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asymptotically equivalent to linear combinations of functioﬁs of order
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1. Iptroduction. Randomly censored data occur frequently in engineering
(1ife testing and reliability) and medical studies. Since inference procedures
for such data commonly make distributional assumptions, a considerable body of
recent literature concerns tests of fit for censored samples. In this paper we
extend the applicability of chi-square tests of fit to data censored (on one or
both sides) at sample percentiles. This is commonly called Type II censoring.
Data censored in this way arise in engineering settings. Medical data typically
display more complex random censoring, as when studies of survival after
~ treatment encounter dropouts and deaths from other causeé. Such general random
censoring is not considered here. Qur goal is to provide tests of fit to
parametric families of distributions using test statistics having chi-square
limiting null distributions. Such tests can be used with standard tables and,
in many cases, the test statistic itself requires only simple cpmputatipns.

Much of the literature on tests of fit for censored data considers the
special case of testing fit to a éompletely specified distribution (e.g., Lurie,
Hartley and Stroud (1974), Kozial and Byar (1975), Kozial and Green (1976)).
Tests for the more useful composite hypothesis case encounter the dependence of
the large sample distribution on the family tested, so that separate tables of
critical points are required for each hypothesized family. This circumstance
is familiar in the full sample case to users of (among others) tests based on
the empirical distribution function. For censored samples, the distribution of
most available tests of fit also depends on the degree of censoring, as
evidenced by the tables of critical points in Pettit (1976) ‘and Smith and Bain
(1976). Thus a test of fit having a standard tabled distribution is even more
desirable than in the full sample case. Turnbull and Weiss (1976) offer a
generalized 1likelihood ratio test which not only has a chi-square distribution

in large samples but also applies to some types of more general random censoring.



However, they assume that the obserﬁed variables are discrete with finite range,
and their test statistics must usually be obtained by numerical solution of
equations,

The extension of chi-square tests to Type II censored data'depends on
several recent advances in the théory of such tests. The first, due to A. R.
Roy (1956) and G. S. Watson (see [23] for references), is the use of
data-dependent cells. Type II censored data lend themselves naturally to the
use of sample quantiles as cell boundaries, with the censored observations
falling in the extreme cells. Suppose, then, that of a random sample

X.,...,X we observe only the order statistics
1 n

1.1 '

B X(na1+1) < X([na1+2) <==< (s
where 0 < o < 8 <1 and [x] is the greatest integer in x. We form M cells
having boundaries

<E = o

= EOn < E1n Ceees E‘:M—l,n Mn

where Ein = x([nﬁi]) is the sample 6i-quant11e from Xl""’xn and

0=6_ <36 < § < 6,=1. To accommodate nontrivial left. censoring

< :
0 1 - M-1 M

(a>0), right censoring (g<l), or both, with a single notation, we adopt the

convention that a£51 when o>0 and otherwise o = 60 = 0; similarly, B = GM—I

when 8<1 and otherwise B = 6M = 1. The observed frequency Nin in the ith cell

E. = (¢ -Ein] is non?andom, Nin = [nGi]—[nGi_l]. In particular, the

i i-1,n’

left-censored [na] observations and the right-censored n-[ng] observations

occupy the extreme cells.



We wish to test the composite null hypothesis that the distribution of
the Xi is a member of the family of continuous distribution functions
{F(x,8): 0 in Q}, where Q is an open set in Euclidean m-space R". The
parameter 6 must be estimated by an estimator Gn which is a function of the
observed order statistics (1.1). Chi-square statistics for data-dependent
cells are formed by "forgetting'" that the cells are functions of the data.
The ith "estimated cell probability" under HO is therefore

(1.2) Pin © F(gin’en)“F(Ei-l,nv’en)

These are random, unlike the cell frequencies. Chi-square statistics are
nonnegative definite quadratic forms in fhe standardized cell frequencies
(Nin-npin)/(npin)%} The second development in chi-square tests that we

exploit here is the use of quadratic»forms other than the Peérson sum of
squares. The goal of thig generalization is to find a quadratic form having

a chi-square limiting null distribution‘for general estimators en, just as the
Pearson statistic does for minimum chi-square estimation. In the full sample
case, the use of appropriate quadratic forms to obtain a chi-square distribution
was initiated by Robson and his students ([7], [16]) and treated in some
generality by Moore (1977).

The development in this paper follows the pattern laid down for general
chi-square statistics for full samples.by Moore and Spruill (1975). Their
results require independent dbservafions, and so do not include the results
given here. Section 2 contains results on the asymptotic multivariate
normality of the vector of standardized cell frequenciess for several classes
of estimators en. Based on these results, Section 3 discusses the
large-sample behavior of séveral chi-square‘stafistics fér Type II‘censored

data. The specific statistics are censored-sample



analogs of the classical Pearson-Fisher statistic, the Pearson statistic using
maximum likelihood estimation (studied in the full sample case by Chernoff and
Lehmann (1954)), the Rao-Robson (1974) statistic for maximum likelihood

estimation, and the Dzhaparidze-Nikulin (1974) statistic for arbitrary
1

nz-consistent estimators. As might be expected, the behavior of these
statistics for censored samples parallels that of their full sample analogs.
Section 4 applies the general results to obtain tests of fit for censored
samplés to the negative exponential, normal, Weibull and uniform families of
distributions.

We remark that the approach taken here applies also to "multiple Type II
censoring", in which observations between several sets of sample percentiles
are unavailable. It is necessary only to take each unobserved inter-percentile

group as a cell. This is conceptually quite similar to the generality of

censoring allowed in the procedures of Turnbull and Weiss (1976).

2. Asymptotic normality of standardized cell frgguencies. We will be

concerned with the large sample behavior of chi-square statistics when
Xl,...,Xn have distribution function F(x,eo), so that 60 is the "true"

parameter value. Our major conclusions will not depend on the particular 60,

as when statistics have the same limiting chi-square distribution for all %o

in Q. Similarly, aSSumptions made locally at 60 must in practice hold
everywhere in 2. Denote by X, the population Gi—quantile of F(x,8,.), so that

= o and

Xy = ==, Xy
x; = min {x: F(x,8,) = Gi} i=1,...,M-1,

For any vector of cell boundaries £ =‘(El""’€M-1)T’ define the cell probabilities

Pi(E,e) = F(Eixe)'F(gi_lse)



and the M x m matrix B(£,0) having (i,j)th entry

_% 3p1 (£,8)
1 ————

Denote the vector of gin (the cell boundaries actually used) by En, and the
vector of X, (their limits in probability under F(x,8_)) by EO' By

Thus

convention, the arguments £,6 will be suppressed whenever £=£O égg e=60.
B = B(EO,BO) and p; = pi(go,eo) = Si-Gi_l. In particular, all derivatives and
expected values not ofherwise identified are evaluated at (EO,BO). All vectors
are column vectors, and derivatives and integrals of vectors are understood
componentwise. |
The following conditions on F(x,0) will be assumed to hold throughout
this paber.
(F-1) F(x,8) has density function f(x,6) which is continuous in (x,6) in
a neighborhood of (xi,eo),_i=1,...,M-1.
(F-2) aF(x,e)/aej exists and is conFinuous in a neighborhood of
(xi,QO), i=1,...,M-1.

(F-3) £(x;) > 0, i=1,...,M-1.

i

(E' —X'),

These conditions are sufficient for joint asymptotic normality of n in™ %

for convergence in probability of the cells (Ei-l n’gin] to the fixed cells
(xi_l,xi], and for convergence in probability of the P of (1.2) to 1

whenever {6 _} is a consistent sequence of estimators of 6. Finally, let

ol

Vn(en) be the M-vector of standardized cell frequencies (Nin—npin)/(npin)
using random cells and estimating 6 by en.

The following basic lemma relates the large sample behavior of Vn(en)
to that of the estimator en and the sample quantiles gin' As the proof of

the lemma shows, the ith standardized cell frequency when 60 is known is

(up to o (1))

1 £0x;) £0x; ;)
T Gyxg) - T 6 )
Pj Py



This is the ith component of the M-vector Vn=Vn(80). The statement of the
lemma is thus identical to that of the null case of Theorem 4.1 of Moore and

Spruill (1975) for full samples.

1
LEMMA 2.1, lf_na(en—eo) = Op(l) under F(x,eo), then

1
(2.1) v () = vn-3n2(en-eo) + op(l).
PROOF: Write
_% o - é [néi] [n(si—l] _é '
n (Nin'Pin) =n ( n - n )_n (F(Ein’en)_F(Ei—l,n’en))
1 [né.] [ns, .1
bt - by, )
1 i
—nz(F(Einaen)—F(xi)) + nz(F(Ei_l’n,en)—F(xi_l))-

The first line of the last expression is o(l), and the mean value theorem with

(F-1) and (F-2) reduces the second line to

1
—nz(f(xi) (gin-xi)—f(xi‘l) (g

i-1,n %i-17)

api
. E (6n-60)i + Op(l).

|
=

W

It ~18

j

Since P;, = P;

it op(l), the lemma follows from this.

When en itself is a finite linear combination of sample quantiles, as are
many short-cut estimators, asymptotic normality of Vn(en) follows at once from

(2.1) and the joint asymptotic normality of sample quantiles. Suppose then that
the jth component of 6 has the form

k=1

(2.2) ¢

in ajkngjkn + cjn j=1,...,m

where Ejkn is the sample Ajk—quantlle from Xl""’xn for o :-Ajl <...< Ajsj < B,
and the ajkn and cjn are real numbers. Denote the population Ajk—quantile of

F(x,6,) by xjk' The following theorem is proved by direct computation from the

limiting law of the sample quantiles.



THEOREM 2.1. Suppose that A satisfies (2.2), that there exist constants
21 -1
a,, and c, such that a., -a., =o(n %) and ¢. -c. = o(n ® , j=1,...,m, that
ik j jkn 2k = o %) and ¢y -, )2 —=

the jth component of 6. is

)
8., = a. x., + cC. j=1,...,m
jo kzl EL ) SR =

and that all f(xjk) > 0. Then

£ {Vn(en)} - NM(O,E)
where

I=TI,qq +BA + AB' + BCB'
1

p 1 :
and q = (pf,...,pg)T, A is the M x m matrix with (i,j)th entry

S.

—17—4L-—- (min(s. , ) 5. AJk),

k=1 pzf(x k)

and C is the m x m matrix with (i,j)th entry
S, S; a. a '
Z ik jr
k=1 r=1 & X F(X50

3 (min(Aik,Ajr)-AikAjr).

An estimator of particular interest which can be asymptotically expressed
as a linear function of sample quantiles is the grouped data maximum likelihood
estimator 5; (or the asymptotically equivalent minimum chi-square estimator)
obtained by "forgetting'" the dependence of the cells on the data and solving

the usual multinomial likelihood equations

M N. ap. (& _,8)

Z in 1 n = 0.
i=1 Pj(&,,6) o8

Watson (1958) observed that in the full sample case the use of random cells
does not alter the asymptotic form of 5;. Similar methods show easily that
under suitable regularity conditions in the censored sample case it remains

true that

?\)lH

(2.3) ( ~85) -5 ! + Op(l)-



From (2.3) and (2.1) it follows that
— T, .-1.T
Vn(On) = (IM—B(B B) "B )Vn + op(l)-
Since

T
il{Vn} > NM(O,I—qq )

and qu and B(BTB)-IBT are projections orthogonal to each other,

(2.4) £V (33} > N,(0,I-qq"-B(8"8) 18Ty

which is the same result obtained in the full sample fixed cell case. Here,
.as often, it was convenient to use (2.1) directly rather than apply the
general formulation in Theorem 2.1.

A natural class of general estimators of 6 from the observations (1.1)
are en which are asymptotically equivélent to linear combinations of functions
of order statistics. For such en, asymptotic normality of vn(en) will follow
from Lemma 2.1 via any theorem on asymptotic normality of linear combinations
of functions of order statistics which:éllows special weight to be given to a
finite number of sample quantiles. Such theorems appear in, e.g. Chernoff,
Gastwirth and Johns (1967) and Shorack (1972). A result more useful for our
purposes is obtained by appealing to the proof of Theorem 1 of Shorack (1972)
rather fhan to the statement of that theorem. This we now do.

Shorack shows the existence of a particular probab111ty space (R, G ,P) w1th
"very special random quantities'" defined on it. These are independent Uniform

<eee< t < 1 and 4 Brownian bridge

(0,1) rv's having order statistics 0 < t
: In nn

process U such that every sample path of the empiric df process of the tin
converges uniformly to the corresponding sample path of U. He (and we) operate
in (2,G,P) to draw conclusions about convergence in probability, from which
there follow conclusions about convergence in distribution for functions not

necessarily defined in this spéce.



Define then
-1 1]

Tn = n rzl Crn Q(trn)

(2.5)
1

[ Qt)J_(t)dt
0

g =
i

where Jn(t) is the function equal to Cin for (i—l)/n <t <i/n and 1 <1i<n,

with Jn(O) = C For fixed bl’bZ’M and vy > 0 define

iIn*®
gl b,
Dl(t) = Mt (1-t) 0<t<1
-l+b1+y —%+b2+y
Dz(t) = Mt (1-t) 0 <t <1.

The version of Shorack's assumptions which we require is as follows.

{S-1) Q is left continuous on (0,1), of bounded variation on (e,1-€)
for all e > 0, and for some b,,b,,M and v > 0, [Q(t) ] < D, (1)
on (0,1}).

(5-2) Let IQI denote the total vafiation measure associated with the
signed measure induced by Q. There is a function J such that
except on a set of t's of‘]Ql—meaSure 0 both J is continuous at
t and J, * J uniformly in somé small neighborhood of t as n—e,

Moreover, ]Jn(t)l f-Dl(t) and IJ(t)l f_Dl(t) on (0,1).

]

(S-3) Let r and r be constants such that r T = o(n"®). Let 0 <A <1,
and R be a function for which R'(A) exists.
The following result is contained in the proof of Theorem 1 of [19].

LEMMA 2.2. (Shorack [19]) If (S-1) and (S-2) hold, then
1

1
(2.6) n*(T -u) > - [ Judq (P).
! ,
If (S-3) holds, then ‘
(2.7) nﬁ(rnR(t[nA] )-TR(A)) > -rR'(A)U(a) (P).

Convergence here is convergence in probability in (8,G,P).




10
We now show that Lemma 2.2 can be applied to Vn(en) when en has the

following asymptotic form under F(x,eo)

1 1 [nB]
(2.8) 2(6 -84) = n" % ) h(X
r=[na]+1

()’
+ cn(a,B)g(X([nB])) + kn(a,B)d(X([na]+1))} + op(l).

Here h,g and d are functions from R1 to R™ ; in accordance with our convention
their dependence on 60 is suppressed. We require that cn(a,l) = 0 and
kn(O,B) = 0. Estimators putting special weight on sample quantiles other than

.
the point(s) of censoring could be accommodated, but (2.8) covers all estimatorgy

N
used in the examples of Section 4. In particular, regular cases of the
maximum likelihood estimator (mle) from the censored data (1.1) have this form.

Define now for 0 < t < 1 the inverse function of F(-,GO),

b(t) = min{x: F(x,éo) = t},

and H(t) = h(b(t)), G(t) = g(t)), L(t) = d(b(t)). The following assumptions
will be made.
(A-1) There are numbers co(a B) and k (a 8) such that < {(a,B)/n-c (a B) =

o(n 2) and k (a B)/n- k (a,B) = o(n 2)

B
(A-2)  -[ H(s)ds = c)(«,B)G(B) + k(a,B)L(a).
a

(A-3) The jth component of H, Hj’ is continuous at o and B, left
continuous on (0,1), and of bounded variation on.(e,l-e) for all
e >0, j=1,...

(A-4) Hi ekists a.e. en (0,1) j=1,...,m
G5 exists at q if a > 0,‘j=1,...,m

L; exists at B if B < 1, j=1,...,m
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(A-5) For some M > 0, y > 0, bi and b, (where b, > 0 if a=0 and b, > 0
if g=1), lHj(t)l < D,(t) on (0,1).
Assumptions 1, 3, 4 and 5 reflect the assumptions of Lemma 2.2.
Assumption 2 is an asymptotic unbiasedness condition on Bn. To express the

asymptotic variance of Vn(en), let U(t) be a Brownian bridge process on (0,1)

and define the m-vector

6 _
S = [ H' (t)u(t)dt + co(a,B)G'(B)U(B) + ko(a,B)L'(a)U(a)

6

1
and the M-vector W having ith component Wi = [U(Gi)-U(Gi_l)]/piz.

THEOREM 2.2. Let en satisfy (2.8) and suppose that (A-1)-(A-5) hold.

Then under F(x,eo)

£ {V_(6)} + N, (0,)

where

T T -

L =1I-qq + BA' + ABT + BCB

C=E[sST], A=E[WS].
PROOF. Substituting (2.8) into (2.1) and using the inverse df
transformation x = b(t) shows that the ith component of Vn(Gn) differs by

Op(l) from a quantity having the same distribution as the sum of

L . [ng]
s, =n*tn”l } (-BH(t, ))-coB,G(8)-Ky (o, 8)B, L (o) }
r=[na]+l
i 1
Zip = 0%p; FE(x) (b (2, )b (,))
1 1 :
Zon = My *Elx; ) bz [)-b(s; 1))
;’JB; Cn(a)B) :
an = -N ('_n—_ BiG(CBn) = co(a)B)BiG(B))
% kn(a:B)

Z4n = -n (—_IT—_ BiL(Can) - ko(asB)BiL(a))'
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Here B. is the ith row of B, trn is the rth order statistic from Shorack's

i
special uniform rv's on (e,a,p), Cin is the sample éi—quantile of these rv's,
and Can,csnare the sample o and B-quantiles.

First consider Sn' Set in (2.5) Q=BiH and Crn = -1 for [na]+1 < r < [ng]
and 0 otherwise. Then
{(nB]/n B )
T B.H(t)dt = - B_H(t)dt + o(n

i i

[na]/n a

1
co(a,B)BiG(B) + ko(a,B)BiL(a) + o(n_z)

)

Rl

1
by (A-3) and (A-2). Thus in the notation of (2.5), S, = n2(Tn—un) + o(l).
The assumptions (8-1) and (S-2) of Lemma 2.2 are satisfied. For (A-3) and
(A-5) imply (S-1), and (5-2) is clearly true for the function J(t) = -1 for

@ <t < B and 0 elsewhere. (Note that this J is bounded by Dl for any bl’ b2

satisfying the Trestrictions stated in A-5.) So by (2.6),

B
(2.9) s, >/ B,H' (t)U(t)dt (P).
a

1
Each of the terms Zjn has the form n?

(rnR(t[nA],n)_rR(A)) of (2.7), and
(A-1), (A-4) and the relation b'(t) = 1/£(b(t)) imply that (S-3) holds in each
case. Hence the sum of the Zjn converges in probability on (2,G6,P) to

. |
2f(xi-1)b'(6i—1)u(6i-1)

i

P f(xi)b'(ai)U(ai)-pi

+ co(a,B)BiG'(B)U(B) + kO(a,B)BiL'(a)U(a).

Simplifying by using the fact that f(xi)b'(di) = 1 and combining with (2.9),
+ 24 Z. converges in probability to the rv Y, = B.S + W.. Hence the
n 1 %jn i i i

version of Vn(Gn) defined on. (2,G,P) converges in probability to Y =(Y .Y T.

1°° M)

Now Y has the NM(O,Z) distribution, where I = E[YYT]. Computation using
1 :
E[Wiwj] = (pipj)ﬁ'for i#j and E[Wi] = l—pi reduces I to the form stated in the

theorem. This is therefore the limiting law of any version of vn(en).
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That the censored data mle has the form (2.8) is shown by Halperin (1952).
He studies the right-censored (a=0) case, but his work is easily extended to
two-sided censoring. Let X, and Xg be the population a- and B-quantiles from

F(x,eo). The Fisher information matrix for the data (1.1) is

(1
K = K(8g,x,,%,) (f 2L ax )(j / (31°gf L8 Te gy

af )T
+ (1-8)° (f dx)(f

(Here 3f/36 denotes the m-vector of derivatives af/aej.) Then in suitably

regular cases, the mle 8_ satisfies

n
1. 1 [8n] 13
26 -9 ) = n 2 -1 3logf
(2.10) n®(6_-6,) {r=[rzm]+1 ¢ 5 (x(r))

-1 2log(1-F) -1 alogF )
+ (n'[nB])K —L_(X [ B])) + [na]K (X([na]+l))'}+op(1)

under F(x,6 It is easy to check that (A-1) and (A-2) are satisfied with

0)°
CO(G’B) = 1-8 and ko(a,B) = a. When (A-3)-(A-5) hold, Theorem 2.2 therefore
applies to the mle Bn. A lengthy calculation (details appear in Mihalko (1977))

shows that in this case

- T -1.T
(2.11)  £{V (e )} > N, (0,I-qq -BK 'B'),

a result identical to that for the full sample case except that K has replaced

the full sample information matrix.
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3. Chi-sguare ;;g;;;;;gé; A statistic of chi-square type is a nonnegative
definite quadratic form in Vn(en), Tn = Vn(an)TQnVn(en), where the possibly
random MxM matrices Qn converge in probability to a nonnegative definite matrix
Q = Q(GO). Whenever ii{Vn(en)} - NM(O,Z) under F(x,eo), then Tn has as its
limiting null distribution that of Z?=1 ijg(l) where x?(l) are independent
chi-square rv's with 1 degree of freedom and Aj are the characteristic roots of
S'IS for Q = SS'. We are primarily concerned with three practically useful
statistics within this general class.

Case 1. The Pearson statistic. The censored-sample analog of the classic

Pearson-Fisher statistic is the sum of squares T, = Vn(EA)T Vn(gh) using the

In
grouped data mle, Since the covariance matrix of the limiting law in (2.4) is

a projection of rank M-m-1 it follows that T, has xz(M-m-l) as its limiting

1In

null distribution whenever 5; satisfies (2.3). Chernoff and Lehmann (1954)

studied the full sample case of the Pearson statistic with raw-data mle's,
S . ,

T2n = Vn(en) vn(en). Once again the full-sample results carry over to

censored samples. These results are: (1) the matrix K—BTB is nonnegative

definite in regular cases; (2) when K—BTB is positive definite and B has rank

m, the limiting law of T2n under F(x,eo) is that of -

2 m
X (M-m-1) + Z
j=1

3 (09 (1)

where 0 < Aj < 1 and the x2's are independent chi-square rv's with the
indicated degrees of freedom. Therefore large sample critical points for

T2n fall between those of XZ(M—m—l) and XZ(M—I), bounds which make T2n often
useful despite the dependence of ifs distribution on 60. Proofs of (1) and
(2) proceed much as in the full sample case; details appear in Mihalko (1977).
Finally, we remark that if F(x,6) is a location-scale family, then the Aj do
not depend on 90. This is an analog of the behavior of random-cell chi-square

tests noted by Watson and Roy in the full sample case.
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Case 2. The Rao-Robson statistic. Rao and Robson (1974) discovered the

quadratic form in Vn(en) which has the XZ(M—I) limiting null distribution in
the full-sample case. They showed by simulation that this statistic is

generally more powerful than Tln or T2n' Their proofs apply only in restricted

situations, but a simple and general proof is given in Moore (1977). Once
again the essential features of this development are unchanged in censored

samples. These are (1) when K—BTB is positive definite, then the covariance

matrix I = qq -BK 1BT of (2.11) has rank M-1. (2) A generalized inverse

of  is ¥ = + B(K- B B) -1 T

M » so that

;z{vn(én)Tz'vngén)} > Y2 (M-1),

and this is the greatest obtainable number of degrees of freédom. (3) 1f

-1 T

n

n - B(En,en) and.Kn = K(Gn X ([na]+1) ([nB]))’ then I +B (K B B )

is a consistent estimator of I~ so that
o AT, AT T, \-1 T . =
Tan = Vp(8)) Va(8y) Va8, Bn(Kn-Ban) By Va(8y)

also has the XZ(M-I) limiting null distribution whenever én satisfies (2.11)
and K-BTB is positive definite.

Note that the first term of T3n is T2n’ the Chernoff-Lehmann statistic.
The bounds on the critical points of T2n given above make it unnecessary in
many instances to compute the Second term of T3n'
Case 3. The Dzhaparldze Nikulin statistic. Suppose that Bn is any

estimator satisfying nz(e -8 ) =0 (1) under F(x, From (2.1) we see

0)'
that whenever B has rank m,

(IM~B(BTB) 1BT)v (6) = (IM-B(BTB)‘IBT)Vn +'op(1),

and this is exactly the asymptotic form of Vn(ﬁ;) from which (2.4) followed.
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Since IM—B(BTB)_lB[ is symmetric and idempotent,
T T..-1.T.T T, .-1.T
Vn(en) (IM—B(B B) "B") (IM-B(B B) B_)Vn(en)
_ T T,.-1.T
= Vn(en) (IM-B(B B) "B )Vn(en)
and just as in Case 1 this statistic has the XZ(M—m-l) limiting null

distribution. Since Lemma 2.1 shows that vn(en) is Op(l), the statistic

| T T, .-1.T
Tan = Vp(8) (IM_Bn(Ban) BVn ()

T
J

T T. .-1.T
=V (6 vn(en) - vn(en) Bn(Ban) ann(en)

‘has the xz(M-m—l) Iimiting null distribution whenever B has rank m and en-eo =
Op(n_%). .The first term of T4n is ohcé again.the Pearson statistic, which

here is "chopped down" to xz(M;m—l) rather than being "built up" to xz(M-l) as
in the Rao-Robson case. This statistic was proposed in the full sample case by
Dzhaparidze and Nikulin (1974). They gave an unwieldy (and perhaps defective)
proof. Use of Lemma 2.1 (or the analogous Theorem 4.1 of [14] for full samples)
shows how this univérsal chi-square statistic is obtained by projecting
orthogonal to B.

REMARK 1. The second terms of both T3n and T4n are quadratic forms in the.

m-vector BZvn(en), which has jth component

(3.1 ? fig_npin —%’apin _ n—% % Nin %Piy
. L % Pin 96, Lo P, e,
i=1 (npin) j i=1 ¥in j

whenever af(x,e)/aej is continuous so that Z? pi(e) = 1 and differentiation of
pi(e) under the integral imply Z¥ api(e)/aej = 0. This holds in the examples of

Section 4, where (3.1) simplifies the form of T3n and T4n'

REMARK 2. Suppose that F(x,6) = F((x—el)/ez) is a location-scale family.

Then the matrices

T, .-1.T
Qg = Iy + B(K-B'B) "B

T, .-1.T
Q, .IM - B(B'B) "B
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estimated to form T3n and T4n’ which are evaluated at 80 and the population

quantiles X, of F(x,eo), do not depend 92_60 and can be evaluated at 61 = 0,
is

8, = 1. For the remainder of this section we drop the convention that 80

2
assumed, so that F(x) and f(x) are the 6 = (0,1)T distribution and density

functions in the location-scale case. Let zs be the population di—quantile of

i8io1r % f(zi)ff(zi_l) and v, = zif(zi)-

F (so X; = 65, 0+ zieoz), p; = §.-6 .
Zi-lf(zi-l)' Thet api/ael = -9, api/aez = -y and the ith row of B(go,eo)

M 2 M
19/P; Ly %v;/ps

(3.2) BB = 0

M M 2
Zlqﬁ“i/Pi z1"1/pi

Similarly, letting z, and Zg be the population a- and B-quantiles of F,

-2 .
K(eO’xa’XB) = 602vJ, where J has entries (see (3.17) of [2])

Zg

0= EOIEWy « G0/ v £/ (1-8)

A
a

[
1

Zg

12 = [ E IR 0V ENIy + 2, () e + 2,8 2/ (1-8)

a

[
i}

(3.3)

g

22 =) DB OIENT Ry + 228 G/ + e/ (00)

A
a

-
1

Relations (3.2) and (3.3) with the expression for B(go,eo) show that Q3 and Q4
are eo-free. They can also be used to compute both K,BTB and Kn’BEBn’ replacing

Gi and zs by their estimates in the latter case.
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In location-scale cases, we have thereforc alternative statistics
*

T3n vn(en)QSVn(en)

*

T4-n vn(en)Q4Vn(en)

which are asymptotically equivalent under HO'to T3n and T4n’ respectively.

*

Note that the simplification provided by (3.1) does not apply to T3n and
i |

2 . s :
T for the term n Z(pin/pi)api/aej, which vanished when Pin replaced P,

*
4n’
is not-op(l).

4.Examples. The statistics described in Section 3 will now be applied to
derive usable tests of fit for censored data to each of four parametric
families of distributions. 1In each case, the regularity conditions required
for application of our theory are met. For example, the negative
exponential famiiy satisfies Halperin's conditions [6] for the mle to have
the asymptotic form (2.10), and the estiﬁator in this form satisfies (A-3).
through (A-5). This justifies the use:of the Rao-Robson statistic (Case 2 in
Section 3) in Example 1 below. Regularity conditions are not checked in
detail here; this work can be found in Mihalko (1977).

Example 1. The negative exponential family., It is desired to test the

fit of right-censored data 0 < X
-x/9

1) <iae< X([nB]) to the_scgle—parameter

family F(x,0) = l-e (x>0), 2 = {6: 0 < 6 < »}, Epstein and Sobel (1953)

show that the mle is

- 1 [nB] _
6 = [ng] (rzl X(py * (“'[“B])x([ns]))'

Substituting f(y) = e 7, z, = 0 and z, = -log(1-B) into (3.3) gives J,, = 8
;and K = 6628. From (3.2) we see that BB = eazzﬁvi/pi where

v; = -(1-8,)1og(1-8,) + (1-6; ;)log(1-6, )



19

. M 2
and P, = di—di_ Hence setting A = B—Zlvi/pi,

B

. 1 viv.
Q3 = IM + A

E3 )
(pipj) M

When sample Gi—quantlles 0 < gln <...< EM—I,n = X([nB]) are the cell
boundaries, ' - A
: _gi—l,n/en _Ein/en
pP. = ¢€ -¢
in -
- -X /9
K = e_z(l_e ([nB]) n)
n n
and setting - ~
~-1 —gin/en -gi-l,n/en
. =08 (8. e -£, e )
in n in i-1,n :
. T -2.M 2 . s s
gives B B =6 "L v. /p. . Thus the two versions of the Rao-Robson statistic
nn n 1in’%in
are
M [N. -np ]2 M -np -np v
* ‘ in fin -1 ‘ in "Fin, . jn Fjn i’j
o= I — w0y D) ¢ 0
i=1 in i,j=1  (np, ) (npjn) (pipj)‘
and (usingr(S.l)) 2
M [N. -np. ] M
_ in ‘in -1 2
Tan = .z np. + (md) (.Z 1nvin/p1n)
i=1 in , i=1
-X /0 M
A = 1-e ([n8])""n - Z v? /D.
n in’ “in

A slight simplification of T3n is obtained by replacing An by its limit in

. _
probability A. Bcth TSn and TSn have the xz(M—l) limiting null distribution.

Example 2. The Normal family. We will test the fit of right-censored

data to the location-scale family of normal distributions N(u,oz). The mle's

satisfy (2.10), but the likelihood equations cannot be solved in closed form.



Chernoff, Gastwirth and Johns (1967) give linear combinations of order
statistics for estimating location and scale parameters from censored

data which are asymptotically equivalent to the mle's. For the normal

. ] SN -1
case, these estimators are (un,cn) = (Eln’EZn)J where
B, =n [EB] X,y + (-2,9(z) + (1-8) " o*(2,))X
1n o (@ B8 877" (Ine])
[n8)
a -1 -1, r
E, = 2n r£1 O G X

2 -1
+ (1-26 + (1‘8) ZBCP(ZB))X([HB])
and J is the matrix of (3.3) having entries

Iy, = (8—28¢(ZB) + (1-8)'1q3(z8))

1l

Ty = Gz lezy) + (1-8) 2 ¢ ()

2 ' -1.22
J22 = (28—28(;+ZB)¢(28) + (1-B) ¢ (zB)).
Here ¢ and ¢ are the standard normal dgﬁsity and distribution functions, and
¢(zB) = B,

We will give only the original version TSn of the Rao-Robson statistic.

= - =  — T =
Let Zin (Ein un)/on, so that Pin ¢(zin) Q(Zi—l n). If we set @

2

T . .
¢(zin)-¢(zi;1,n) and Vin T Zinqizin)_zi—l,n¢(zi-1,n)’ then Ban is given by
. - : ~-2
(3.2) 1f‘00,cpi,\)i,pi are replaced by on’qﬁn’vin’pin' Moreover, Kn =0, Jn
where Jn is J w1§h zB and B replaced by their estimates zM—l,h and ¢(zM_1’n).
Thus K —BTB = o_zD ,» where the entries of D are
n nn n n’ . : - n
M-1 2
P11 = 0oy 1) ~Vn - 121 %in/Pin
M-1
D., = -(1+z )2 - 2 ¢ v. /p
12 M-1,n %n ic1 in'in’ Yin

M-1

| 2 2
22 = 20(zyy )~z o vy - 121 Vin/Pin®

o
I



Inverting Dn and using (3.1) gives
_ 2
O L T

in 2
T3n - iél _—EE;;————— ¥ (nA ) [D 2( z Nlnqan/p )
M M
- 2D12(121 Nin®n/Pin) Z in"in/Pin)
M
+ D11(.Z Nln 1n/p ) ]
i=]1

2 . . .
where An = D11D22—D12 is the determinant of Dn' Once again An can be replaced

by its limit in probability without affecting the xz(M-l)'limiting null
distribution of T3n' This statistic appears complex, but note that once the

Zin have been obtained, the successive-difference form of pih’qﬁn and v

makes T3n quite easily computable on a programmable calculator.
When the data are symmetrically doubly censored (a=1-B=p), the estimators

~ -

(un,cn) and the statistic T, simplify considerably because K and BTB are

3n
diagonal matrices. Since this case is less often met than is right censoring,

we do not give the specific results here. They are easily derived from Section 3

of [2] and the general recipe for T

Example 3. The two-parameter uniform family. Doubly censored data (1.1)

with 0 < a < B < 1 will be tested for fit to the family with density function

f(x,8) = o1 el-%e <x <8 + 30

2 1 2

Q= {8

T
(8),85) 7+ == <8 <=, 0<8) <=k

Sarhan (1955) derives the asymptotically best linear unbiased estimator of

0, 6_ = (6

n 1n’62n) where

eln = (bn(l"s)x([na]+l) + bnaX([nB]))/Zl"naB

Oon = (n+1)(x([nB])nx([hu]+1))/FnaB

bnp = n-2[np]-1, FnaB = [nB]-[na]-1.
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This estimator has the form (2.2). It is easy to check that the coefficients
of the sample quantiles approach their limits

_ -(1-28) _ 1-2a 1

117 206w Y12 T 2oe) 0 P21 T "8y = (B-o)
at the o(n_%) rate required by Theorem 2.1. Since the population §-quantile
under 60 is Xg = 610 + (6—%)620, it is also easy to check that 90 has the
required expression in terms of the aij' That Vn(en) has a N(0,Z) limiting

null distribution follows from Theorem 2.1. The covariance matrix I can be
computed either from Theorem 2.1 or directly from Lemma 2.1 and the limiting

law of x([na]+1]’x([n8]) and the sample quantiles Ein chosen as cell boundaries.
These computations show that the MxM matrix £ has O's in the 1st and Mth row

and cdlumn, with the central (M-2)x(M-2) matrix having entries Gij—(pipj)%/(ﬁ—a)
for i,j = 2,...,M-1. (Here.dij = 1 if i=j and 0 otherwise.) Since £ has rank
M-3,_no.quadratic_form in Vn(en) can have a limiting chi-square distribution with
more than M-3 degrees of freedom. This upper limit is attained by the
Dzhaparidze-Nikulin statistic, which can therefore be employed without loss of

degrees of freedom.

From the results in Remark 2 of Section 3 it follows that .

'/ -5 -%,1 \
K _p12 p1£(§_.q‘) “‘
T
0 -P, S
-1 . ;
B = %2 : ;
_% i
0 Pyoa /
1 —%(B l) Il
pM2 . PM 2 /’;

and that BTB has entries [632 a(l—s)]_lBij, where

= 1- =1 -
B11 = 1-B+a B12 2(q+8 1)

B2 = a(%—e)z + (1-8) (3-0) % + a(1-8) (B-a).
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Since Q4 is algebraically complicated (though easy to compute numerically),

we give only T4n' The matrix Bn is obtained from B by substituting Gn and Pin
F(Ein,en) —F(Ei—l,n’en) for 90 and P, - For i=2,...,M-1, Pin = (Ein_gi—l,n)/GZn'
- - : : - ‘1 1
For Py = @ and Py = 1-B, this process yields a = 6 (X ([na]+1) ) + 5 and
g1 1
Bn _62n (x([nB])-eln) + 3. From (3.1) we then obtaln
v 1B =020 la LA )
n"'n’n 2n>"1n’"2n
Al = (-[81)/(1-8 ) - [nal/a_
A2n = —Aln/2 - [nB] + Bn(n-[nB])/(l—Bn)
and finally, inverting Ban,
| 2
M [N.-np. 1-
= 7 W 1Py 8y (2B -2a A B +A’B )
2 np. nAn In"22n "In"2n"12n 2n 1ln

where B.. results from substituting «_,8 in B.. and A is the determinant of
ijn n’"n ij n
the matrix (B,. ).
ijn

The uniform family is less often encountered in censored-data situations
than our other examples, but it offers an interesting contrast between full and
censored samples. In a full sample, the BLUE's of 6 are based on the extreme

1

order statistics and approach 8, at a rate faster than n®. Thus V (9 ) is
asymptotlcally equivalent to V and the Pearson statistic V (6 ) V (6 ) has
the x (M 1) limiting null distribution. Censoring deletes the most informative
part of the sample, 1eav1ng M-3 as the greatest obtainable number of degrees of
freedom. In Examples 1 and 2, tests from censored samples attained the same

number of degrees of freedom possible for full samples.

Example 4. The Weibull family. Once again the mle's for this common

family are obtainable only by numerical approximation. Bain (1972) transforms
the Weibull to an extreme value distribution and gives a simple but quite

efficient extimator for the scale parameter of the transformed distribution.
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Mann, Schafer and Singpurwalla (1976) give a corresponding estimator of the
location parameter. Suppose then that (after the monotonic transformation
X = log Y from the original data) we have a right-censored sample X(l) <io..< x([nB])

to be tested for fit to the extreme value family

F(x,8) =1 - exp {-exp[(x-u)/b]} -© < X < o

=1{6=(ub): -0 <u<ow, 0<b < »},
Bain's estimator of b is
., m8l-1
bn = (kgy) T L Ky - Xpgyy)

where the sequence of constants an can be expressed in terms of order

t
statistics vy Se.l< v[nB] from the standardized distribution F(t) = 1-e © as
-1 [nB%-l
k = n E(v_-v .
Bn rol v, [nB])

Bain gives a table of an for various B and n. The estimator bn is unbiased

and for the choices of 8 and n studied_by Bain has asymptotic efficiency

between 0.89 and 1 relative to the much more complicated BLUE. Mann, Schafer

and Singpurwalla note that u = E(X - bE(v , and therefore propose
gp ( ([n8])’ ( [ng]’ prop

the estimator

u - bnE(v

n = X([ns1) [ng]?

We shall take 6 = (u_ ,b ).
n n’’n

The asymptotic behavior of en must be investigated. If Tn.= anbn and
B
(4.1) ug = [ 1og{-log(i-t)}dt - B log{-log(1-8)},
0

1
then Bain shows that ii{nz(Tn—bouB)} -+ N(O,bgog) under F(x,eoj, where the form

1
of:cg does not concern us. We will show below that an- uB= o(n ®), from which

it follows that

[l

i g :
n®(b_-by) = n (T ~bgHg) /ug + op(l)
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and
n (un—uo) =n (x([nB])-E(X([nB])) + n (bn—bO)E(v[nB])
= n (x([nB])_xB) + n (bn—bo)vB + op(l)
where xB(VB).is the population B-quantile of F(x,eo)(F(x)). Thus n%(en-eo) is

asymptotically normal and Theorem 2.2 applies. The "natural" chi-square
statistic is then Vn(en)T T vh(en) where Z_ is a generalized inverse of the &
of Theorem 2.2 or a consistent estimator of such. This statistic has the
x2(k) limiting null distribution, where k is the rank of L. When k=M-1,%L  is
relatively easy to compute (Moore (1977), Section 4). But in this case,

k < M-1 and we are unable to obtain I . We therefore accept the possible loss
of one degree of freedom and use the Dzhaparidze-Nikulin statistic. The

1
. - 2 _ - - .
required fact that n (en 60) Op(l) follows as above from an

This we now establish.

LEMMA 4.1. For any 8, 0 < B <1, k = o(n"?) as o,

gn~tg
PROOF. Corresponding to the two terms of (4.1), write

_y [ng]
n

)
r=1
_ [nB]
n el ) el - B elace g,
T=

k =

. ng
gn E(vr) - J%;;l-E(v

[ng]’

are order statistics from n iid

where q(t) = log{—log(l—t)} and tl CenoX t[nB]

Uniform(0,1) rv's. We first show that -

1
2

@.2) - _1 _ In8] B )
. n E[ ) q(t)] - [ q(t)dt = o(n3).
0

r=1
Using the fact that the distribution of tl""’t[nB] conditional on t[“3]+1
is that of the order statistics from [nB] iid Uniform(O,t[nB]+1) rv's (this

technique was suggested by Burgess Davis),
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[n8]
n’t E[ ) q(t )] = n

r=l

1 [ng]
EIEC [ altlep a0 1]
r=1

= o7 E[mBIEGa(m [t )]

where the conditional d1str1bpt10n of T given t[n8]+1 is Unlform(O,t[n8]+l).

So

InB] [nB]+1
nhEL ) aepl = BEler TP geoan e
r=1 0
Y
n

E[[ a(t)dt]
0

[nB]+1]

where Yn is a Beta([nB],n-[nB]) rv. Letting ¢(y) = fg q(t)dt, (4.2) now states
L
that E[@(Yn)—m(B)] = o(n ®). Note that ¢'(y) = q(y) and that

-1

It

[(1-y)log(1/(1-y))1]
[y(1-y)17
since log x '_>__1-x-1 for x > 1. We have

EL9(Y )-¢(8) ]

7'y = q'(y)

| A

E[a(8) (Y, -8)] + % E[q' (V) (Y_-B)?]

1
2

).

* : : - -
for some Yn between Yn and B. Since E[Yn] = [nB]/n, the first temm is o(n

The second term is bounded by

L oen? . -8 (Y-8
“.3) EI;?;;‘;?;J < & max{E[g =], E[v ay )]}

The expected values on the right in (4.3) can be explicitly computed and shown
L
to be o(n"%). " Thus (4.2) holds.
It remains only to show that in addition

1
(4.4) [—23—1 ElaCty o] - 8a(8) = o(n™).

Since t[nB] is a Beta([nB]+1, n-[n8]) rv, arguments similar to those applied to

¢ above demonstrate (4.4).
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The statistic T4n will now be computed. In the notation of Remark 2 in
z

Section 3, f(z) = e% ¢ , 2; = logl{-1og(1-6,)} and £(z,) = -(1-6,)log(1-5,).

From this P 5 Vs and BTB are easily computed. Let P and.vin have the same

expressions as do @ and Vs but with Gi replaced by

Gin =1 - exp{—exp[(gin—un)/bn]}.

, T ' .
Of course, P;n = Gin_ai-l,n‘ Then Bn and Ban have the expressions found at

(3.2) with e,pi,qi,vi replaced by en’pin’¢'

»V. . The resulting statistic is,
in’ “in g

using (3.1) once more,

i [Nln-npl ] 1, N
Tan = L — + (o) (] v /p D g N, @ /P )’
i=1 in i=1 =
M
-2( z qﬁnvln/p )( 2 Nln 1n/p ) ( X 1nvin/Pin)
M 2 M 2
* (izl qﬁn/pin)(izl Ninvin/pin) }
where
M 2
= (.Z 2 /p ) Z v /) - Z PinVin/Pin) -
i=1

Once again A may be replaced by its limit in probability, obtalned by
substituting q&,v. and P; And once again the successive d1fference form
of Pin' %o and Vi makes T3n more easily computable in practice than may at

first appear.
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