB)

GG (JByJAI=G(JB)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONT INUE

CONTINUE

DO 77 N=1,502

PDIST(N)=0.0

PDOFG(N)=0.0

CONTINUE

DO 2222 J=2,RMAX

SMALL=J

D0 6666 JD=1,L

IF(PP(JyJD) .GT.0.0001) GO To 3333
CONTINUE

CONT INUE

CONTINUE

RMAX2=RMAX+2

D0 4444 J=2,RMAX2
BIG=RMAX2-J

DO 7777 JE=1,L

IF {PP(BIGyJE).GT.0.0081) GO TO 5555
CONT INUE

GONTINUE

CONTINUE

DO 1 I1=SMALL,BIG

DO 2 I2=SMALL,BIG

DO 3 I3=SMALL,BIG



74

40

50
75

c8

SUMP=IFIX(100+0% (FF (I141)+FF(12,2)+FF(I3,3))+ADJUST)
PDIST(SUMP)=PDIST(SUMP) +(PP(I1,1)*PP(12,2)*PP(13,3))
SPOFG=TIFIX{100.0*(G6{T1,1)4G6(12,2) +GG(I3,3))+ADJUST)
PBOFG(SPOFG) =PDOFG{SPCFG) #+(PP{I1,1)*%PP(I2,2)¥PP(13,3))
CONTINUE

CONTINUE

GONTINUE

COIST(1)=PDIST(1)

CDOFG{1)=PDOFG(1)

V(1) =EXCESS

DO 74 I=2,LINDX

IM=TI=-1

COIST{(I)=CODISTIIM+PDIST(I)
CDOFG(I)=CDOFG(IM)+PDOFG(I)
V{I)=FLOAT(IM)*0.01+EXCESS
CONTINUE
HRITE(6,40) Ky (RS{I)yI=1,4L)KZERD
FORMAT(//5X 9 #SIGMA+SIGMAPRIME P(SIGMAPL.LE.SIGMAPEXP) %,
_ EFP(SIGMALLE.SIGMAEXP) K=£,F64343I447% KZERO=24F543)
00 75 I=1,LINDX
IF(V(I)aGToSMINJANDVAI).LTLSMAX)
WRITE(6,50) V(I),CBIST(I),CDOFG(TI)
FORMAT (10X 9 FbBealt 910X 3Falig1OXyF9.4)

CONTINUE

K=K+KINC .
IF(KeGT.KMAX) GO TO 100
G0 T0 2000

END
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Appendix D: Program P1TOl,

¢
Program P1TOL computes P, _**L, and P, _*#I, values where
i,K i,K

= P(T 5_Til K,M,N,R.). Used in

E

i,k
conjunction with Table 9, this program will aid in finding confidence

= > -
Py g = R(T2 TiIK,M,N,Ri) and P

limits for K when SIGMAD is too expensive to use.

The data deck for P1TOL must contain the following information:

Card Information Format
1 Tanks per treatment (11)
2 RMIN,RMAX,NT,NC,K,KINC,KMAX (2I2,X,5F5.0)
3 R;,Ty (212)
4 R,»T, (212)
L+2 R;»T (212)
ces Searcﬁes for (Ki,,Ky) may be conducted for more than one

treatment, provided the value for TANKS remains the same.
Simply follow the format of cards 2 thru I+2.
LAST 10 Ten blank cards

Continuing our example we search for KL below MLE(K) = 3.95 and for
KU above 3.95. Since this program is fairly cheap to run, iook at
K =1.0,1.1,...,3.0 for KL and at K = 5.0,5.5,...,20.0 for KU.
Conclude that the 907 confidence limits for K are KL = 1.3 and KU = 18.5

since the max,

i=1,2,3 Py g=1.3**3) = 0454,

the max *%3) = 0.738,

i=1,2,3®1,k=1.4

%%
the maxi=l,2’3(P 3) .0527 and

i,K=18.0

the max 3) = .0467.

®&
1=1,2,3®1,z=18.5



The data deck for this example is:

Card/Cols: 123456789012345678901234567890
3

2021 20.0 20.0 1.00 0.10 3.00
2115

2012

2017

2021 20.0 20.0 5.00 0.50 20.0
2115

2012

2017

10-19 Ten blank cards

o~ PWN -

Since max **3) = 0.0050, we reject H

1=1,2,3%41,k=1.0

favor of le K > 1.00.

Program P1TOL follows on the next page.

0

: k=1.0 in

D2
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PROGRAM P1TOL(INPUT ,OUTPUT,,TAPES=INPUT,TAPE6=0UTPUT)
REAL P(35)4REG(35),PDF(35) ,CDF(35)
REAL NTyNC9yKy9KINCyKMAX9FIZRyEPLEPSQyVARP
INTEGER T{35),TANKS
INTEGER IMyRMAX,RMIN,R2,L0,HI
REAL PMAXPR,PPMXPR,PVALUE,PPRIME
INTEGER TT(3)4RR(3)4T1,T2,L41IR
READ(5,550) TANKS
50 FORMAT(I1)

LL=TANKS
HRITE(5,30) LL
30 FORMAT(B6X9% K R P¥x i PP¥*L L=#4,12/77)

1000 READ{5,10) RMIN,RMAX,NT4NC,K,KINC, KMAX
10 FORMAT(2I24X95F5.0)
IF{NT.GTL33.0) SYoP
IFI{NC.GT.33.0) STOP
IF(RMAX.GT.33) STOoP
JF{KINC.LT.0.001) S70P
RMIN=RMIN+2
RMAX=RMAX+2
HI=TIFIXINT+2.1)
) READ(5,40) (RR{I)oTT{I)yTI=1,1L)
49 FORNMAT (212)
2000 CONTINUE
DO 55 1I=1,435
REG(I)=0.0
POF(TI)=0.0
CDOF(I)=0.0
55 CONTINUE
POF(2)=NC/{NT*K+NC)
POF{3)=NT*K/INT*K+NC)
DO 44 L=44RMAX
R2=L
R=FLOAT(R2-2)
LO=SIFIX{R~-NC+2.1)
DO 11 I=2,R2
FI=FLOAT(I)
PlI)=(FI=-2.0)/R
T{I)=1I=-2
REGII)=0.0
IF({TelTaL0) «ORQ (T.GTJHT)) GO 10 12
IM=I-1 ' _
REG(IN=POFIIMI* LINT-FI+3.0)*K/ (INT=FI43.0) *K+NC~R¢FI=2,0))
* +PRF(I)* ((NC=R+FI=1.0) 7 ({NT=-FI4+2.0) ¥*K+NC-R+FI=1.0))
12 CONTINUE
11 CONTINUE
D0 bb I=24R2
POF(I)=REG{(T)
66 CONTINUE
IFIRZ.LTJRMIN) GO TO 45
EP=0.0
EPSQ=0.0



22

77
20
45
L4

DO 22 I=2,4R2
IM=I-1

COF(I)=CDF{IM)+PDF(I)
EP=EP+PDF(I) *P(T)
EPSQ=EPSQ+PDF (I} *P{I)*%P(I)

CONT INUE
PMAXPR=0.0
PPMXPR=0.0
IR=IFIX(R+03.1)
DO 77 I=1,LL
T1=TT{I)+1
T2=TT{(I)+2
IF(IRLEQRR(I)

) PVALUE=1.00-CDF (T1)

IF(IRLEQ.RR(TI)) PPRIME=CDF{T2)
PMAXPR=PVALUE**LL '
PPMXPR=PPRIME**LL

IF({IR.EQ.RR{I)) WRITE(H420) Ky IRyPMAXPR,PPMXPR

CONTINUE

FORMAT(S5XsFDeI39I55FBalsyFTats)

CONTINUE
CONTINUE
K=K+KINC

TF (K GT o KMAX)
GO YO 200D
END

GO TO 1300

D4





