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INTRODUCTION

The topic of nonparametric estimation of probability density

functions has been discussed by many authors. Various methods of

‘estimation have been suggested and their properties have been studied.

Some of the well known methods are kernel estimates, orthogonal series
estimates, spline est1mates, fourier-integral estimates, nearest-
neighbor estimates. Kernel estimates were studied in detail by
Parzen (1962)>and since then many properties of these estimates have
been derived. Spline estimates were fifst introduced by Boneva-
Kendall-Stefanov (BKS) (1971). Mean square convergence properties
were Studied'by Wahba (1975). She also showed that under appropriate
conditions kernel estimates, Kronmal-Tartar type orthogonal séries
estimate, spline estimates and ordinary histogram-type estimates,
all have the same MSE convergence rate.

A1l these estimates, except the.maximum Iike]ihood estimafe,
are ad-hoc type estimates. For the estimation of a dens1ty function.
given n- observat1ons, the 11ke11hood or its logarithm is re]evant

But a naive application of maximum 11ke11hood methods would make

‘the estimate, the mean of a set of Dirac functions at the n observations

and gives a value +» to the likelihood functional. Hence in any
class of functions which has the property that it is possible to
construct a sequence of functions which integrate to one, are non-

negative and converge point-wise to a Dirac-delta spike, the



Tikelihood will be unbounded and a maximum 1ikelihood estimate wi]]
not exist. However if the domain of the like]ihood functional is
restricted appropriately, a maximum likelihood estimate might exist.
For example, if we restrict the domain to the class of unimodal
densities with a fixed mode then the maximum Tikelihood estimate
exists. The properties of such éstimates were studies by Rao (1969)
énd Reiss (1973). The fact that in general the nonparametric
.maximum likelihood estimate does not exist implies fhat the un-
restricted domain must necessarily lead to unsmooth estimétes and

a numerically i11-posed problem. This leaves the pfactioners with
the following dilemma: for small restricted domain he has no flexi-
bility and the solution will greatly be influenced by the choice of
the dohain, while for thevunrestricted domain the solution must

: necessarf]y'approximate a linear combination of Dirac-delta spikes,
be unsmooth and create numerical problems.

For these reasons and others based on heuristic Bayesian
consideraffons, Good and Gaskin.(1971) suggested adding a penalty
term ﬁo the Tikelihood which would penalize unsmooth densities. They
suggested'twq specific penalty terms. They also suggeéted an
alternate approach for constructing the penalized maximum 1ike1fhood
estimaté which avoids nonnegativity conditions. But they do not |
show the‘equivalence of these two approaches nor do they show tﬁe
existence of the penalized maximum 1ikelihood estimafe;

Thesé problems are considered by Moﬁtricher,.Tapia and Thompson
(1975 a,b). Specifically they establish‘a general existence and

uniqueness theory for a large class of penalized maximum 1ikelihood



estimates. They show ihat a well known class of reproducing kernel
Hilbert space (Sobolev Space) leads quite naturally to the penalized
maximum tikeiihood estimate which are po]ynomial'sp]ines with knots
'atithe sample points. They show that in the case of Good's second
penalty function, the two approaches need not lead to the same
solution. | |

| In Chapter I we derive the solution independenf1y; We also dis-
cuss some of the properties‘of the estimator. It is shown that the
pemalizedimaximum Tikelihood estimate behaves somewhat 1ike a kernel
estimate with ddub]e exponential kernel. In the rest of Chapter I
we discuss the possibility of generalizing this approach to moré
general type of penalty functions and also to higher-dimensions.

In Chapter II we discuss the problem of Bayesian estimation of
density function. We show that under certain conditions it is |
possible to define posterior measure and posterior mean. It is
shown that under very mild condition on the prior the point-wise
and jntegrated Bayes risk of the Bayes estimator Qith squared error
loss tends to Zero as n > «,  As an example; we consider two
specific prior distributions for the purpose of Bayes estimation.

It is shown that one of them has the property that Bayes estimate is

Bayes risk consistent.



CHAPTER I

MAXIMUM PENALIZED LIKELIHOOD
ESTIMATION OF DENSITY FUNCTION

The non-existence of maximum 1ikelihood estimates in general in
the density estimation problem led Good and Gaskin (1971) to intro-
duce maximum pena11zed likelihood estimate. They suggested that
instead of maximizing the Tikelihood function directly one should
maximize a penalized 1ikelihood. This penalized 1ikelihood can be
obta1ned by adding an appropriate penalty term to the logarithm of the
'11ke]Jhood funct1on. Further research in this line was done by
Montricher, Tapia and Thompson (1975 a b) They derived some general
existence and uniqueness theorems. '

In section 1.1 we derive the estimate independently of Montricher,
Tap1a and Thompson by standard calculus of variations methods. We
also give a heuristic argument to show that in the case of Good and.
Gaskin's first penalty functlon MPLE can be looked as the posterlor
mode with respect to an improper prior. This interpretation also
.suggests that o, the coefficient of the penalty function, should not
be f1xed if we want an estlmator which remains smooth with increasing
samp]e size.

In section 1.2 we present an algorithm for theédﬁputathxnf the

estimate. We show also the convergence of the iterative procedure.



In sectidn 1.3 we discuss a Newton-type computational procedure for
simultaneous estimation of all the parameters involved. Although we
could not show the convergence of this procedure theoretically but in
all the numerical examples it gave convergence within 3 to 4
iterations. We have included a FORTRAN program for this algorithm
at the end. In section_1.4 we briefly discuss the possibility of

~a more génefa] penalty function involving only the first derivative.
In sectionllQS we discuss the possibility of geneba]izing to higher
dimensional cases. -In particular we give an example to show that in
the bivariate case penalty function involving only the square of the
first*pamtiéﬂ derivatives (the direct generalization of the Good-
Gaskin apﬁroach) will not be able to eliminate rough function and
hence again MPLE will not exist. We also give an example to show
that if the penalty function involves higher derivatives, the MPLE
need not be>unique. Finally in section 1.6 we give a discussion of the
consistency of the estimate which indicates that we have reason to
believe that the estimate is consistent, although we could not obtain

a n gorous proof.

1.1. Maximum Penalized Likelihood Estimation

Using Good's First Penalty Function

Let Xi; X2’ . Xn be iid random variab]és with common density f.

Theblogarithm of 1ikelihood is given by

. ' n .
L(fIX] ...'Xn) = if]'log f(X,i)



Let Q be the class of density functions defined over R. A penalty
function ¢: Q@ -+ R is a réa] valued functional defined over the
class of density fuhction. The functional y(+|a): f =+ (L(f)-a o(f))
~ is called the logarithm of penalized likelihood function.

Definition 1.1.1. Any measurable mapping fn: R" s 2, which

maximizes y(-|a) over Q is called a maximum penalized 1ikelihood

estimate (MPLE).

Let us consider the penalty function Af) = f; i dx ,

suggested by Good and Gaskin (1971 a). Then we have the following

maximization problem:

n
Maximize: Y(fla) = .21109 f(Xi) - a f).
subject to rff(x)dx = ]
(1.1.3) .~ ) f(x) >0 for all x
_ f(xi) >0 forall i =1, ... n.
¥(f) <=

Gobd suggested the substitution f = 92 and considered the following

modi fied maximization problem:

N n. o '
Maximize: p(gla) = 2 Z log |g|(X1) -4q f g‘2(x)dx

i=]

subject td :£ gz(x)dx =]
B *L? g (x)dx < |
(1.1.4) lgl(x;) > 0 forall i=1,2...n.

Now using a Lagrange mu]tip]iér the above maximization problem can



be expressed as:

Maximize: _ wp(gla) = 2 .zllog |g|(xi) -4y f g‘z(x)dx - pfgz(x)dx
| i= -

sﬁbjgct to - J g’z(x) < o

(1.1.5) ] gl(xy) >0 fori=1,2...n.

Since wp(g[a) does not depend on the order of the observations, without

loss of generality, we assume that

X] < X2 < 4o < Xn a.s.

Therefore for given g(X]), cess g(Xn), the function which maximizes

wp(gla)-must minimize

X1 2, . 2
(1.1.6) S [8a g7“(x) + p g“(x)]dx fori=0,1, ... n
: X. .
] .

wherg X°_= - and Xn+] = o,

Theorem 1.1.1. (a) The function which solves (1.1.4) has

the following form,

AX .
A, e if x <X
. - )\X ')\X [
'gp(xla) = (A, e +B.e if X <X <Xy
-AX | . \
B, e - if x 3_xn

4a

where A = / £ . Further gp(xla) can be expressed as



‘n -Y/P -
n e-2./:|x-xj|

j=1 ¥ ap 9, (X;lo)

9,(x[a) =

(b) The minimizing function gp(xla) is unique and has same sign

- for all x.
(in the sequel dependence of gp on a will be suppressed sometimes.)

Proof: Let Ii = [Xi s Xi+]]

and H.=(¢ n: 1. - R such that

i i
n(X;) = n(X, ;) =0
ra n“(t) exists forall te I

I n(x)dx <o

12
\and { n"(x)dx <«
&

Then consider the difference

I o (g7(x) + e n”(x)? + pla(x) + & n(x))2}dx

‘,{ {4a 9'2(X) + pgz(x)}dx

2 { {4a g7(x) n”(x) + pg(x) n(x)}dx
(a7 |
e S a 0 (x) + o (x) ).
i |

If there exists a function gb which extremizes

I/ [4a g'z(x) + pgz(x)]dx, then for this 9,
I.
i ,



(1.1.8) { [4a g7 (xIn"(x) + og (x)n(x)]dx = 0
i
for every n ¢ H

But . - tha g7 (xIn"(x) + pg_(x)n(x)}dx
K
= 4o g:n| =/ 4o g7(x) n(x)dx + 5 pg (x)n(x)dx
I P 1. P
X, i i
1
* { Dog,(0) - 4 g (Inlxex  Since n(t;) = n(X,;) = 0

1

Thus (1.1.8) implies

I {pg (x) -~ 4a g7°(x)} n(x)dx = 0
1. p P
] N
for every n ¢ Hi’

and hence pgp(x) - 4o gé’(x) =0 forall xe Lis
‘ 2 Pl . p p— ‘
(1.1.9) frqm which 95 (x) - I _gp(x) =0 for all x e I

The general solution of the differential equation in (1.1.9) is

AX -AX . xe Ii--

(11900 g (x) = A v B,

.- where A= /f%§: and Ass B, are constants to be determined
- to satisfy other side conditions. If pv< 0 then X is imaginary and
. the solution will be periodic. This implies éhat the integral of
gi over the'end intervals will be infinite and hence,gi can not be

a density function,



10

Hence p > 0. Therefore gp is unique since Ai and Bi are uniquely

.determined from the conditions

Axi -AX;
. gp(Xi) = Aje " +Be
(1.1.11)
. AX. X,
) = Aie i+1 + B.e 1+1

and gp(X ;

i+l

Now p > 0 implies the second term in (1.1.7) is positive and hence
gp(-la) actually minimizes (1.1.6). The expression for 9, in the end

intervals can be obtained by letting one end point tend to - = or

+ oo,

Now to get the final form of gp we have from (1.1.11) and

AX;

' _ i+
( 9,(Xi1) = Ajyq e *Biye
(1.1.12) J .
_ i+2
Polhirg) = Ayp e T+ B e T,

{
- X
A, = gp(Xi) e

) AAX.
i+] i
- gp(xi+]) € ] /Dy

: ' AX. AX.
T i i+
Bi = gp(xi+]) e - gp(xi) e /Di

oA, -lXi

‘ i
- ( = -e /D-
agp xi+]) !

BBi AX;

= e ]/D
agplxi+]) i

8Ai4)

TR I
agp Xi+1



9Bin * Xiv

59 X) © T iy

Now since f’(4a.gfp2(x) +p gi(x))zdx

1]
I t™M3

%{[ﬁﬂﬂ+f¥MMx

=0 i

and Ai’ Bi appear only in

£ (97, x) + 532 2x))ax

LuL,,

T 2xx, 22X,
=)"{Ai2[e e 1J_+B

22X, 22X, ~2XX,
Sy I Pt

1

Therefore differentiating

i=1

with respect to gp(Xi+]) and equating to zero we gef;

. | .l -2X ( 2% 2,y
G IR DTS SR P

! i+1}
+Bl.e - e )/D'i

- e

oo ‘ 2,y . 2.2
2 I log lgpl(xi) -4 [ {g o (x) + A%g“(x)}dx

N

DMK, -2MX,
2 '[; i, 1+1]

])
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AX, 2XX 2XX;
1+2. (e 2 THH ) /D.

+ Ai#] e
(1.1.13) Wi | 2, -2,
o+ Bi+1 e | e -e /Di+1 }
From (1.1.11) and (1.1.10) wefget
| L AX, | “AX.
o i+ : i1, - : _
(1.1.14) - e TRy A e (Biyy - By) = 0

Since the coefficients in the expression of g (xla) are unique it js
sufficient to exhibit one set of A's and B's which satisfies these
equations.

The form of 9, the relation (1.1.12) and A, = Bo = 0 suggest
that A's should be decreaS1ng and B s should be increasing. It turns

out that the following choice of A;s Bis i=1, ...n, satisfies all

requirements.
o M
Let Ai = + Ai+1
i

' o - e
_and. Bi = Bi+1 - v gp(Xi+]la)f
~ Substituting these in (1.1.13) it can be shown that right hand side
of (1.1.13) is equal to the left hénd_éide.
Therefore Qe can express gp(xla) as

n ‘e-AXj zi
Uxla) =
5,(x12) j}:m v

9, (X |a) &op 9 (X la)
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=‘ Zn -)Ix-le
j=1 &/ap g (X Ia)
o o %V/%;.|X'le
(1.1.15) - }:
| | 59 Yo g (X5la)

This completes the proof of part (a).

To show the part (b) we observe that

(1.1.16) / [4a g° 2(X) +p gZ(X)]dx
1 p P

2XX, 2XX, | ~2XX, -2XX;
=4C!7\{A3 (e ]+]-e 1)+B§ (e 1_Ae ‘l+]) }.

2AX1+]

Also Ai = gp(Xi+]) e + g (x ) e - 29p(xi)gp(xi+]).

“A(Xg + x1+1)]

e sinh”z(x AXi)

T . 22X, 22X
2 _ 2 i 2
and By = [gp(xm) e +g p(Xi) g

A(X; + X, +])]

™ - 2 ARERCRE

sinh'z(k BX;)

e -

This shows that (1.1.16) is m1n1m1zed 1f 9, (X ) and 9, (X ]) are of
same s1gn. Therefore gp(XI), p(Xn) will be of same sign. Now

from (1.1.15)' we conclude that 9 is of same sign for all x.

Remark: 1.1.1. This estimator was derived independently by

Moﬁtricher, Tapia and Thompson (1975 a,b), using the properties of

Repr_oducing Kernel Hilbert spaces.
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Remark 1.1.2." From (1.1.5) it follows that the maximum penalized

likelihood estimation of the density f is equivalent to maximizing

= -00

L ) n » e 2
wp(gla) = log [H g (Xi) exp {-4a f g~ (x)dx)]

- subject to N o
. _fbg‘ (x)dx <o

{ lgl(x;) > 0 i=1,2..n.
% 9

{and S g7(x)dx = 1

\ -y |

where f= 92.

Suppose we'take the sample paths of a stationary Gaussian Process,
name]y Ornstein-Uhlenbeck process, for the g functions then the
quantity |
00’2 wz
do S g7%(x)dx + p S g°(x)dx
behaves, formally, like the limit of a quadratic form in Gaussian
random variable. Hence
00‘2 ) 002_
exp | -d4a S g (x)dx -p S g (x) dx-|

can be looked at as an improper Gaussian prior. To show this we
- give a heuristic argument as follows.

Let {U(t) : t € R} be a stationary Gaussian Process with
covariance function I'(s,t) = o2 e'ﬁlt-sl. Consider a fixed

“interval [a,b]. Let
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P= {a.= tO < t] <ol < tN = b}

be a partition of the interval [a,b]. Let |[P|] = m?x lti+] -

denote the norm of the partition P. Then (U(to),‘U(t]), e Ut )) 7

N(0,Z) where 055 = o exp(-ﬁltj - til) and since U is markov,

57! is tridiagonal. Let o' denote the (i,j) th element of £”), then

([ —] if i=0

1-e"2P0t,
| -2pAt
LA L 2;;:] i=1, ... N-T
o 1-e™PRY 1e™P
g i=N
- _-2pAt
\ ]"e N
1 ij _ e el s
- 0Y= |o——— j= i+l
o2 . ) 1-e 2pAti
i=°’ . N-]
L o vl
and foji = g1
~where Aty = [ty - t5 4] i=1, .... N,

Now the quadratic form g‘z']g can be expressed as
: - N N e
urly=1; & TERTCH I
~ T o i=0 j=0 . :
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¢/
N ' N-1
1 1 2 2 2
=5 ¢ I ——— (US(t;) + U°(t; ,)) - = U=(t.)
o2 i=1 : -2pAti i i-1 i=1 i
: -e : ‘
. N PAty
e
I T V(UG ) 8
1-e
)
. N -'r')Ati
1 e 2
=51k ety (U(ty) - (s q))
O 1"] -l
-e
N-1 Aty + Aty,) |
+ T l-e Uz(t )
(1 +e )1 + e )
2 1 2 2
+ U (to) Y (U (to) +U (tN))
1+e 1

Now if [|P|| is sufficiently small then the above expression is

approximately equal to

: N (U(t;)-U(t,: ,)) N-1 _ |
e L Lt s B ety V()
)i 2 At i=1
(1.1.17)
3,2 1,2
L g U g V()
o v o 2
But ST (Ur(t))dt = X3
- t. - Aty
' i-1 -
' t | Nt
and APt = 1 A )
' ot i=1 t '

0 i-1



N V(e + v, )
2 r (a 5 =1y

i=1 !

At Aty

_0 2 N 2
7 V) v = U%(ty)

N-T At, + At
( 1

i+1
2 : )

it,)
i=1

‘Hence if I[Pll + 0  then (1.1.17) is

1

o (u(t))%dt + 2

2

-~
~

b
5 U2 (t)dt
LU

8o

L
02 [
4 S0P + 2R ]

Now ifwe let a - — and b + «w then the above quantity

approximates

8- 8

J? [ -;3 (U”(t))2dt + 5 / Ct)a]
o - : =

which is a quadratic form in the process {U(t) : t ¢ R}.

Therefore if infact g's were sample paths of the process U(+) then

exp {-4a s g’z(t)dt -0 f gz(t)dt } could be taken as an

17

improper Gaussian Prior. Unfortunately Uz(t) is not integrable. To

‘avoid this we define a new process {Ug(t) : t e R} as

Uy (t) = egp(- %’tz) u(t) , e >o0.
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Then using the same argument we can show that
(1) L L c}ge‘:tz(u (€2t + B 7 ety 2(t)dt
A 2| 2 1 F 1€ 1
approximateé’a quadratic form of the process {U (t) t € R}, Also
"EU (t) <o implies U (t) is integrable a.s. Hence the sample
paths of Uy (t) can be norma]1zed to form a density functlon
Now since p and 02 are at our cho1ce we can assume that U (t)
is normalized. Then [.4a f g’ (x)dx -p f g (x)d%]forma]]y is
2 -0

similar to (1.1.18) except the factor e et . This formal similarity

suggests that

exp { -4q f g‘z(x)dx -0 f g (x)dx }

~can be looked as an improper Gauésian prior. .One of the reasons for
it being imprbper is that it does not involve the factor eEt s Or
some other norma]izing factor. 1In fact, the problem is translation
invariant. ~Thus the MPLE can be looked at as the poster1or mode with
respect to th1s improper prior. '

For the process {U(t) : t € R} direct computation shows that

N | | ,
E z (U(t1+]) U(t))2 —>25  o?(b-a)
i= : .
N o |
and Var [ .z (U(t.+]) - U(t.))]—=o0 as N » o
i=1 ! !

(i.e.) as [|P|]] —>0

Therefore for a sufficiently small interval [a,b]
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2
eft . Uy ~(£))2dt

N

144

N - -
2 :
Const. z [Ult;,;) - U(t;)] /oty

113

cons. N —> o with [[P|]] — 0

This shows that if we consider

b o b5
do J g”"(x)dx + p £ g“(x)dx
a a

st2

over the interval [a,b] such that e can be considered as constant

over [a,b], then the above integral should behave 1like

2 b
et - 2 et
e~ (Uy7(t))dt + —Qz-f e
1 20" a

o

2

] 2
— U4 (t)dt
207 p L

o T

2
apart from a constant arising out of the factor el . Since for large

n one would expect the estimate to approximate the true density

]

00

closely, the information /S gaz(x)dx, where gn2 is MPLE, should
behave like -

2
et (U7 (t))%at.

b s

Therefore when the penalty function is looked as an improper prior

o

one would expeét s g;z(x)dx to tend to » withn.

=00
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1.2. Computational Procedure and Some

Properties of the Estimate

From the form of the estimate it is c]ear that it depends upon

p , which has to be determined in such a way that

_i gpz(x)dx = ]..

Also the estimate gp(x), has to satisfy the following relation at '

the sample points X] cen Xn'

.1/

€ . i=1, ....n.
14/ » gp(xj)

M3
i

9,(X;) = ;

‘The following theorem gives some idea about the computational aspect
of these quantities. In next section we will describe a Newton-type

iteration procedure for computation of p and gp(X]), cees gp(Xn).

Theorem 1.2.1. (a)' For fixed a, X], cees Xn and p > n/2 there

exists a unique set of solutions {gp(xila )s i =1, ... n} such that

1 /By
. n e- 2 /r;]xi le .
g (X;]o )= = . i=1,2, ...n.
e §=1 4 /ap g (Xs]a )

(b) For each fixed:a and gp(X]), cees gp(xn), there exists a
unique p(c, X1 ... Xn) such that
| 1 /By |2

_ ] dx = 1.
lw L j=1 4 /Eﬁlgp(xj) |




(c) Any p for which (a) and (b) both hold, has the following

property

i)

i)

=p+ 4o S g’z(x)dx a.s.

- P

NS S

< p <n. a.s.

Proof: Let us use the following notation for convenience.

61 = g.p(X.ila ) i=1 ceee

- . 1 /5 .
and k.. = - PIy.-x. -
. 1] 4/&3 EXp[ 2 QIX] XJl] | 1,J 1, 2, ... N.

The equations in (a) can be written as

: n K.,.
0;= I ¥  i=1,2, ... n.
Jj=1 7
= Hi(e]’ Bps e en) - (say).

In terms of this notation we want to show that given o, p, and

Xy «++ X, » hence kij’ there exists a unique solution 5},'5 s -« B

such that
| Hi(e s vee en) = 8 for i=1, n
: dH (04, .. 68.)
Let , Hi' =11 n i =1, oo n.
_ SN 36,

J
Now consider the following iteration procedure

9(V+]) - A(V) E(Q(V)) + (I_A(V))Q(V)

21
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where A(V) is a diagonal matrix with positive diagonal elements and
H= (H], H2, - Hn)
Let g(v+1) - 9(v+1) _ § o

(i.e. ) e(\’ﬂ) - 61(")“1'(9(")) . (1-a§"))e§") _5

51058 + Hy(0™) - @1 + (160l g

i

va)H](?) - 5$v)§i + G(v)[H(g(V)) _ H(g)]

+ (1- a("))(e(\’) o)

a(v) g(e . (v))_ﬂ_ (1 a(v))e(v)
- ( ) (v),
el L i

.eg\)-l-]) = (I - A(\)) + A(\))g(\)))

(v)

Thus e

where

F(\)) = K D'fv)DZ , K= ((ki’))

D%f) = Diag( E%(_) , _-T_T )
D'D1ag(]:;,1_—, _l_._)
2 6] ) 0

This implies e(v+]) = X (1 - A(m)'+ A(m)g(h)) f g(0)
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Hence the iteration will converge if
for all v

[EFRFNOE RIS

_aW) 4 09) )

—

Now

1 - a1 - )y

I - A(V)(IL+ K D%v)Dz) '

K.
Therefore if we choose 6(“1-2 (1 +Z}(—§L—) -1 for i =1, .... n, then

§o;°';
the maximum eigen value of A(V)(I + K D{v) DZ) can be made less than
one for all v. Hence the iteration will converge. Since for each p,
gp(xla) is unique, the above iteration will converge to the true
solution. | |
‘Rémark: 1.2.1. In all the.numerical examples 61 = %— i =‘1, 2,

. n always lead to convergence of the iteration pfocedure.-

To show part (b) we observe that



—
t

= gpz(xla)dx

, n n ’ N 1/0
exp[-—/f:%x.-x.l]
(1.2.1) -3 Z Z(1 +%/§|x1.-xj|_) U
i=1 j=1 4/ ap eie,j

This implies .
exp [-%/?glxi-xj ]

GiGj

n n
8apvp = 2 Z (1 +%/E|x.-x.|)
al 2745
i=1 j=1 '

Clearly the left hand side is increasing in v/p and it is easy to see
that right hand side is decreasing in /5. Hence there is unique p.

To show part (c) we observe that

-]

b / ggz(xla)dx

: n n l/fB :
1 exp[-3" =|X.-X.|]
(1.2.2) =52 = (1 -%p/glx,--le) A N
i=1 j=1 | Wip  0,8;
| It 2 = )2 9
Therefore - p f 9, (x|a)dx + 4o [ 9] (x]a)dx
1
_ ;: ; exp(-gv/glx,--le)
j=1 g=1 Mop 9385
=n

Also (1.2.1) implies p > n/2 ~ a.s.

Thus T §-<.p <n a.s.

24



This completes the proof of the theorem.

Remark: 1.2.2. The heuristic argument in'Remank 1.1.2 and the
relation (i) in Theorem 1.2.1 (c) nggest that one should choose o
depending on sample size n such that a(n) should tend to infinity

with n.

1.3; Newton-Type Computational Algorithm

In this section we present an algorithm for solving p, 077,

-l 9 soe
eal,simu]taneous]y for given o and X] - Xn. Since we are going to
treat %—-as the parameter we define Bi =-%— s 1 =1 ...n.

; , .
Let us define the functions
hi(B] cee Ba, p) = %—;- Z BJ k1 i=1 n
' | Jj=1
| I N I Y
and hn+](B] ces Bn’ p) = 7 * % ? § (1 + IX -X, |)3183k13

‘Notice that hn¥1(81 e Brs p) = 0 is equivalent to the condition
that s gpz(xla)dx =

Therefore in terms of this notation we can restate our problem as
follows:

‘For fixed o and Xi .o Xn, solve
h = 9. for p and B] .e. B

where g’ = (h], ce hn+1)'

25



'  ah(By .. B, D)
= - 1 ] n s s _
Let Anxn ((aij)) where a5~ g iJ=1...n.
J

ahi(B] cee Bps o)

‘(b]-.... bn) where bi =

to
»
n

9p
ahn+](61 cees Bos o)
. 3p

and ¢ =

ahn+](§]’ . an! p) - b
38, T

It is easy. to see that

Also denote by B the vector of parameters (B] “ee Bn’ p)( Let §0 be

any initial approximation of 8. Then'expanding b around 80 and
. . . A b
retaining only first order terms we get - - ~
0= h(p) = h(g) + | ,-:
(g-go) + ...

Hence an improvement over the initial approximation can be obtained

as
. (§-§o) == \p c b(ﬁo).
Tak | é-(])=s --{A E)-] h(g)
e ot "~ 9’ c ~=g’’

A
In general g(m+]) = §(m) + (b‘

~

-1 -
b
~ (
C) hig{™).

This procedure cbnverges very first. For sample of size 50 to 475
it only takes 3 to 4 iterations to give results correct up to 5
decimal places.

Next we will show that the Computation of

|

-1
) (™)

o

e

o p-J
(o]
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can essentially be reduced to solving a linear system with tri-diagonal
matrix. |

Observe that

(A-]+(e-§’A’]§)'1A"]EQ‘A'] -(c-b'A']b)"A"g),

= (c-b"A'p) Tbn”] (c-bA"Tp)"!

ahi(B]: seey an p)

Now consider ai. =

J
| B 13
S..
= - {—l% + k )
1
B
Therefore ' A = (Kt Déz)

where K = ((kij)) and DB = Diag(B] ... B.).
- /8%, x|
Also define p; = € 2 ol™-T
. o
and p; = 1. Then k,.= 1 p,.
L _ 13, _ £=iﬂl

Let A = Diag(1, 1-p22, 1-032, ceee 1=p
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and T= |1 0 0 0 0
0 1 -0g 0 0
0 1 P
0 0 1
— -

It is easy to show that

=8/ap T K]T’

-1 -1 -1

B

“14-1.-1,-1
Dg ) D; K

Therefore -A (k + Déz)'] =D (I + D

(1.3.2) Da(1 + &ap D T/\ 1r- D'])'1 '] (&ap) TA T

(1)

h -

Now if we write h =[:-- ], then from (1.3.1) it is clear that essentially
R

n+]
we need to compute A ]b and A” h(]) Because of the special form of
K'] we can compute K ]b K™ h(]) ea511y Since K'i is tri-diagonal so
_ -1 o
_,1s (I + DB K™ DB ).

Therefore for any vector Inx] (1 + Dé1K-1Dé])"]g, can be obtained
by ohe—stepﬁforWard and backward solution of the linear system with

tri-diagonal matrix.

Remark: 1.3.1 In all the examples we tried, no numerical

ihstabi]ity occurred.
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Remark 1.3.2. Eventhough the algorithm presénted in this section

gives convergence to a local maximum, in all the numerical examples,
we do not have a rigorous proof. Here we give a heuristic argument

which shows that asymptotically the matrix

[l\ E]
b ¢

is negative definite. This would imply the convergence of the iter-
ation proéedure, if the initial approximation is sufficiently close.

Since A is negative definite it is sufficient to show that
1

c - E’A' b <0.
R U azki. S
Let kij = -SEfL . kij = —;:;?l i, j=1, ... n

and g(-l) = (B] R B )’.
Then c - b°A
= -g7qy (2K - K (ke072)7 1 )
) Y2 B ~(1)
where K = ((kij)) and K = ((kij))
Therefore it is sufficient to show that

| Bf | ( L k(K+D'2)']k)B is positive.

~(1) * 2 B ~(1)

But this is true if §Z])(K - KK']K)Q(]) is positiye.
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The following heuristic argument shows that this is true asymptotically.

. . - A..
_ 1 ij
‘ K ap
2
3A, AL,
= 3 ij ij
and k.. = k. + )
. ij ij 402 80/ap ]_6ap
where = IXi -

Asj le

Let us denote the matr1x ((k A )) by (KA ). Let ¢ be any smooth
function. We will denote the vector (¢(Xi) , ..,.,¢(Xn))‘ by ¢. Then

the i-gﬁ_e1ement of (KA2)¢ can be expressed as

((KAgjé)i = exp[ %'/{glx'xilj |x-X{|£¢(x)an(x)

- == 4/ap

'Sincé for large n,anapproximates F closely (heuristically), the above

expression behaves approximately as

o(X;)F(X,) 7 lul® expl- —/—I 1 du

'¢(x1.)f(x1.) 2 21 2% af

4/ ap

(13.3) = Gx)F(X,)

Therefore putting 2 = 0, lland 2 we get

Ko & —— (¢+f)
Y 2/ap
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(mwgg(wﬂvmd

(ka2)g ¢ 4070 (4.¢)
D

where  (6+F)" = ($(X)F(Xq)s wuvnny 0(X)F(X))

Using these approximations and the relation
.. ._ -2
k(1) = B By

‘ .-y > =1 0 x 1 os v -
we get By (K - KK KIg(q) ™ 7 8(1)k8(y) > 0.



1.4. A Discussion on the Extension to a

More General Penalty Function. -

We have seen that in the case of Good's first penalty function

the estimate is a spline function with double exponential splines
ahd knots at the every sample point. The nature of this double
exponential function makes the estimate some what unémooth. In this
.se;tion we investigate the possibility of getting'a smooth estimate.
The answer seems to be in negative.
Let Q be a positive definite kernel function. As usual we

assume f = gz. Define the penalty function as

¢b(g) = 4o [ f Q(t-u) g°(t) g’(u) dtdu.

-=0000

Then the logarithm of the penalized 1ikelihood is given by

n
L(g) =2 X log g(X;) - ¢(g)
i=] . | Q

we want to maximize'Lp(g)= L(g) -p f gz(x)dx

subject to: lel(x) >0 for all x

lgl(x;) >0 fori=1,2...n
(1.4.1) ’and determine p such that s gpz(x) dx = 1.

The following theorem states the solution of the above maximization

problem.

‘Theorem: 1.4.1. Let 9, be the function which maximizes Lp(g),

without nonnegativity condition, then gp(x) has the following form:

32



] ('5 i ri(x)
g(x)= ¢
P i=1 g (X;)
where ri(x) = ro(x—xi)

- and ro(s), the Fourier transform of r,s is given by

1
P -4 s q(s)

rols) =

A

and Q(s) is_the fourier transform ofq .

Proof: _The proof is similar to the proof of Proposition 3.5

Montricher, Tapia and Thompson (1975 b).

Remark: 1.4.1. If o is nonnegative then both approaches of

Good give the same solution.

Remark 1.4.2. If Q(s) has the property that

is) —>= as g —>to

then it might be possible to get a o which is smoother than double
éxpohentia]. But the above condition would require g to have higher

derivatives.

. 1.5. A Discussion on an Extension

to Bivariate Case

33

Let (X,Y) be a random vector with two components. Let f be the

2

density 6f (X,Y). We again substitute f = g°. We will show that in

the bivariate case Good's alternate approach, ignoring the
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nonnegativity condition of g, may not lead to the same solution.
" Consider the following penalty function in the case of bivariate
density function. _ _ '
| (.2 2 2 2 2 2
¢(g)=4a'ff [—9-(—11)-8 g ] + [a ;’] +2[3 X J dxdy.
' _ 3 X ay aX*dy
This penalty function is similar to the one suggested by Good and
- Gaskin [1972] in the multivariate case. Therefore if (X],Y]), e

(xn,vn) be a sample of size n with common density f = gz, then the

logarithm of penalized 1ikelihood function can be expressed as
. ) ,
L(g) = 2z Tog g(X; Yi) - o(g).
i=1

We want to find g such that L(g) is maximized subject to the

restriction

o 2 )

S 97 (x,y)dxdy =1

lal(x,y) > 0 for all (x,y) ¢ RZ

IgI(xi’Yi) >0 , 1= Ty eeee N
Let 4>p(g) = ¥g) +p s gz(x;y)dxdy
and L,(9) = L(g) - o / g*(x.y)dxay.

Therefbre the above maximization problem is equivalent to the following;-
Maximize Lp(g)'

subject to lal(x,y) >0
lgl(X;s¥5) >0

fl
-
>
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. and choose p such that / gpz(x,y)dxdy =1

Proceeding exactly as before we get the following result:

Theorem 1.5.1. Let 9 be the unique function'Which maximizes

L,(9) subject to
o 2' ' )
- S 9.7 (xy)dxdy =1
Then gp(x)'can be expressed as_follows

: n r (x,y)
gp(X.y) = I —
i=1 gp(xisyi)

where Fb(t,s) » the fourier transform of T is_given by

- 1
(?+4a (t2+52)2

r (t,s)

Proof of this Theorem is similar to the proof of Proposition 3.5

of Montricher, Tapia and Thompson (1975 b).

" Theorem 1.5.2. ro(x,y) cannot be nonnegative always.

Proof: Suppose ro(x,y) >0 for all (x,y) ¢ R®. Then

-00

S x2 ro(x,y)dxdy > 0. But

N

L x7 v (x,y)dxdy

This completes the proof.
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Next we construct an example to show that in higher dimension,
penalty function involving only partial derivatives of first order
only will not be sufficient for removihg the‘rough densities. Consider
only the bivariate case. Wevwiii construct a function g(x,y) for
wﬁich o |

I J gz(x,y)dxdy < oo

=00 =00

and hence can be normalized to make a density,

' : o % \2 27 '
A]so ff [(Q_Qé%ﬂ) + (8—95(;(7’11) ]dxdy <

but the 1ikelihood will be unbounded.

Let g(x,y) be spherically symmetric around the origin. Let

X =71 cos
y=rsino
Then I J gz(XaY)dXdy

=21 [ r he(r) dr.
Ir

Since by assumption g(x,y) is spherically symmetric g(r,6) is a

function of r only. We denote this function by h{r).

o

~ Similarly | jf.i: [(agélelJ ? + (29§§AX1 ) 2] dxdy

=21 [r h’z(r) dr.
0



Now define

[ A (109(%))“ | if ree™m
hk(r) = ¢
‘ o -mk
th-m—i_‘— if l">e"m

| where 0 < a < 1/2, m, a, k, A are Constants.

Then
¢ 1yvvo-1 1 . -m
-Aa (109(;)) 7 - if r<e
hE(P) = ¢
o _-2mk _
| -k A E+]e if r>e™m
e
Also fr hi(r)dr = A2 f e~y 20‘dy' ,
: o
r rhi(r)dr = A2 p2%k-1)
-m
e
oM
rorndirde = o A2 0P (20-1)
o
and | 5 or hiz(r)dr = kAl mza/Z
. . -m o

e
' o ' 2 2a m
2 _ A" m 2 -2y 20
Therefore £ r hk (r)dr = 2(R-TT + A é e Jy™ dy



38

. . ’2 _ A_ . 2a . az

Therefore if we take

i |
¢+ hy(11Z- (XY 1)

g, (2)
ke i=1

This function gk;wil1 have all the properties we need.

Remark 1.5.1. (a) The nonnegativity condition cannot be

ignored in thé case of multivariate penalty function suggeéted by
Good and Gaskin (1972). Théir alternate approach may not lead to the
same solution. |

(b)‘-Even if ro(x,y) is positive for all (x,y) ¢ R® the exact
form of ro.wi11 not be any easier to determine. The penalty function

approach seems necessarily complicated.

1.6. A Discussion on Consistency

In the density estimation probliem uSua11y the consistency,
asymptotic bias dnd asymptotic distributions are studied. In their
'paper Good and Gaskin (1972) gave a "proof" of the consistency.
Their proof cannot be considefed as a rigorous proof. In fact they
- stated "we shall giveAa'physicist's proof' of the following théorem.
A rigorous>proof might require a further constraint on the ajlowable

density functions." They tried to show that

o

b
o fn(x)dx '—Bar I fo(x)dx for any a <b
a

[+1}



f is the MPLE and fo is the true density. Their'érguments are
based on intuifive grounds.. Our attempt in this direction to prove
consistency has not been very successful. The global nature.of the
estimate makes it very complicated for mathematical calculations.
Even though we have not been able td prove the consistency in a
rigorous manner we present some results which indicate what ought
to hold. |

Let XpseeesXy be iid random variables with common density f.

Suppose f(x) = gz(x) and g(x) satisfies the following properties.

(a) g(x) >0 for all x € R

M |x-y|‘S for some 6 > 0 and M > 0.

A

(b) [g(x) - g(y)]

X=X
Let Sy(x) =G = |4 <k logn},

x=-X.
Sp(x) = G : |2 >K Toga} ,
X'X- ]

n - _J -
fx)=z el ml , hm) =0 D) ,
n j=1 ~2nh
n %%/zﬁx-x.l
v e o J
and gp(xla) = X )
j=1 &/ op gp(lea
This shows gpz(xla) >

ap

39
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1, |
7 %%

Now - Q,(x) = = €
: ' jsSz(x) &/ ap gp(lea)

1

< n -k

- n 2(op)¥
&/ ap

+ o 10k ol
~0(nT) “since p = 0(n 2)

—> 0 ifk>3/4

' | - l/ E-lx-X.|
Also Pn(x) = ¥ [%/ —lx X. I]

| Bx-X; |
P 2 o
2 3 [}T" alx-XJ.l] e

jeSz(x)

1A
N
=3
3
N
—
[*]
©
~
-hl

L]
o
-

=

Before proceeding further we state a theofem, due Rubin (1977), which

will be useful in the following discussion.

Theorem 1.6.1. Let X] . X2 s seus X be iid random variables

with bounded dens1tv f. Ihen for bounded kgrngls K Qf_hgundgd

var1at1on, : (f (x) - Ef (x))2 _where




4]

f';](x) "=_£ K(ﬁm—) an(x~z)/h(n), converges to zero uniformly a.s.

_1'_f_h(n)-_—->0 and nh(n) —>«

- In particular the above result is true if
-1 .-17]
K-l (Z) = 2‘&
and | K,(2) = _;_ 1z| el

This shows that if we replace gp(xl’a-) by a smooth uniformly strongly

consistent estimator ﬁn(x)

1,p
7 ol X%

then 3
jesq (x) ¥oe 95(X;la)

e
?/alx-le

v 1 e
and > [2-/ glx-x.|]
jCS](X) 4/ ap gp(lea),

should approximately behave like

1,p
o 7 ol *¥l
(1.6.1) ' > B ——
j€s-| (X) 4“/(19 gn(xj)

LTI
f/alxle

gn(x) jeS](x) &/ ap



and

o 1, p
(1.6.2) 3 [% /g"-lx-le] = ~a
o 4/ ap gn(Xj)

respectively.

Then the theorem 1.6.1 would imply that quantities in (1.6.1) and

(1.6.2) should converge to g(x). This would imply that the
equations forvsolving p and gp(Xlla) . gp(ana) should hold
simultaneously.

These and other numerical results suggest that the foTlowing

conjecture should hold.

Conjecture:
(a) WP lg (x) - 3 & ' —>0 a.s.
P &7ap g (X.)
P
| | ¥ LIx, -X;]
®) g Zz 0+ /T

ij 4/7>9(X)9(X)
4—-%» 1. a.s.

Remark 1.6.1. Since the numerical ev1dences and other

‘arguments presented in this chapter suggest that g (xla) behaves

essentially Tike a kernel estimate with double exponential kernel

42
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we should choose h(a,p) = g'~/g-a‘s the obtima1 choice of h(n) in kernel
estimate. This wou]d'imp]ypthat o should be like a fractional power
of n. This agrees with the remark 1.2.2. |

We used Newton-type iteration procedure to compute the estimate.
We mentioned that it gives results correct up to 5 decimal places
in 3 to 4 iterations. Observations were taken from standard norm&]
~distribution. In Table 1.1 we present values of p and p/n, where p
is chosen such that ? gpz(x)dx = 1. For each sambie size n and «
we took 10‘different-:amp1es and the value of p in the table is
actually the average of these 10 estimates of p. Table 1.1 shows
that the ratio E(p/n) should converge to 1 as n + . Expectation
is taken with respect to Xps oee X )

In Table 1.2 we present the information computed from the
estimated density. This numerical evidence support§ our heuristic
| argument of remark 1.1.2, that the sample information tends to
infinity with n for fixed a. We also present a few graphs which
| show that MPLE essentially behaves like kernel estimate with
doub]e-exponéntia] kernel. Last two graphs correspond to estimate
derived by Montricher, Tapia and Thompson using Good and Gaskin's

second penalty function:

8(g) = 4o s g2(x) + 8 S g"Z(x)dx

where f = g?.

The smoothness of these estimates is due to the assumption of existence

of second derivative. It was pointed out by Montricher, Tapia and
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~Thompson (1975 b) that maximizing g may not be of - me sign always
and hence Good's method of substitution f = 92 may not a]ways\]ead
to the correct solution. For samples from standard normal population
in all the examples we always got positive values of g. This suggest
that maximizing f and maximizing g, may not be very much different,

~at least in large samples.
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00000000 O0On

o

230

198

A3
(41

333

334

Program for Computing the MPLE

SUBROUTINE OENSGD(N,ALFA;X,INDPR,EPSléEPSZoSX,ESTSX,

1 NITID,G,ALDA,SINFOR) :
ESTIMATIOM BY GOOD2S FIRST PENALTY FUNCTION,
*€% N= SAMPLE SIZE ' o
¥#* ALFA= COEFF. OF PENALTY FUNCTION
¢*+%* X= ORDERFED SAMPLE VECTOR

54

-~

*4% INOPR= 1 IF SAMPLE INFORMATION(SINFOR) IS TO BE PRINTED.

= 0 OTHERWISE ‘
¥¥* EPS1= ERRCR J0UND FQR DENSITY ESTIMATES
4% EPS2= ERROR BOUND FOR RHO ESTIMATF
*¥* 6= QUTPUT VECTOR OF SQUARE ROOT OF ESTIMATES
*¥* ALDA= ESTIMATE OF LAGRANGE MULTIPLIER (RHC)

¥*4 SINFOR= INFORMATION COMPUTEN FROM THE ESTIMATED DENSITY

®¥® SX= VALUE AT  WHICH DENSITY IS TO BE COMPUTED
¥ ESTSX= VALUE OF THE ESTIMATED DEMSITY
DIMENSION X(N),G(N),AF(N),CPN(N),GG(N),Gi(N),Y(N),
1 XDIF(N)'EDIF(N),HL(N),RL(N),HLS(N’,RLS(N),QHC(N),
2 REND S (N) 4T (N) :
AN=N
ALODA=AN-5,
Ni=N-1 .
D0 238 I=1,N1
XOIFCXI=X(I+1)=-X(I)
IND=-1
NOITN=0
P=1./(4.*SART(ALDA*ALFA))
0=-SQRT (ALDA/ALFA) /2,
¥$¥*¥¥CALCULATE THE RHO-VECTOR
D0 .77 1=2,N
==-Q*XDIF(I-1)
ON=D+*p
IF( D «GT. ALOG(2.)) GO TO 83
APQ=.5'D+DD/(12.+DD/(5.+DD/(2%.*Oﬂ/(9.+00/(k4.+00/
1(13.4D0/60.1)))))
RHO(IN=1.-0/7(1.4APQ)
GO 10 77 '
RHN(IY= EXP(-D)
CONTINUE
D0 333 I=1,4N1
EDIF(I)=EXPIQ*XDIF (1))
IF(C IKD GTe. Q) GO TO 99
GENERATE THE INITIAL VALUES

~HL(1)=0.

D0 334 I=14N1

NI=N-1]
HLITI#1)= (1o ¢HL(I))*ENIF(T)
RUINEI=(1#RLINI+1))%EDIF(NI)



335

99

330

340

339

338

65

66

67

00 335 I=1,N

G(I)=SQRT(P* (L. +HL (I)4+RL(T}})

GGUIN=1./G(D)
COMPUTE THE IMPROVED VALUES
CONTINUE
HL(1)=0,
RL(NI=0.,
00 336 I=1,N1
NI=N=~T

I1=1+1
HL(I+1)=(GG(I) +HL(I))*EDIF (I)
RLINI)=(GG(NI+1) 4RL(NT+1))*EDIF (NI)

00 340 I=1,N

AF(I)=P*(GG(I) +HL(T)+RL(T))
CRN(I)=AF(I)=G(I)

COMPUTE G1=SUM((1~0%ABS(X(I)=X(J)))*K(I,J)%GG(J))
HLS(1)=0.

RLSINI =0,
DO 339 I=1,N1

NI=N-T

I1=1+1 .
HLS(I1)=XDIF(I)*HL(T1) +HLS( I)*EDIF(I)
RLS(NI)=EDIF (NI)*RLS (NI +1) +XDIF(NT)*RL (NT)
00 338 I=1,N
CLUI)=(GGUI)4+HL(I) +RL(I) =Q* (KL S(T) +RLS(T)))*P
COMPUTE CRN(N+1)
CRN(N+1) =0,

DO 65 I=1,N
CRN(N41)=CRN(N+1) +G1 (I)*GG ()
CRN(N+11=.5-CRN(N+1)/ (4. *ALDA) _
COMPUTE GL(N¢1)=LAST ELE. OF THE DERIVATIVE MATRIX
HL(1)=0, ,
RLIN) =0,
HLS(1)=0.,
RLS(N)=0.

00 66 I=1,Ni

NI=N-I
HLOI+1) = (GGCI)* X (T)4HL(T) ) *EQTF(T)

HLS{I+1 )= (GS(I)*X (D) *X(I) +HLS(T) ) *EDIF(T)
RLINI)=(GG(NI+1)*X(NI+1) +RL(NI+1) ) *ENTF (NI)

RLS(NI)=(GG(NI+1)*X(NI*l)‘X(NI#I)+RLS(NI*1))*EDIF(NI)
APQ=0. R :
G1(N¢t1) =0,

00 67 I=1,N
GLIN+1)=G1(N+1)+66(I)*G1(T)
APQ=APQ*GG(I)*(X(I)‘X(I)‘AF(I)+P'(GG(I)*X(I)*X(I)+
1HLS(I)%RLS(I))-2.*X(I)*P‘(GG(I)‘X(I)*HL(I)+RL(I)))
Gl(N+1)=3.*Gl(Nfl)/(5.'ALDA‘ALOA)+A°Q/(32.*ALFA*ALDA)
HETEXCOMPUTE HL, RL :
$¥¥EX HL GONTAINS THE DIAGONAL TERMS
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68

70

71

72

79

80

74
81

69

Bl

88

¥EE¥+ RL CONTAINS THF OFFDIAGONAL TERMS
HLI1)= P+G(1)*G(1)

R(1)=G11(1)
00 68 I=2,N

HL(I)=pP UL *GIT) «RHC(TI*HO(TI)* (G

RL{I-1)=-RHO(I)*G(I~1)*G(i-1)

RIII=61(I)=RHO(I)

‘00 69 INT=1,2
00 70 I=1,N
S(I)=HL(I)
T(I)=RL(T)

00 71 1=2,N

S =S(I)=T(I-1)*T(I-1)/S(I~1)
RIIV=R(I)=T(I-1)*R(I-1)/S(I~1)

*G1(1-1)

TUI=-4)=T(I-1)/S(I-1)

R(I-1)=R(I-1)/S(I-

RIN)=R(NI/S(N).
00 72 I=1,N1
NI=N-I

1)

RINI)=R(NIV=T(NI)*R(NI+1)

IFCINT .GT. 1) GO
DO 79 I=1,N1

o 76

Y{I})=R(I)~-RHO(I+1)*R(I+1)

Y{N)=R(N)
R(1)=CRN(1)

00 B0 I=2,N
ROIV=CRN(I)-RHO(I)
GO 70 69

00 81 I=1,N1

*CRAN(I-1)

AF(I)=R(IV-RHO(I+1)*¥R(I+1)

AFINY=REN)
CONTINUE

SA3=0.

D=0.

DO 84 I=1,4N
SA3=SA3+GL(I)*Y ()
D=D+CRN(I)*Y(TI)

SA3=1./(61(N+1)-SA3/(Q.*ALDA‘QLDA))

SAL=SAI* (CRN(N+1)#D/ (2 . ¥ALOA) )

(T-1)*G(I-1)-pP )

APO=SA3’(CRN(N+1)+D/(2.*ALDA))/(2.'QLOA)

DO 88 I=1,4N

CRN(I)=AF (I)+APC*Y (1)
GG (I)=GG(I)~-CRA(T)

G(I)=1./GG(I)
CRN(I)=ABS(CRN(I))
ALDA=ALDA~-SA4
CRNIN+1)=A3S(SA4)

NOW PROGEED TO DO THE TESTING

60 17 I=1,N
IF(CRHUCII-EPSTL

Y174,1 7,29

56



17 CONTINUE
IF( CRN(N+1)

23 CONTINUE
IND=1
NOITN=NOITN+1
GO TO 198

87 CONTINUE
SINFOR=(AN-AL
ESTSX=0.
D0 668 I=1,N

668 ESTSX=ESTSX+E

-EPS?2 187,87, 29

D8)/ALFA

XP(Q*ABS(SX=X(I)))

ESTSX=P*P*ESTSX*ESTSX

IF{INDPR LEN,

0) Go 10 777

HRITE(6,73) SINFOR

73 FORMAT (10X,
1 LE17.10)
777 IF(NITID .EQ.
WRITE(H,775)

SBHINTEGRAL OF SQUAREOF 1ST NERIVATIVE

0) GO TO 735
NOITN

775 FORMAT(10X418HNO. OF ITERATICN= y12)

735 STOP
END
RETURN
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CHAPTER 11

BAYESIAN ESTIMATION OF PROBABILITY

DENSITY FUNCTIONS

In this chapter we discuss the Bayesian aspect of estimation of
probability density functions. Even though the 1iterafure on density
estimation is large, the literature on Bayesian estimation of density
function is relatively small. The reason is the lack of a suitable
prior over the space of density functions. There have been attempts
to define priors over the space of probability measures but they have
not yielded any workable priors for the purpose of density esifmation.
Dubintand Freedman (1963) have defined random distribution functions
which are singular with probability one. Kraft (1964) has defined a
class of distribution function processes which have derivatives, but
not cont1nuous derivatives and hence these are not quite suitable for
density est1mat1on. The only really convenient prior is Dirichlet
process prior due to Ferguson (1973), but unfortunately this prior
~concentrates all its mass over the discrete distributions.

In section 2.1 we discuss the existence of posterior distri-
butions and conditional expectations for arbitrary priors over the
spacé of continuous density functions._ In section 2.2 we discuss the
Bayes estimate with respect to squared error loss. We show that the
Bayes procedure is Bayes risk consistent. In section 2.3 we discuss

the construction of a prior for a particular Gaussian process. Using
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the result of section 2.2 we show that posterior mean is Bayes risk
consistent with respect to squared error loss function. In section
2.4 the pqssibi1ity of constructing a prior through a given
absolutely continuous distribution function is discussed. This avoids
the normalization of sample paths as is done in section 2.3. But.
thése again dq.not give any easy method for compdting Bayes estimate.
In section 2.5 we giVe an example to show that the normalization
adopted in 2.3 can not always be ignored, i.e., post normalization of

sample paths may lead to undesirable estimates.

2.1. . Computation of Posterior Measure

and Posterior Expectation

Let @ be the class of all continuous probability density function
over the real line. Let F be a o-field of subsets of Q such that the
random variable f:f(x), defined over Q, is F-measurable for all u <v
and let u be a‘probabi1ity measure defined over F. Let I be the |
class of all intervals with rational end points. Let X], xz,....xn
be iid random variables with common density feQ. Let P; denoté the
product probability measure defined over B(R") induced by f. We see
that P;(B), Be B(R") is u-measurable on F. Then the product measure
theorem implies that there exists a unique measure on the product
space (axR" FxB(R")) which give rise to u and P; respectively. Let

us dénote this measure on FxB(R") byQ.. Now for any interva1 Iel

B }and feQ define.

¥ : o —>[0)]
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by - I*(f) = [ f(x)dx.
» o I
Then {I : IcI} U {X], - Xn} defines a countable family of random
variables. Now let'{ek} ¥ 0 be a sequence of real numbers. For each

€

fixed €, and fixed i choose a;) and Mik such that “(Aik) <k where
_ : i
2

M. .
ik
( Either'Jr f(x)dx <1 - %— or [f(x)-f(y)| > %- for some
Mik |

X,y such that |x-y| < ;. and [x]|,]y| < M.

we may assume that Mik is non-decreasing and A is non-increasing

in 1 and k. Now define

M, ) ,
ik :

9 = J f:J(M.k f(x)dx > 1 - %— and lf(x)-f(y)l <
i

—l.l ——t

whenever [x-y| < ass Ix|L ]yl < M. for all i

Then clearly u(Q,) > 1 - ¢,, @ are increasing and 9 = Ug, U Q
where u(Q,) = 0.
Let € =o -9, ,k=12, ...,

- if feCk

Define v, () = {-]
0 otherwise.

Then by Theorem A, Loeve (1963) pp. 361, there exists version of con-
ditional distribution of'{I;, I;, ...... 3 Vs Vo sl } given the

o-field generated by X] ceee Xn.
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Now for each fixed teR and f ¢ UQk we have

k=1
1h(f
f(t) = lim —L(—)
J 2.(Ij)

where 2(+) is the Lebesque measure and {Ij} + {t}, Ij el,
12102, ..
Therefore the conditional distribution defined above determines a

conditional joint distribution of {f(t), teR} a.e. P, given the

X
o-field generated by X] <o X_, where Px is the marginal distribution

n
of (X] cee Xn).

Lemma 2.1.1. Let u be the prior measure discussed above. Then

(a) Hf(x ) u(df) <= a.e. P
Q i=1 _

and : (b) Jf f(t) H f(X ) u(df) <= a.e. Py

Proof. Follows from Fubini's Theorem.
Let CxB be any
1measurab1e rectangle in FxB(R"). Let ICXB denote the indicator of
‘CxB. Then by Fubini's theorem (Ash, 1972) [ .n ICXB(f’X) Q(df; dx)

&R
exists, where Q is the product measure defined earlier. Also

Jrotfs %) aaf, @)
Q2

=f [[3 £(X;) dxi] 1 (df)
i1

c



Since we have already shown the existence of a conditional measure

a.e. PX’ the above integral can be written as

| ﬁux(c) dp,, =j|; "X(C)[fgi ]

Therefore uX(C) can be expressed as

[ 1)) wtan)
c

¢) - e. P,
O e N
o

n
T dX,
i=1 1

[ == =]

£(x;) u(df)]

provided the denominator is strictly positive. This holds for any
measurable subset C of Q.

Therefore _
MF(X;) u(df)

f) = .e. P
() [ me0x;) uter) T
Q :

Also for any fixed teR, define the posterior mean

n
ff(t)_II F(X.) n(df)

i=1
Q

JRECERTY
Q

n =
3 {f(t)ig]f(xi)]
n
E £(X,
x[igl ) ]

(t) = E(f(t) |X) =

a.e, Px.



Lemma 2.1.2. (a) (t) > 0 for all teR, (b) S F(t) dt = 1

a.e. Py, (c) Assume that for any fixed toeR _é_ng_ Xps Xos oon Xos

there exists a neighborhood Ny of t, such that -

then f is continuous at to.

Proof: (a) is clear,

(b) follows from Fubini's theorem.

f[ f(t) Ir; f(Xi) u(df) dt
R 0 i=1

f f f(t) dt I'} f(Xi) u(df).
Q R 1=1

f 1 £(X;) u(df)
R

Hence / f(t) dt =1 a.e. Px; (c) for fixed € and Xps veee X
R _

choose €y such that &y

[ L) uief)
MRS |

< ¢/t

. 0 |
sup f(t) .
By assumption f (teNo ) izlf(xi) u(df) <
Q

63
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Therefore for given Eys there is 6(ex) such that for any B C Q with
u(B) < 8(ey),

,/; (ts:lejlﬁof(t)) 1.T=[]f'('X1-)' u(df) < (ey/2).

After choosing G(ex), choose i such that

G(EX)

“(Ai) <'7;T—' where

(. | M. )

i
Either./' f(x)dx <1 - %- or lf(x)-f(y)] > %

=M.
Ai = J f: 1 f
| for some x, y such that [x|,|y] < My and
\ |x-y| < a; ;
Let | Q = N (-a,)
6(€X) i=1 1
' : n
Clearly Jf f(t) iE]f(xi) u(df)
: Q
8(ey)
n
< o (ER T - r0g) ueen
) t Ko =1
~Q
G(EX)
< gy for all t ¢ Ng-

Also from the definition of 96(5 ) it is clear that this set is a
X ‘

set of equicontinuous functions. Choose io such that %- < %u Then
: 0
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-+ - £
It to, < aio => |f(t) f(to)| <3 for all fe QG(e

n
[ Iee-fie)) T FXp) ulr)
i=

Qé(ex)

| n
<5/ RACHRICY

QG(EX)

N
<3 f L) ulaf)
Q

Hence the existence of the neighborhood N0 of t0 with stated property

implies

n . n o
[ e 1 e, wian) - [ ey mix wien|
0 i=] Q i=1 ,

<e

[ I F(X,) u(df) | .
q 1= |

for all t s-:(t()-ai0 » t+ aio)f)No.

This proves the continuity of f(t).

Remark: 2.1.1. The condition

. ) n i
f (igﬁof(t)) iglf(xi) H(df) <o .

Q

is much weaker than the condition
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/ (Sﬁpf‘” )m u(df) <o

Q

C

for all m which has been used by Montricher, Tapia and Thompson

(1975 a).

2.2, Bayes Estimate and It's Properties

» In this section we consider the squared error loss function.
Then the pointwise and integrated risk of assuming ¢, as an estimate

of f is given by

T 2 " '
R(o,.f) (t) = j; , (G E)-FED° T £(xp)ax,

and R(6,:7) = [ R(s,.0) (t)at
R

Then the corresponding Bayes risks are given
by r,[8,1(t) = ng(cpn,f)(t) u(df)

and | . : l‘u[d)n] = .[;R(‘bn’f) u(df)

Theorem 2.2.1. Either pointwise or globally, the estimator that

minimizes Bayes risk is the posterior mean, i.e.,
inf - 2
o v Lol (8) = v [F1(t)
and ~inf p-
. = f].
| o ru[¢] ru[.]

where f is the posterior mean.
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Next theorem shows that under certain regularity conditions on

the prior measure the posterior mean is Bayes risk consistent.

Theorem 2.2.2. Let (Q, F, u) be the measure space defined

earlier. Let ru[?](t) and ru[?'] be Bayes risk and integrated Bayes

risk of f respectively. Then

(a) ru[;é](t)——ar 0 if there exists a neighborhood N(t) of t |

' 2

f

such that f(ﬁgﬁ(tgu)) u(df) <o
Q

(b) ru[?J-> 0 if f(ffz(t)dt) u(df) <o
_ AR

Proof: Let K(+) be a continuous real valued function satisfying
the following conditions
1) S Ky)dy =1
i) 1 K(y)dy <=,
iii) K(y) =0 if y ¢ [a,b] for some a,b.

Define the kernel estimate

1 s
'fn(x)=nhln5 zZ K h{n)

i=1

where h(n) —= 0 and nh(n) —> = as Nn—> o We ’wﬂl show that -

"u[fn](t) and r‘u[fn] tend to zero as n—s o,

Now R(f ,f)(t) = ELF, (£)-(t)]?

1 ‘ t- 2
s )] foe]
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~ Also m—;—)— Var [K (;—%;—ﬂ < % sz (ﬁﬁ)—) f(y)dy
. b '

f Kz(z) f(t-hz)dz

a

l(2.2.'1)' < (3:558;) fKZ(z)dz where N, (t) = (t-.bh, t-ah)

and (E £ (t) - #(£))?

[ F(JT)’ fK (%{',,ZD fy)dy - f(t)J2
- b 2
f2(t) + (J' K(z) f(t-hz)dz) ]

a
- fw) 2 2
<2| ) + (Zé‘ﬁhé‘)') (fIK(y)ldy) ]

By assumption we have nh(n) —> o as n —>», Also Nh(t) C No

A
nN

(2.2.2)

if n is sufficiently large. Therefore (2.2.1) and (2.2.2) along
with the condition in v(a) imply that R(fn,f)(t) is tounded by an
u-integrable function. Since f is c;ontinuous and nh(n) —> = by
assumption, we know that R(fn,f)(t) —>0 for every fixed t and f.;
'Hence the Dominated Convergence Theorem implies (a). |

Now to show (b) first observe that

_/: moy .Var[l(‘(%z—:‘i)-” &
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b

[f K(2) f(t-—hz)dz] dt

a

b
< ~£. kz(z)dz

t~—

. o b
‘Therefore HE%ET' Jr H%HT Var [K (ﬁiﬁ) ] dt < nh]n Jr Kz(z)dz
. , -0 ’ . a

implies the above quantity is bounded by a constant which for each.

fixed f converges to zero.

For the second term in the expression of R(fn,f)(t) we have

f (E f (t) - f(t))zdt

-00

< 2f [ () + (Efn(t))2] dt.

Therefore we need to show that s (Ef (t))2dt is bounded by an

. integrable function. But

?(Efn(t))zdt

= TLJ 7K K(z) F(t-hz) F(t-hu)dzduldt

o -\ O
oo
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b
I 1K(2) [ 2 (t-hz) |K(u)]| dzdu
a ,

b
+ S [K(u)] fz(t-hu)IK(z)l dudz]dt
a

ST

b 2 2
[ (7 [K(z)|dz)( s f9(t)dt) ]
a

.This and the assumption in (b) implies that / (th(t)-f(t))zdt is
bounded by a p-integrable function. Therefore for any given ¢
there exists &6(e) such that for any set B C Q with u(B) < s(€), we

have

0

S LI (EF, (£)-F(t))2dtu(df) <e.
B =
Now for this §(e) choose 5(c) s before with “(Qa(e)) >1 - €. Hence

(2.2.3) ST (E (£)-F(6)2dt u(df) < c
~96(e)-m



-

- Also - o (th(t)’ dt
b | N-ah(n)
| 2 :
< (fIK(Z)le) f , /fz(t.)dt
a | -N-bh(n)

Therefore for any fixed M

{ EF, (t) - f(t)) dt u(df)
o 96(6) Itl)M

S  M-ah(n)
< Const. ( )t )u(df)
’ 96(8) -M-bh(n) ‘
Now ff f(t)dt u(df) <=
- aR SR

" and the sets Q s (e )x[-M bh(n), M- ah(n)]-——e> ¢ implies

;] J (Efﬁ(t) - f(t))zdt u(df) can be made as small as we

R want by taking M sufficiently large Let M(c) be sdch that
. ‘ 2 ' ) :
(2 2.4) f f ( Efn(t) - f(t)') dt p(df) <e.
' _Qﬁté) lt'>M¥€) A . o

. Now consider‘
| | M(e)

Lo _(zl'.z.'é)_‘ f [ (Ef ) - f(t)) # u(.df) o

96(8) -M(C)
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Since f is uniformly continuous on [ M(e) M(e)] we see that
o me o o
f {Efn(t) - f(t)) it —>0
"-M(e) o ‘ f‘
fbr every fer 5(c)” Hence by Dominated Convergence Theorem we conclude
that (2.2. 5) converges to zero. A]so (2.2.3), (2.2.4) and 2.2.5)
together 1mp1y_(b). | - o

Remark: 2.2.1. Our assumptions are much weakef than the

assumption, f(sgp f(t))m u(df) < w for all m > 0, made by Mohtricher,
Tapia and Thompson (1975 a). |

Evén though we have prpved a desir&b]e property of the Bayves
estimate, the estimate itsé]f is far from being cbmputab]e" It is
worth ment10n1ng the only "eas11y computable” Bayes1an type est1mate
due to Wahba [1976] We call it Bayes1an type because the class of
functions over which the prior measure is cons1dered, is not a class

of probab111tv dens1ty functlonﬁ

2.3. Construction ofa Pfior Through -

a Gaussian Process

In this section we will take for the prior measure a particular
stochastic'process.‘ It will be shown that the Bayes estimator with
respect to this prior is Bayes risk consistent. Define the stochastic

 process. {z(t) : teR} in the following way:

2(6) = el Al ¢ K(E)] vhere
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w(t)-is a Géﬁssian process with iﬁdependent-increments and with
(1) W(0) = 0 |
(1) EW(t) =0 forant,
(141) CovlW(ty), K(ty)T = 8(t;. t,) min(|ty], It,1)
IRY tit, >0

“where G(t], t2) = { .
1 - 0 otherwise

Lemma 2.3.1. Z() 1s integrable a.s.

Proof: Since {W(t) : t>0} is a Brownian Motion,for any A >0

(Breinman; PP 289)
P{ W(t) <a + %At for a]]_ t >'0} e™@ A
‘ : a - ]AI | -a\
Hence P {Z(t) <e 2 s for all t} >1 -~ 2e
— o f S, e? ca )
implies P {’{.Z(t)dt <4 —5\-} >1 - 2e
—>1 as a—> o,

Now define o(t) = —Zi!l——-. Then
. S Z(u)du
i) o(t) >0 fbr‘all teR,
i) Soe(t)dt =1, e
'{ii)“.¢(t) is continuous.
Therefore the normalized sample functions ¢(*) can be considered
as random probability density functions. Next we present a 1émma, '

due to Rubin, which will be used latter.

ye



|\ .

Lenma 2.32 (Rubin, 1976). Let

%= f e”‘t+w(t)dt A>0

error loss.

t
w
=
o
©
——
(ad
St
-
=2
®
=

Define t such, that ¢(t*) =

2"y < 2t
Z(p)dn - {f Z(u)du

o(t") =

Now for any fixed o , define

t, = inflt : -A(t-t) + W(t) - W(t") = -« and  t > t7)

and L = J[ e MEty) +W(E) - Wt )y | then 7 <%z
" _ 0 S o

The following lemma shows that Zé is a well behaved random variable

~in the sense that its moment generating function exists.

~ Lemma 2.3.3. Let Z, be as defined above. Then for o 'Sufficieﬁtlry

large the moment generativng function of Za exists.



A
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Proof: For any fixed a > 0

2 _{z >a}

Sy

p{f -A(t-t ) + W(t) - W(t )d,c <1 -A(t t )+H(t)-w(t ) <a

_a foral]t>t

| P{j é-A(t-ta) ; H(t).- w(ia)dt <:_ }

t(l

| P{ f A+ W(E)y, <*)

p { “A(t-t ) + H(t) - M(t) <a, forallt> t, } |

'A

‘ Using stmhg Markov property
_ pem0A . ' '
(1 - 227

2 off MMt 1) ar as Ll
' 0

([ 0 <1 )
0 : o

P2 ©
[(22) va :
: 2A =22 - .
c(r) 2—= Af 2>

a-max(0, A-%—)

- 'Wher_e? ¢(2) is a constant depending only on A.
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p etZa > c} dc

Now E (etza)_

i

<= | :? P"{.et.Za.é C} dc |
; P {etza > c} dc , 6> et("';_").
0 ,

Hence it is sufficient to show that second term in the above

expression is finite.

But I {etza > c] d
e N
% . log ¢
! P{ z >19c } dc
= P{Z >a, t et da
loge * ¢ '
t .
< c; t o2t ) A da < o
“" "log & a-max(0, A—;—)
t | |

if t <2
This completes the proof of the lemma.

Corollary 2.3.1. Let o(t) _tgg.a_s defined above. Then (s:p d’(t)) |

has finite moments of all orders.

~ Corollary 2.3.2. Let rZ(F)(t) and rz(¥) p_g pointwise and

~

integrated Bayes risk of the Bayes estimator, f, the posterior mean,

- with respect to the prior induced by {Z(t), teR}. Then
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rp(F)(E) —> 0

~ as n-éoo
r,(f) —>0 o |

Proof: Follows from Corollary 2.3.1, lemme 2.2.3 and Theorem
2.2.2. R

Under the setup of this section the Bayes estimate of the density

at a point t given n-observations X;, X,, ... Xn'can,be expressed as

gy [¢(t) i;__r]<»<xi)]j |

Celt) = —
E,|] T ¢(X,
X i=l¢(_ ‘)]._

where R ¢(Q) 2w

S T I Z(v)dv
The Bayes éstimate in the above form looks simple but the evaluation
of the numerator and the denominator in the expression of $(t) will
| “be very difficult. HWe will derive a computable expression for-the
prio} mean E ¢(t). This will demonstrate the magnitude of difficulty

one will have in attempting to evaluate the expressions for _

: S ' n

Ey [¢(t) ‘iI=II¢(X‘)] and E, [_1=11¢(x1.)] .

| ‘ -_'_Hithbut loss of generality let us assume that t > 0. Let
At 4 H(t) = u. R
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Then E ¢(t) = ./.Et e e -At + W(t) =
| J 2 e Ao+ W(v)dv

\

] t,2
e 7t (u+ EJV
v ont

du.

We will derive a computable expression for the conditional expectation

under the integraT sign. Let us introduce the following notations.

= 7 A H ),

=00

Y f ﬂ(v)dv

>
"
o3

eV * WOV, for t >0

-
[}
N

e

-
on
' 8

“dv + W(v)dv

= @ YV

X~ and V”° are identically and independently distributed. Before we
proceed to compute the conditional expectations we will state two

known results.

Let X~ and X' be as defined. Then the following result is known.
Result 1 X/(x™ + x+) ~ Be(2x, 21) on [01] and is independent of
(x~ + xh). | | - SR

The special case with A = %—is mentioned in Paranjape and Rubin (1975).
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Lemma 2.3.4. (ParanJape and Rubin 1975) Let Y be as def1ned

above. Ify, = /2y, then the Lqp]ace transform of Y,, viz;
| -6Yy o
Eje = w(e) » is given by
(8) = ex 1 exp | - g; arc ‘Coshz. Cosh u, 0 for 0> -4
¥ exp 2t P t » ‘ 27 OY'_..

NﬁmB-J— L and =X 5o from now on we will

omit the conditioning event -At‘+vN(t)>= u. Hence the conditional

expectation can be expressed as

T "2 swz : .
B ! B e ]
2:3.1) - E[ —-——]E[ B er]
» -} ._1._.+e_. 1 .g_ Be .+-Y]("|_A'_ +A"‘)

" Also we can write

1 f e P3W2+n(%x+w)]
o

dx
. u/2 _—
B,e + Y-I ( "A r)

-Now tak1ng the expectatlon with respect to Y] we get

E [B QU/Z N (]-A A )]

u/2 1, e

LJer et

flyy) dy; dx
T L .
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% -x Be CRE
- [ o[« ke g ]dx

Hence the second term in (2;3.1) can be expressed as

B _' ol 1/ o u/2 e
: 2 -Xxbe u
etz [ f(JT [ vt «

1 e
— =
oLo\ 7= +3 0

S . 1
(2.3.2) e @)™ b)) g(u) lda.

[(ar)

where | qa) = _Tff___k) a2A-1 (1-a)2x'? .

Also

| 1

u S

(2.3.3) E[%—@—]ﬂzx) e f{]—]- %—} qla)  da.
, S TR R 0

Now substituting (2.3.2) and (2.3.3) back into (2.3.1) we can get a

computable expression for

- QU2 ]
E — m At + W(t) = u
X+ Y+e ¥ e

‘Using this the unconditional expectation

E [._Zill__ ] can be computed.

J Z(u)du
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. 2.4, Construction of a Prior Through

a Given Distribution Functlon .

In th1s section we will describe another Way of constructlng a
randnm probab1]ity density function. Let {Y(t) : t ¢ R} be a

stochastic process such that Y (t) is 1ntegrab1e a.s.

Define  ~  z(t) IYZ(u)du O if ta

., R o
=~ S Y (u)du if t<a
t J' L e

Hence Z(t) is well defined for al] t eR. letF be any f1xed abso]utely
cont1nuous distribut1on function. Then F(Z(t)) def1nes a random

dlstrlbutIOn function and corresponding density functvon 1s given by
ot) = EEO) = e704y)  y2(

‘where ORE

dt

¢(+) defined in this way is a proper density funct1on Hence the

posterlor expectat1on can be expressed as

So far the Bayes estimate looks good but getting a computable expressiop

s difficult.



Example 2.4.1. Let us cons1der two specific denswt functions.

@ ) - I_I'Z e'TT

and  (b) f() oM

N[—a

As before Tet Y(t) = e At] + H(t)

: t
and Z(t) = 5 Y(u)du t>0
0
0
= -f Y(u)du t<0
t

where W(+) is the Gaussian process considered earlier. Suppose t>0.

Then the prior mean of ¢(t) in case (a) is given by

. 1 TZ{ '7'[' Y(t)
Fol) -7t [ | (z(t))zJ
-y |
] u e It J
= E =At + WH(t) =
b [(zm)’" e
- %E(u + At)2
. du
7 v 2t
!, |
2

>" Leg. Yy

= %(T)- . Then

et o et st s S, L T T L e e
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‘i.e., with f(t) --—
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y [e_m ' e J
. - + t) =

B -
oy
‘=fe et 2 gy

S

Where g(+) is the density of Y

1° _ :
| . = - (u+at)?
Hence E ¢(t) = 7 f e ( 2 ) — du.

Again computation of posterior mean presents no less difffculty.

It seems that the computation of the posterior mean in case (b),
Itl may be less difficult.
Let X; <X, < ... <X, be the ordered‘sample. TheQ we ygn; %g

evaluate the following expectation.

' n | ;N |
E igl Y(Xi) exp ( f' 5 Z(Xi))

Therefore first conditioning on -AlXiI + w(Xi) = U., we need to

1

-evaluaterconditionai expectation of the following form;

WY = we. o= il i
AXJ w(XJ): QJ. j=1, 1fj



X,

- | i+] -
‘But o Z(xi+]) - Z(Xi) = Jf | e~Au + w(")du
Xy o
oo Kax) |
= @ 1 f e'AU + W(u)du |
| . | |

" Hence the distribution of Z(X,,,) - Z(X;) given -AX; + w(xj) .
j= i, i+ 1, is same as that of o

i : g~ AV + w(v)dv

Xi)=Uo u. =Aui’

given that -A(X1+] - X5) + WX, i+ 7 Y

i+l
AXi _ . o R
But exp[—ﬁlﬂ / f e'}‘u * w(")du has the conditional density

: Au;i v Aui -
f (y) = 5 exp [ oax- - 4y Cosh (-2—)+ v(y) ]
| ¥ i oo :

Therefore the expectation in (2.4.1) can be written as
- exp [

of course this éxpectation involves the unknown function ¥, where

TR (Aui/Z)
e

N]-—l
[0

1
v ] f (y)dy

.'Qt“‘:S

: the Laplace transform of ew(a) is given by exp[- T arc Coshz( +1].
2
a

Once these individual expectations are obta1ned then a "computable"

expression for unconditional expectation can be obtained.
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2.5.  Some Negafive Results

In this section we gave an example to show that in the stochastic
process formulatlon of the prior d1str1but10n it is necessary to
con51der the norma11zed sample funct1ons In the absence of such
norma11zat1on the estimator could be a bad one. Specifically let
“{Y(t) : t e R} be a Gaussian process with mean function m(t) and
covariance function o(-,+). Tpe'fuoctions m(-)'aod c(*,+) can be
chosen to make Z(t) = exp[Y(t)] integrable a.s. In section 2}3 we

have considered the normalized sample functiohs

N £ ¢ 4
#(t) = ————
R Z(u)du

as the random density function and the'Bayes estimate was
. » o .

[ 00 To0ry

¢o(t) = 0

| '*Ex[i ‘“X‘T’]

- Now suppose we cons1der the prior measure over the c]ass of functlons
{Z(t) : t € R}, induced by {Y(t) : t e R}.

- Then the pseudo Bayes estimate wil]_be‘given by
Ex [Z(t) I Z(Xi)]

(%)
, By [ I Z(X, )]

i=1



. " * X . .
' A]so for given X], X2’ N _f ¢ (t]X)dt <o for appropriate choice

"n
of m(+) and c(*,-).

Therefore ¢(t) = -—9;i§l£1—~ . can be taken as an estimate of
. T (Xt L »
dénsity-function. The following Temma follows from Theorem 7.2.5

Agh (1972) pp. 275.

 Lemma 2.5.1. Let Zy» Ly, «.... Z be a sequence of iid random

variables. Define

n " LI n

- Then either (a) Sn_diverges to+ o or -«

or (b) S, oscillate between - © and + e -

—

-~ or  (c) Sy 2 0 a.s.

The fb]IOWing theorem illustrates that the post-normalized
estimate E(t) based on n-observations is not a good estimate. For

any t and u, let

: LK ... X, ) = Tog ot)
L n' u | ¢(u)

Theorem 2.5.1. Let L(X] . ant,ru) be as defined above. Then

either (a). L(X; .. Xqlts u) diverges to + » or -«

,.gr_, (b) L(X] .. Xn[t, u) oscillates between + © and - o

or (c) L(X] .. xnlt, u) is constant (depending on t

and u only) a.s. for all n.

e ——————————



Proof:

Then (ﬁ

Since T],

_Define Ti

and Sn

e ant,u) =

- Tn are iid,

lemma 2.5.1.

= o(t, Xi) - o(u, Xi)
= T] + ... + Tn.
-m(t) + m(u) + -;—o(t,t) - -;-cr(u,u) £ .

Sn will have the properties stated in the
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