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MINIMAX SUBSET SELECTION WITH APPLICATIONS
TO UNEQUAL VARIANCE PROBLEMS

1. INTRODUCTION

Let X],...,Xk be observations from populations whose distributions are
determined by unknown real parameters S ETERILI In a subset selection
problem, the goal is.to select a subset of the populations which includes
the population associated with the largest parameter with "high" probability
and includes the other populations with "low" probability. In this paper,
rules are found which are minimax in the class of non-randomized, just, and
translation invariant rules when risk is measured by the maximum probability
of including a non-best population. These rules are of the form proposed
and studied by Gupta (1965) in location and scale parameter problems. 1In
many Cases; these rules are the unique minimax rule in the class and, hence
are also admissible in this class. These results are applied to the normal
means problem with known unequal variances (or unequal sample sizes). Com-
parison of several proposed rules is made. A rule proposed by Gupta and |
Huang (1976) is found to be minimax. A generalization of the rule, proposed
by Gupta and Wong (1976), is likewise minimax. Other rules, proposed by
Chen and Dudewicz (1973) and Gupta and Huang (1974), are shown to be not

minimax.

2. - NOTATION AND FORMULATION

Let X = (X],...,Xk) be a random vector with cumulative distribution
function (c.d.f.) F(x - 8) and density f(x - 8) with respect to Lebesque
measure on B%k. s eo-= rK is the unknown location parameter. Let

®[1] < -+~ < 6y denote the ordered coordinates of ¢ = (8y5...58,). This



induces the partition @ = ®] U... U Ck of the parameter space where
@ = {8: 8, = e[k]}. Let TyseeesTy denote the k populations which
give rise to observations X],...,Xk, respectively,and let T(§) denote the
(unknown) population associated with e[i]' The goal in é subset selection
problem is to find rules which select a subset of the populations which
includes the "best" population (k) with "high" probability and includes
the "non-best" populations T(1) 2T (k1) with "low" probability, regardless
of the true parameter value. In general, a selection rule will be denoted
by o(x) =.(¢](5),...,qk(5)) where qﬁ(ﬁ): 2> [0,]] is the pfobabi]ity that
ms 1s included in the selected subset -when X = 5_is.observed;

Selecting a subset which contains the best popu]ation is called a
correct selection, CS. To insure a "high" probability of making a €S, we

will consider only those rules which satisfy the P*-condition, viz.,
(2.1) inf P_ (CS|q) > P*,
_ e & -~

where %-< P* <1 s a pre-assigned fixed number. The risk function we will
use, to reflect the fact that we want the non-best populations to be included

with "low" probability, is

(2.2) M(8,¢) = max P, (select n(i)lqﬂ.
1<i<j-1 2

3. JUST AND INVARIANT RULES AND AN ORDERING OF DISTRIBUTIONS

In this section, two classes of selection rules are defined. An ordering

of distributions is also introduced. Some preliminary lemmas are presented.



Definition 3.1. A selection rule is just if for every i = 1,...,k,

qﬁ(x],...,xk) is a non-decreasing function of X; and a non-increasing
function of X3 J#i.

"The concépt of justness is appealing if the best population is the
one associated with the largest parameter value and an increase of a
parameter values causes the corresponding observation to be
stochastically larger. Location parameters are common examples of
this monotonic behavior. Just rules were defined and investigated in -

more generality by Nagel (1970) and Gupta and Nagel (1971).

Definition 3.2. A selection rule is translation invariant if for every

X € nzk, for every ¢ € R and for every i = 1,...,k, qﬁ(x]+c,...,xk+c) =
“ﬁ(x]""’xk)' |

Since the sets ®]""’Ck are translation invariant, restriction to
translation invariant rules is reasonable. Lemma 3.1 provides a useful
characterization of selection rules which are both just and translation

invariant.

Lemma 3.1. A selection rule, Hx) = (qﬁ(g),...,qk(5)), is just and trans-

lation invariant if and only if the following two conditions hold:

(i) for every i = 1,...,k, @ is a function only of theset of differences
{xj-xi: J=T1,....k, § # i},

(ii) if x and y satisfy X57X3 S Y5; for every j # i, then qﬁ(é) z_qﬁ(x).

Proof. ¢ is trans]ation invariant if and only if (i) holds bécause fhe

differences are a maximal invariant for the translation group (see Lehmann

(1959) p. 21s). Suppose ¢ is just and translation invariant. Let x and

y be as in (ii). Using first invariance and then Justness yields



(p-i (i) = (P.i (x“l-x]-+y_i 9o e ,Xk-X_i-l-yi)

(p-i (x]-x.i+y,i e oo ,y.i 9 s o ,Xk-x'i+y'i)

(pi(y],.--,yist"s.yk) = ‘Pi(x)

so (i) is true.

Now suppose (ii) is true. Fix X € lik, e >0and i # j. Then
Xy +e - X 2 X5 - X; and all other differences are equal so by (ii),
qﬁ(x],...,xk) 3_qﬁ(X],...,xj+e,...,Xk), i.e., @; s non-increasing
in Xg s Jj#1i. Also, Xj'(xi+€)'f-xj-xi for every j # i so by (ii),
qﬁ(x]"“’xi+€""’xk) z_qﬁ(x],...,xi,...,xk), i.e., @; is non-decreasing
in x;. Hence ¢ is just.|| |

The following ordering of distributions was introduced by Lehmann

(1952) and further investigated by Lehmann (1955). See also Alam (1973).

Definition 3.3. A subset A c R¥ is monotone if x € A and y satisfies

Y; = x; forall i =1,.., ,k implies y € A.

Definition 3.4. A family of probability distributions on llk,

{Fe: 6 €@ c:llk}, has the stochastic increasing property (SIP) if

8 €6 8' €6, and 6; < 6;' for all i =1,...,k implies

PQKA) = {dfg.z_g dﬁg. = ng(A)

for all monotone sets A.
In Lemma 3.7 it was shown that if a selection rule is translation
invariant, then the rule is a function only of the differences of the

observations. Thus the distribution of this random vector of differences



is of interest. Lemma 3.2 shows that this vector has the SIP. Lehmann
(1955) showed that if é_is a location parameter, then the family

{Fe:

6 € 8} has the SIP. This fact is used in the proof of Lemma 3.2.

Lemma 3.2. Suppose § € llk is a location parameter in the distribution

of X = (X X, ). Then the distribution of X*= (X]-Xi,..;,Xi_]-X.,

100> 1

i+1-xi""’xk'xi) depends on 6 only through the parameter

* = -
) (e] )

X

i200%.17%%4

of X* has the SIP in terms of o*.

'ei"'“ek_ei) and the family of distributions

Proof. Let Y be a random vector with the same distribution as X has
if 8= (0,...,0). Let 6 be the c.d.f. of (¥;-Y.,... P PIRE PR P
Yi-Ys) and 92 be the c.d.f. of X*. Then (Y,+6;5...,Y, *6,) has the same

distribution as X so, for any constants CqyseeasCp 1o

GQ(C],...,Ck_,-I) = Pg(x-l-x_i i C],--o,xk-xi i Ck_'l)

P(Y]+e]-Yi-ei < s Yk+ek -Y. -6, < Ck-l)

= G(C]'(e]'ei)"'"ck-l"(ek"ei))f
So the distribution of X* depends only on 8* and in fact 6* is a location

parameter. By Lehmann's result, the family of distributions has the SIP.||

4. MINIMAXITY AND ADMISSIBILITY OF SELECTION RULES

A non-randomized selection rule is one for which qﬁ(ﬁ) € {0,1} for
all x € 12k and all i. Thus a non-randomized rule is completely determined
by k sets Ays...sA where Ay = {x: @;(x) = 11 is the set of observations
for which m; is included in the selected subset. By Lemma 3.1, a non-

randomized rule is just and translation invariant if and only if x € Ai



or x € Ag (Ac denotes the complement of A) can be determined from only the

differences {xj-x J # i} and Ai‘is monotone in these differences. In

i
determining a rule which is minimax with respect to M, the quantity to be

minimized is

sup M(e,¢) = sup max Pe(seTect n(i)lqﬂ
e ® l<i<k-1 &
= .max sup Pe(se]ect “1l¢9
(4.1) l<ick e 2

i

max sup Pe(Ai)'
1<i<k -

This can be minimized by choosing sets Ai to minimize each of the terms
sgg Pe(Ai) separately with the restriction
£ 2

1éf Pe(Ai) > P* 50 the P*-condition is satisfied. The form of the set which
i
does this minimizing is given by Theorem 4.1 which is an extension of
Lehmann's (1952) Theorem 4.1.
Theorem 4.1. Let the joint distribution of (Y],...,Yk) be fx(y],...,yk)
where the parameter space is the finite or infinite open rectangle X <Yy <Yy
and the sample spéce is the finite or infinite open rectangle Yi < Yi < 9i’
independent of the y. Suppose Pxﬂs) is a continuous function of y for any
set of the form (4.5). Suppose thevfamily {ﬁl} has the SIP, that the marginal
distribution of Yi depends only on Y; and that Yi convergesvin probability
to y. as vi > vi. let y*¥ = (yf,...,yz) be a fixed parameter point

and define
(4.2) r = {y: \& §_y$, i=1,...,k}.
Let & be the collection of all monotone sets which satisfy

(4.3) inf P (S) > P*.



Then a region S* € S which satisfies

(4.4) sup P_(S*) = inf sup P (S)
c T s ¢ X
r T
is given by
(4.5) S* = {y: Yi<ass i=1,...,k},

where the constants a; are determined by

(4.6) RY*(S*) = p*
and
(4.7) PY?(Y] <a) = pyg(y2 < a,) =...= "y;”k < a).

Furthermore, if for every i, the distribution of Yi given Y? has the entire
interval (xi,&i) as its support, the region S* is the essentially unique

element of 8 which is minimax, i.e., satisfies (4.4).

Proof. For any set of constants yj > xj and any i = 1,2;...,k

(4.8) Ylw Py 2y 2y = Pyi(Y,- < y;)
J 3
J#i

because



P(Y] < YpseeeaYy f_yk) = P(Yi f-yi)'P(Yi f_yi,Yj > Yj for at least
one j # i)
P(Y; <v;) - j;i P(Y; > y;)

| v

and every term P(Yj > yj) converges to zero in the limit of (4.8) because
of the convergence in probability. The < inequality is immediate.

For an S € 8, the SIP implies that 1im P (S) exists and the limit
Yirys L
i
J#i
will be denoted by Bi(SIYi)' The SIP also implies that

(4.9) sup P_(S) > max g.(S|y*)
- C X 1<i< ! !

and because of the continuity, for sets of the form (4.5)

sup P (S*) = max B.(S*ly?).

c X T<i<k !

I" — ——
Since for the region S* given by (4.5), (4.7) and (4.8) imply that
B](S*IYT) = 32(5* h§ =,, .= Bk(S*lyﬁ), if the theorem were false, an
S € 8 could be found which simultaneously decreases all k quantities.
But this can not happeri. For let § €8. Lety €8 nsS**, (Such a y
exists unless S is essentially the same as S* because of (4.3) and

(4.6).) For some i = 1,2,...,k, i > a; since y € s*C

(4.10) P(S* NS) <P( U Y, <a,, Y. >y.})
IR0 B



|A

; P(Yi < a5, Y. > y.)
J#i

P{(Y. > y.).
j;i ( j> Y5

Ia

As v5 + x4» all the terms PYj(Yj >¥;) > 0.

Bi(le?) = lim P(SlY]s---9Y?:---sYk)

Y3
J#i
(4.11) = lim P(s*)+ Tim P(S 0 5*°)- Tig P(s* nsC)
) Y57 2
J#i : J#i J#i

= 8;(S*|y¥)+ 1im P(S n$*C)-  1im P(S* n s°).
1 1
ijlj Yj?lj
J#i j#i

From (4.10) the last limit is zero, so Bi(SIY?) z_si(s*lyy) and the first
part of the theorem is prdven.
Furthermore,
. _
P(S ns*) > P(Y] 5_y],...,Yi ;_yi,...,Yk j_yk)

- P(Y] S Y¥pseeen¥s <@

§ S8y <y ).

As Y57 A g J # 1, by (4.8) the right hand side converges to
i

(4.12) Py';.‘(yi' iyi) - Py"!’(Yi < ai).

So if the support of the distribution of Yi given-y? is the entire interval
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(xﬁ,yi), (4.12) 1is greater than zero and by (4.11), 51(5|Y¥) > Bi(S*IY?)-

Hence by (4.9)

(4.13) v sug EI(S) > suz ?1(5*)
T T

and S* is the essentially unique element of $ which is minimax. ||

The_form of the region S* in Theorem 4.1 becomes particularly simple
if the joint distribution of (Y],...,Yk) is symmetric (i.e., the random
variables are exchangeable) given y*. Then (4.7) implies a;=...=a,=a

where a is determined by (4.6) and the minimax region is

(4.14) S* = {y: max y; < al.
. 1<i<k

The following selection rule has been proposed and studied by

Gupta (1965).

Definition 4.1. Define the selection rule R] by

R .

1: select m; if Xj 2 max x -d

1<j<k
where d is chosen to be the smallest positive constant such that the
P*-condition (2.1) is satisfied.

Theorem 4.1 can be used to show that R] is minimax and admissible with

respect to M in a restricted class of rules.

Theorem 4.2. Let X = (X]""’Xk) have a density f(x - 8), 6 ¢ RK with

respect to Lebesque measure ;i on l%k. Suppose the support of f is llk and
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f is symmetric (i.e., the random variables are exchangeable if 0y = ... = ek).
Then R] is minimax with respect to M in the class of non-randomized, just,
and translation invariant rules which satisfy the P*-condition. Furthermore
R] is the unique minimax rules in this class so R] is admissible in this

class.

Proof. Fix 1i=1,...,k. Let Yy = X] - Xi""’Yk-l = X - Xs (omitting

X -Xi) and Y] = 6] - 8,

i jreres Ygop = O - 8, (omitting 6; - 05). As

explained at the beginning of this section, by Lemma 3.1 a rule is
non-randomized, just, and translation invariant if and only if it is of the

form

k-1

where Si is a monotone subset of R By Lemma 3.2, the distribution

of Y depends only on y and since X has a density with respect to Lebesque

measure on I%k, Y has a density with respect to Lebesque measure on

R

This implies PIKS*) is a continuous function of y for sets S* of

the form (4.5) since for such sets, S*/S*° (closure minus interior) has
i.ebesque measure zero. Lemma 3.2 establishes the SIP of {FI‘X): Y € }Ik-]}.
Also Y5 is a location parameter in the marginal distribution of Yj so

the convergence in probability assumption of Theorem 4.1 is true.

Let y* = (0,...,0) so the set T of Theorem 4.1 is equivalent to
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(R denotes the closure of A). Because of the continuity of ?l(S) in terms
of y, the fact that r is Eg'rather than @, is unimportant since
the sup's and inf's are all the same taken over a set or its closure.
(4.3) simply insures the P*-condition.

Because f is symmetric, the distribution of Y given y* is also
symmetric so the remark following Theorem 4.1 is relevant and thé monotone

set S? which minimizes

(4.15) sup P_(select w.) = sup P (S)
c & ! c Y
. @ _ r

1

is given by Theorem 4.1 as

w
*
It
~
<
<
[V
A
o
[
n
—
-
v
pa.
i
——
()

(4.16)

1]
iy
x
x
I
>
A
(=8
[S¥ N
.
e
—

which is the acceptance region for'ni of R].
Since the support of f is l!k, the support of the distribution of Yj

given 73 is R. So S? is the unique accepténce region for w. which

i
minimizes (4.15). Because of the exchangeability, d] =...= dk =d and

sup Pe(S?) =,,.= sug EQ(SE) = P, (X2 - X].j_d)-

c -_—

©; €

178

So none of the S? can be changed without increasing (4.1). Thus {Sf,...,Sﬁ}
is the unique set of acceptance regions which minimizes (4.1) (i.e., R] is the

unique minimax selection rule). Any unique minimax rule is admissible. ||



13

5. SELECTION OF MORMAL MEANS WHEN THE VARIANCES ARE UNEQUAL

In this section we assume that X],...,Xk are independent random
variables and Xi is normally distributed with unknown mean ei and
known variances ciz. If the oiz's were assumed to be equal, we would
have exchangeable random variables and by Theorem 4.2 R] would be a
“good" selection rule. But here, no assumptions ébout the equality
of the variances are made. The variances may be of the form

Y2
g; = —l-, e.g., Xi is the mean of a random sample of size n; from LI

1 n.
1

So this formulation includes unequal sample size problems.
The following five rules have been proposed. In each case d is
chosen to be the smallest positive constant such that the P*-condition
is satisfied. If y rather than Y; appears, it is assumed that Y15 TV Y.

Chen and Dudewicz (1973) proposed rules RZ and Rs.

R2: select m iff xi > max  x. - dyj— +

where n_ _ = max n..
[k] 1<i<k J

R3: select . iff x; > max «x. - dy 1 +
i : n
- 1<j<k

where n = min n..
(1] 1<k 9

Gupta and Huang (1974) proposed Ry-

Ry: select my 1Ff Xy > max  x. - dy
l<jzk 0 /An
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Gupta and Huang (1976) proposed R5.

. 1 1
Rg: select n; iff x; > max (x, - dy [— + — )
5 i i 1<j<k J J N nj
Gupta and Wong (1976) proposed Rg-
Y Y-
Rg: select m 1fF x, > max  (x; - d %—-+ ﬁl )
1<j<k J i "

In Chen and Dudewicz (1973), vy was not assuﬁed known so an estimate was
used in place of y in the definitions of R2 and R3. R5 is easily seen to
be a specialization of R6 for the case Yp S--.= Vi It is easy to see that
all the rules are just and translation invariant. A1l reduce to R1 when
fhe variances and sample sizes are all equal. The following theorem provides

a minimax result for R6'

Theorem 5.1. For the normal means problem, R6 is minimax with respect to
M in the class of non-randomized, jusf, and translation invariant rules

which satisfy the P*-condition.

Proof. By Theorem 4.1, applied as in Theorem 4.2, the Jjust and translation

invariant acceptance region Si for s which minimizes sup Pe(se]ect ni)

c —
%
is given by
(5.1) Si = {x: xj - X5 E_dij J=T1,...,k, 3 #1i}
where (4.7) implies that the dij satisfy
(5.2) P6]=e_ (X = X < djy) == P o, (X = X5 < dgp).

i k 7§
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This implies
(5.3) ¢(di]//6$ + o? ) =...= ¢(dik/¢6§ + of_)

where ¢ is the standard normal c.d.f. Thus, the dij must satisfy

(5.4) dyq/ /6% + o == A/ Vol + o2 .
Letting d? = dil/ oy + ai » We obtain

(5-5) d,. = d*;/(yz. + g? J = ]’---’k’ J # i
1] 1 7] i
for the minimax region and from the proof of Theorem 4.1 it can be seen

that for this minimax region

(5.6) sup Pe(select ni) = @(di]//6$ + 0?) ¢(d§).
c —

%

Recall that, from (4.6), d? is determined by

< d’{»’oz- to; ., J

$ 4} T,....k, j # i) = p*

(5.7) P, _ _ (X. - X,

81=...58, '"J i
Comparing (5.1) (inserting (5.5)) and the definition of R6’ we see that they
are the same except that in (5.1), d? depends on i, whereas d in Rg does not.

To minimize (4.1), we must minimize the maximum of the k quantities in

(5.6) which, of course, is o(d* ) where d* = max d*, If d* is used in
[k] (kI 1<j<k k
p]ace of d? for all i, then .
sup Pe(select "i) = ¢(d* ) for all i = 1,...,k
c = [k]

&,
1
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so (4.1) is unchanged. The rule usingthe d?'s obviously 1s minimax since
it minimizes each of the terms in the max of (4.1). The rule using d*k

in place of all d?‘s has the same value of (4.1) so it_too is minimaxF ]But
this rule is R6 (set d = dEk]). It should be noted that in going from the
rule with the d¥'s to Rgs the P*-condition has not been violated. Those

acceptance regions which have changed have been increased in size so P{CS)

has, if anything, increased. ]|

The rules R2, R3 and R4 are not minimax. The uniqueness part of
Theorem 4.1 is applicable since Xi - Xj, J # i, has support R. They all
have regions of the shape (4.5) but do not satisfy (4.7). For example, for

R4, {4.7) implies

B 1 T T ST
@(d/f%;- ///ﬁ-+ ol AT @fﬁﬁﬁw-fs %—-+ %—-).
i i 1 i i k
Unless ni =, ,.= s this is nol true. Simijar reasoning holds for‘R2 and
R3. Of course R5 is minimax in the V¢ T...% v, tase since it is the same
s R._.
a R6

6. SCALE PARAMETERS

Résu]ts analogous to those of Section 4 may be obtained when 9~i$
a scale parameter. We assume X has c.d.f. F(x]/e],..;,xk/ek) and density
f(x]/e],...,xk/ek)/'g 6; with respect to Lebesque measure on (O,m)k,
8 €@= (O,w)k. In ;cale problems, it is natural to restrict attention
to scale invariant rﬁ]es, i.e., rules safisfying q(x],...,xk) =
q(CX],g..,CXk). Replacing translation by scale invariance,hlemmas ]iké

Lemmas 3.1 and 3.2 can be obtained with the differences (of both observations

and parameters) replaced by quotients, e.q., X] - Xi becomes x]/xi.
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\
Theorem 4.1 is applicable exactly as stated to obtain the following.

Define the rule

R7: select =, iff x, > ¢ - max X.
i i= 1<i
<J=k
where 0 < ¢ < 1 s the largest constant such that the P*—condition is
satisfied.
_ k
Theorem 6.1. Let X have density f(x]/e],...,xk/ek)/ I 0, with respect to
- i=1

Lebesque measure on (O,m)k. Suppose that the support of f is'(O,m)k and
f is symmetric. Then R7 is minimax with respect to M in the class of non-
randomized, just, and scale invariant rules which satisfy the P*-condition.
Furthermore R7 is the unique minimax rule in this class so R7 is admissible

in this class.

Analogous results can also bé obtained if the best population is the

one associated with the smallest parameter value. In this case the rules

Rg: select m; iff X; = min  x.+d
1<i<k

and

Rg: select n., iff x. < cC - min x.

are the minimax, admissible rules in the location and scale problems,

respectively.
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