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Subset Selection Procedures for
Restricted Families of Probability Distributions

by Shanti S. Gupta and Ming-Wei Lu

ABSTRACT

In this paper we are interested in studying multiple decision procedures
for k(k > 2) populations which are themselves unknown but which one assumed
to belong to a restricted family. We propose to study a selection procedure
for distributions associated with these populations which are convex-ordered
with respect to a specified distribution G assuming that there exists a best one.
The procedure described here is based on a statistic which is a linear
function of the first r order statistics and which reduces to the total life
statistics when G is exponential. The infimum of the probability of a correct
selection and an asymptotic expression for this probability are obtained using
the subset selection approach._rSome other properties of this procedure are
discussed. Asymptotic relative efficiencies of this rule with respect to some
selection procedures proposed by Barlow and Gupta (1969) for the star-ordered
distributions and by Gupta (1969) for the gamma populations with unknown shape
parameters are obtained. A selection procedure for selecting the best

population using the indifference zone approach is also studied.



SELECTION PROCEDURES FOR RESTRICTED FAMILIES

OF PROBABILITY DISTRIBUTIONS*

1, Introduction

In many problems, especially those in reliability theory, one is
interested in using a model for life length distribution which is not
completely specified but belongs, for example, to a family of distributions
having increased failure rate (IFR), or increasing failure rate én the average
(IFRA)., Such distributions form special cases of what are now commonly
known as restricted families of probability distributions. The idea of using
such families stems from the fact that in many cases the experimenter cannot
specify the model (distribution) exactly but is able to say whether it comes
from a family of distributions such as IFR, IFRA, Families of probability
distributions of these types have been studied by several authors; see, for
example, Barlow, Marshall and Proschan [4], Barlow and Proschan [5,6] and
Barlow and Doksum [1].

In this paper we are interested in studying multiple decision procedures
for k(kz;Z) populations which are themselves unknown but which are assumed
to belong to a restricted family. We now give some definitions of interest

to us (see Barlow and Gupta [3]).

(i) F 1is said to be convex with respect to G (writtem F é(D if

and only if G_lF(X) is convex on the support of F .

(ii) F 1is said to be star-shaped with respect to G (written F;(ﬂ

G'lF(x)

- is increasing in x>0 on

if and only if F(0) =G(0)=0 and

the support of F .,

If G(x)=1-e , x>0 , then FéG is equivalent to saying that F

has increasing failure rate (IFR)., Again if G(x) =1-¢& % , x20 , FgG 1is

*This research was supported by the Office of Naval Research Contract N00014-75-C-0455
at Purdue University. Reproduction in whole or in part is permitted for any purpose
of the United States Government.



equivalent to saying that F has increasing failure rate on average (IFRA).

In the statistical literature, selection problems for restricted families
were first investigated by Barlow and Gupta [3]. Some further results in this
direction and a review of some important results concerning inequalities
for restricted families and problems of inference for such families have been
given by Gupta and Panchapakesan [10,11] and Patel [16].

In Section 2, we propose and study a subset selection rule for distri-
butions which are é ordered with respect to a specified distribution G
assuming there exists a best one, Some properties of this rule are discussed.
The infimum of the probability of a correct selection is obtained and an
asymptotic expression is also given, We also study the asymptotic relative
efficiencies of this rule with respect to some selection procedures. Section 3

deals with selecting the best population using the indifference zone approach,

2. Selection rules for distributions é ordered with respect to a specified

distribution G .,

Before discussing the selection problem, we give some preliminary known
results for sake of completeness. Let F be the class of absolutely continuous
distribution functions F on R such that F(0)==O with positive and right-
(or left-) continuous density f on the interval where 0<F<1 ., TFor
FeF , we take F—l(l) to be equal to the right hand endpoint of the support
of F and we define F—l(0)==0 . For F , GeF ,» consider the following
transformation (see Barlow and Doksum [1])

-1
(2.1) HF'l(t)= IF (t) gre™tr(u) 1du , 0<tgl
0

where g denotes the density of G ,

.



We assume that G 1is always fixed., Since HF_l (the inverse of HF) is

strictly increasing on [0,1] , H_, is a distribution. Barlow and Doksum [1]

F
have shown that Fé G if and only if HF is convex on the interval
where 0~<HF<11 « Since G is assumed known we can estimate HF—l by
substituting the empirical distribution Fn of F ; that is
-1
E 7 (v)
-1 -1 n -1
(2.2) H () =H () = | glG T F (u)ldu
n F n
n 0
X r
- -1 r, _ fr,n. . -1 _ ~1,i-1
(2.3) H ) = jO glG TF (w)]du = 5. glC (= )](Xi,n xi_l’n)
. .th s e .
where Xi L s the i order statistic in a sample of size n from F
2
and XO’HZO .
If Gx)=1l-e ~ for x>0 , then (2.3) can be written as
-l.r, 1
(2.4) Hn (;1_) = n [Xl’n + eeet Xr_l,n+(n—r+l)Xr’n] -

We say that X -F...—FXr

+(n-r+1)X is the total life statistic
1l,n n T,n

b

...]_’

until rth failure from TF ,

(A) Selection procedure and its properties

Let MyseeasTy be k populations. The random variable Xi associated
with T has distribution function F, » 1i=1,2,...,k , where FiE:F .

Let F[k] denote the cumulative distribution function (c.d.f) of the "best"
population. We assume that (a) Fi(x)E;F[k](x) for all x , 1i=1,,..,k

and (b) there exists a distribution G such that FiS&B » 11,000,k
where < denotes é partial ordering relation on the space of probability

distributions. We are given a sample of size n from each ﬂi(i=fl,...,k) .

Our goal is to select a subset from the k populations so as to include



the population with F[k] . Let Q=={g==(Fl eessF) :3 23 such that
L

Fi(x)sz(x) for all x and i=1,2,.0.,k} . Let

r
(2.5) T, = ¥ a.X,.. for i=1,...,k and
1 P J 13,0
j=1
T
(2.6) T= X a,Y, 0
j=l J J’
. .th - . .th
where X, . is the j order statistic from F.,Y, is the j order
1;J,n i’ 7j,n

statistic from G,r dis a fixed positive integer (1<r<n) , a ==8G_1(;i}9 -

k|
-1 3. . _ =1 r-1
gG (n) for j=1,e4.,r-1 and a_ = g6 ( - ) .

For selecting a subset containing F[k]" we propose the selection

rule Rl as follows:

Rl ¢ Select population My if and only if

(2.7) T, 2 c; max T,
R DIV

where c1==c1(k,P*,n,r) is the largest number between 0 and 1 which

is determined as to satisfy the probability requirement

(2.8) inf Plcs[r ] > px
Q

where CS stands for a correct selection, i.e., the selection of any subset
which contains the population with distribution F[k] « For a given a(0 < o < 1),
we assume each Fi has a unique a-quantile. Let F[i](x) = F[i] denote the
cumulative distribution function of the population with ith smallest

a-quantile. Let T(i) be associated with F.., and let Wi(x) be the c.d.f.

[i]

of T(i)'



Lemma 2.1. Let F F be two distribution functions such that Fi(X)ZFZ x)V x

1’ 72

and T.,= X b.X, . i=1,2, where b,>0 for jeA , AC{1,2,...,n} and
1 jel J 13],n J
. . . . < S <
i3i,n is the j order statistic from Fi , 1=1,2, then P[Tl_x]_P[Tz__x] .
1 if Ti 2 X
Proof, Let Y(X. ;,e00,%X. ) ={
il n 0] otherwise

where X..,...,X, are n observations from F, (i=1,2) . Since
il in i

w(Xil,...,Xin) is nondecreasing in each of its arguments, it follows by

induction (Lehmann {15] p. 112) that Elp(Xil,...,Xin)SELP(XZl,...,X ) .

2n
That is P[TlZ x] 5P[T2_>_x] . This proves the lemma.

We now state and prove the following theorem which is more general than
that of Patel [16].

Theorem 2.1. If Fi’ GeF , Fi(X)ZF (x) Vx and i=1,2,...,k ,

(k]

F[k] < G, aj_>_0 for j=1,2,.e.,r , g(0) <1 and a_2¢q then

“ k-1 ,x
(2.9) inf P[CS|R,] = G (= )dG_ (%)
Q l 1 é T Cl T

where GT(X) is the c.d.f. of T .

Proof., P[cs]Rl] = P[T(k)gzclT(i) , i=1,...,k=-1]
2 =1 X
= [ Mhw, Eaw,
0i=1 % ¢ K
> f Wk_l (-}i) dw. (x) (By Lemma 2.1)
- k c k
0 1
= P[ZkZCle s 3=1, eee, k-11

where Z) s eee 2, are i.i.d. with c.d.f. Wk(x) .

Let ¢(x) = G_lF

:[k](X)



Note that ¢(x) is nondecreasing in x . Also we can write

T
= * il =
(2.10) Zi et § ani;j,n i 1,60,k ,
j=1
. .th e s .
where X% | is the j order statistic in a sample of size n from F )
13,0 [k]
i=l,...’k L)
1
(2.11) P[Z >c. max Z.] = Pl¢(—2Z,)>¢(2.) , i=1, o0 ,k-1] .
k 1 1<i<k J ¢y k i )
r
Since I a, = g) <1, aj_>_0 Vi=l, .00, , and ¢(0) =0 , by Lemma 4.1
5=1

of Barlow and Proschan [5] and (2.10), then

r
%
(2.12) ¢z S _Z_ ajd)(xi;j,n) .
j=1
1 1 =
Since ——a _>1 , — I a.>1 for i=1l,...,r , and ¢(0) =0 , by Lemma 4.3
‘1t €1 j=1 J
of Barlow and Proschan [5] and (2.10), we have

(2.13) b 2,) A z a 0RE . ) .
cq Sty 4oy ] 33
% =
(2.14) Py & Yi33,m
. .th c s .
where Y, . is the j order statistic from G, i=1,2,...,k . Thus

b ’n

from (2.11), (2.12), (2.13), and (2.14),

r r
P[Z, 2c, max Z,] >P[ ¥ a,Y ., 2c, I a, Y. . s 1=1,...,k=-1]
k 1 1<i<k i 4=1 Jksj,n 1 j=1 j isj,n
T k-1
et X
= f Gp (*E‘—)dGT(X)

0 ' 1



This completes the proof.

The constant cl==cl(k,P*,n,r) satisfying (2.8) is the largest number

between 0 and 1 determined by

k-1, x -1 r-1
. * L
{) GT (c )dGT(x) >P% and gG " ( — ) >c

1 1

We now consider two specific distributions G(x) . If G(x)==l--e._X ,

x20 , then we have following result which slightly generalizes the result of

Patel [16].

Corollary 2.1, If Fi(X)ZF[k](X)VX and i=1,,..,k , F <G,G(x)=l—e—X

[k] c
r-1
x>0 and n>max{r, =— 1} , then
l—cl
(2.15) ~anf pes|R,] = BN aE(x)
Q 1 0 ‘1

where H(x) is the c.d.f. of a X2 random variable with 2r d.f.

Proof. If G(x)=l-e * then a.= = for j=1,2,000,r~1 and a =‘-.!'—(n—r+l) .
— i n ? r n

Also L a >21 1iff n 2 -1 « By Theorem 2.1 and the fact that 20T is
¢, T l—cl

distributed as XZ with 2r d.f., the result follows.
If G(x)=x for 0<x<1l, then we have the following result which is a

special case of Theorem 2.1 of Barlow and Gupta [3].

<G and

Corollary 2.,2. If Fibd ZF[k](x)vx and i=1l,...,k , F[k] <

G(x) =x for 0<x<1l , then

(2.16) igf P[CS|R,] =n(2:i>°£[§ <r11><_§l_>1(1_ T:}E;>n—i:|k_l F o™ 4k

i=r

é G 1in Corollary 2.2 can be relaxed to

Actually, the condition F[k]



F[k] $G .

We state and prove the following theorem about the asymptotic evaluations
of the probability of a correct selection associated with the rule R1 in
the case where r 1is so chosen that r<(n+1)a<r+1 , 0< a <1 , This
amounts to selecting populations with large values of the a - quantile for
o (and r ) as defined above. In this case, §">a as n»>* , Note that

the result holds for all o .
Theorem 2.2, If L GeF for all i=1,..,k and

PE) FLZF L (X)W, i=1,.00k, Frg &6

[k]
(i1) G(x) has a differentiable density g in a neighborhood of its

0 =~ quantile Ny » g(nu) #0 , and

(iidi) gG_l is uniformly continuous on [0,1] , G—l(x) is convex and there
-1
exists an & , 0< E<1 , such that for §<y<1l , _g_(]%__}(_}_’_)_ is
nondecreasing in y , then as n-+w
©o l-c
k-1} x 1 n \1/2
(2.17) P[cisl] > j_w<1> [—(—:1— + & Ny £(ny) (O@) ] dd (x)

where a=1-0 and ®(x) is the standard normal c.d.f.

Proof,. We note that

(2.18) P[CSIRl] 2 P22 ¢ max z.]
1<i<k

where Zl,...,Zk are i.i.d. with c.d.f Wk(x) and Wk(x) is the c.d.f.

of T(k) .



By Theorem (2.2) of Barlow and Van Zwet [7] and condition (iii), then we

have (see Barlow and Doksum [1]), for n 1large,
(2.20) Z, =

where Y, is the rth order statistic from H and H -1 (the
ijryn F[k] F[k]

. . . . 1), < . .

inverse of HF[k]) is defined in (2.1). Now F[k](:G if and only if HF[k]

Since G_l(x) is increasing and convex, it follows that G_lHF (x) is

- [k]

convex, Since H <G and .G l(O):%O » then H, <G . In a manner

iy © i *

similar to the theorem (2.1) of Barlow and Gupta [3], we have

is convex.

2.21 PlY >c max Y, 1> p[y* >c. Y% i#k
( ) [ kir,n™"1 I<ick 13%»n kir,n= "17i3r,n ? ]
. th o .
where Y?'r o 1s the r order statistic from G , i= l,i..,k . From
b E :

(2.18), (2.20), (2.21) and using the fact that

o

* ~
(2.22) Yi;r,n N(na R

)
ngz(na)

the theorem follows.

Before we discuss some properties of the selection rule R we

1 H]
introduce some definitions (see Santner [17D).
Define PE(i) = PE[n(i) is selectedIR] where ﬂ(i) is associated with

F[i]'
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Definition 2.1.

(i) A rule R is strongly monotone in W(i) if

4in F when all other components - of F are fixed

[i]
?E(i) is

+in F[ (3j#1) when all other components of F are fixed,

3]

That means, le(i)ZPE.’f(i) when F[i] s'>'tF,fi] and P_F_z(j)SPf‘_g(j)
when F[j] & F?j] for j#1i , where E= (F[l]""’F[i]”"F[k]) s
B = FrapeeessFlpeeesTrg) » B = FrppsecesFrypaeeeFy)  and

§v2k= (F[l],...,Ffj],...,F[k]) .

(ii) A rule R is monotone means PF(i):SPF(j) for all FeQ with

Fryp@® 2,00 .

(iii) A rule R is unbiased if PF(i) gPF(k) for all Fe@  with

F . X ZF X .
[1]( ) [k]( )
(iv) A rule R is consistent with respect to ' means
inf P[CSIR]* 1 as n=® .
Q'l

It is similar to the proof in Lemma 2.1, we can show the following

theorem.

Theorem 2.,3. If a;> 0 for i=1l,...,r , then R1 is strongly monotone

in ﬂ(i) .

Remark 2.1.
_(l) If a rule R is strongly monotone in ﬂ(i> for all i=1,...,k ,

then R is monotone and inf P[CSIR]==inf P[CS]R] where
Q Q
0
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Qy={F=(F,...,F)e @ F = .. =F1 .

(2) If R is monotone, then it is unbiased.

(3) 1If Fi(x)=F(x,9i) , i=1,...,k and Ti is a consistent

estimator of O, , then R, is consistent with .respect to Q ={F=(F,,e..,F, )23 a j
i - 1 ’

1
such that Fi(x)ZFj(x) for all x and i=1,...,k} .

k

(4) If F, ,GeF, F,<G, i=1,...,k and the condition (iii) of
Theorem 2.2 is satisfied, we can show that Rl is consistent with respect
to .

The selection of the population with largest F. (i=1,...,k) can be
handled analogously., We assume F[i] (=) SF[ll(x) s 1=1l,...,k , and
F[l] éG . The rule for selecting the population with F[l] is R2 : Select

population m if and only if

(2.23) ¢.T. < min T,
21 Tigga

where 'c2(0<(:2 <1) 1is determined so as to satisfy the basic requirement.

In a manner similar to the proof of Theorem 2.1, we have

Theorem 2.4, 1f Fi , GeF , F[i](x)S_F[l](x)Vx and i=1l,...,k ,
F[l]éG , aj_>_0 for j=1l,.e.,r , g(0) <1 and achz , then
, T =kl
(2.24)  inf P[CS|R,] = [ Gy (c,x)dG(x)
Q' 0 T 2 T

G = —_ L = . 1
where GT(x) 1 GT(x) and {F (Fl"'°’Fk) :daj such that Fi(x) S_Fj (x)

for all x and i=1,...,k} .
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(B) Efficiency of procedure R,__under slippage configuration.

Under the same notations and conditions of Theorem 2,2 and the comments
above the Theorem 2.2, we consider slippage configuration F[i](x)==F<§> s
i=1,2,.0.,k-1 , and F[k](x)=¥F(x) , 0<8<1 ., Let E(S|R) denote the
expected subset size using the rule R , Then E(SlR)-—P[CS|R] is the
expected number of non-best populations included in the selected subset. For
a given- . €>0 , let nR(E) be the asymptotic sample size for which
E(SIR)-P[CSIR]==€ . We define the asymptotic relative efficiency
ARE (R,R*,8) of R relative to R* to be the limit as €+ 0 of the

nR(E) nR(E)

i.e. ARE(R,R*;8) = 1im

. Under the slippage
ngs (€) ex0 s (€

ratio

configuration we have,

(2.25) E(S|R,) = P[CS|R;] + (k- DPIT 1y ¢ E}; Ty

If n 1is large, then from an argument similar to the one in the proof

of Theorem 2,2, we have

(2.26) P[T ,v2 c, max T .. ] =~ P[Y. > ¢, max Y.]
(L) 1 141 (i) 1 —-"1 i#1 i

. th R
where Yi,...,Yk are independent and Yi is the r order statistic

from Hy for i=1l,.c.,k .« The right hand side of (2.26)is-asymptotically equal
[i]
to co
8x §,,n,1/2
(2.27) Jo = = ah(a) (- =D
- 1 1
k-2, x 1 n.,1l/2
¢ (—g--auh(aa)(l-cl)(ua )dd (%)

1

where ¢

1 is the constant used in defining Rl > is the (unique)
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o - quantile of H (x) and h(x) is the density function of HF (x) .
[k] [k]

For k=2 and n large,

F

2

(2.28) E(slRl)-P[cisl]z@(-h(aa)au(l_ )(m)l/Z (1+ 5,2_)-1/2) .
' 1
Let j & (= + (-, (M) =— (n Y2y30 (x) = px .
- OO l
o 1/2,

Now setting the right side of (2.28) equal to € and using clz].— 77 »
1/2 n

where D==¢_1(p*)(a&) /nu g(na) , we obtain

(2.29) ny @) (=@

Ty +6%Y2 4 /3 psa n(a )]
1 62 a

[a b’ (a) @ -8)2170 .

Comparison with Barlow-Gupta Procedure

Barlow and Gupta [3] propose a procedure for the quantile selection

R3 s

problem of star-ordered distributions which is,
R, : Select population T, if and only if

(2.30) T .>c¢ max T .
tad 1<k T2

where c3(0<lc <1) 1is chosen to satisfy P[CS|R3]2 P* and Tr i is the

E]

3
th . .
r order statistic from Fi where r< (n+l)a < r+1 .

They derive an expression for np (e) as follows:
3

2,-1

Moy reHM2 4z moe, £ 1P 26 (1 -6)2)

n, () =~ [-@©Q)
R3

where f is the density of F with unique O- quantile, §&_ .

o
RV A

(2.31) ARE(R,,Ry38) = lim o " .
e>0 Ry aah(aa)
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/8

If G(X)=l—e—x,x>0 and F (x)=1—e_X —*
[1]

0< 8§ <1, we have,

(1-0)2 10g % (1-a) <1

2 —
a

(2.32) ARE(R,,R436)

0.4803 , o =1/2 .

Comparison with Gupta Procedure

Gupta [8] gave a selection procedure for gamma populations Tri's with

densities . xa_le_x/ei x>0, ei>’0 ,» 1=1,2,...,k . The
I'(a)6}
procedure R4 is
R4 : Select population ﬂi if and omnly if
(2.33) ii >ec, max X,
1gisk

where ii is the sample mean of size n from 1Ti and c is the largest

4

constant (0<c¢, <1) chosen so that P[CS|R4]2P* .

4

¥For k=2, 9[l]=6 and 6[2] =1 (see Barlow and Gupta [3]), we have
n, (€)

2 - 2
(2.34) ARE(R,R,36) = lim — 3(8) - 2allog 6% @“(l'*éz) .
€0 "R, 2(1-9) [qu(aa)]
Hence
(2.35) ARE(R,,R,36) = ARE(Rl,R3;6) ARE(R3,R4;6)

2
ﬁilogsﬁﬁiv&4-az
V2 (1-8)a, h(aa)

and F[Z](x)=l—e , x>0,
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If G(x)=l—e-X for x>0 and a=1,

(1-0) (1487) log?$
2(1-8) %0

(2.36) ARE(Rl,R4;6) =

§41) = l~a .
o

Comparison of Rl and R_ from uniform distribution
J

Suppose my and m, are two independent uniform populations with

distribution functions Fi (i=i,2) .

r
0 x<0
N x
(2.38) Fi(x) = J T ngsei
i
1 x>0,
" i

where 6=8[l] < 6[2]=l .

A sample of n independent observations is drawn from each of the two
. . . s . th .
populations. Let Tg be the total life statistic until r failure from

™ (1=1,2) where r<(ntl)a<r+l . The procedure RS is given by

R5 : Select population m, if and only if
(2.39) T% > ¢, max T%
175 a0 3

where ¢ is chosen so that P[CSlRS]ZP* R

5
Let T"(<i) be associated with e[i]
C
- - 1 __5_ 1
(2.40) E(S|Rg) - PICS|R,] = PITf1y 2 c5TEyy]1 = PITy 2 -5 T,]
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where Ti, Té are two independent total life statistic until rth failure

from uniform distribution over (0,1) . By Gupta and Sobel [12],

T' - u
(2.41) i - N(0,1) as Qoo ,

no(2n—-on +1) ¢ - no(2 -a) 2 _ _a(l-a) (2—OL)2

where T ru s /55— , O =An and A= 3
3
2 u _, u' o.(2-a)
12 ° Hence — % 6—*=B/E- where B=-—-—+= , From (2.40), we have
© 2VE
c5 cs
E(s|R5) - P[CSIRS] ~ P[Zl_>_ T2, * ( - 1)Bvn]

where Zl’ Z2 are i.i.d. with N(0,1) .

C

E(s]RS) - P[CSIR.S]
5

{ ol Lo - E‘-S—)B/E]dwx)
-0 5

ol-(1- DB/ //1+( 257 )
5 5
Let E(S|Rg) -P[CS|R;1=€ > 0, we obtain

-1
1 1 A T . 37 (e)
(2.42) - Pn _/6’2 + > =
5

5

. = 1 1
Note that 13f P[CS]RS] P[T]2¢.T)] ,

= ¢[-(1 - —Cl——)BffT/-/j"lﬂ/cg ]
5

where T! and T'! are defined as above.

1
-1
%
Setting inf P[CS|R.]1=P%* and using c. =~ 1- !231__§Eil and
/o B

-1,
Lo X2 B

s /a B

, from (2.42), we obtain



17—~

-1 / 2 -1 2
(2.43) ng () « {‘D () /1467 -V3 60 (P*)} )
5 B(1-¢)
From (2.29) and (2.43),
n_ (g)
R - 2
(2.44) ARE(R ,R.56) = 1jm —i_ _ . _O3B°
1275 ex0 g () a?n?(a )
5 o o,
If we assume that G(x) =x for 0<x<1, then
' B (1) 301 ) (2-0)2
(2.45) ARE(Rl,RS;é) = > = ~0) (2-0) < 1

3(1—&)(2—&)2+a2

ARE(Rl,RS;ﬁ) is a decreasing function of o and for a=1/2 , it is equal
to 0.931., Note that in (2.45), Rl is based on rth ordered statistic and

R5 is based on the total life statistic until rth failure,

(C) Selection pProcedure for distribution'rg ordered with respect to

Weibull distribution

Assume that the specified distribution G(x) 1is given by

G(x) =

where X>0 and attention is restricted to a>1 which is assumed known,

In this case, we use T§ as our statistic where

r-1
™= 5 x% + (n-1)x% s i=1,...,k .
i j=1 1id,n i;r,n
.th A . .
As before, Xi'j n denote the j order statistic from Fi » I=1,.00.,k . Since
b H

G(x) is convex with respect to the exponential distribution if 21 and since

the convex ordering is transitive, the family of distributions which are convex
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with respect to Weibull (0>1) will have IFR distribution. Thus our interest
here is in a special subclass of IFR distributions. The rule for selecting

the population which is assoicated with F[ is as follows,

k]

R6 : Select population T if and only if

(2.46) T* > ¢

T
i 6 max o

1<i<k

where c6(0'<c6<§l) is determined so as to satisfy the basic probability
requirement,

Using the fact that if FEG and F(0) =G(0)=0 then FOLEGOL for a>1,
where Fa is the c.d.f., of Xa , F(x) 1is the c.d.f, of X,Gq is the

lF (Xa

o . -
cedof. of Y and G(y) 1is the c.d.f. of Y . Also, Gu o¥i,n

) is

X

. . .th . -
stochastically equivalent to the i1 order statistic from G*(x)=1-e s

for x20 , where X < eee 2 X are order statistics from F . In a
1,n ,Nn

manner similar to the proof of Theorem 2.1, one can prove the following theorem.

Theorem 2,5. OLIf Fi(x)ZF[k] (x)Vx and i=1,...,k, F[k](O) =0 , F[k] (<:G ,
G(x) =l—e_>\X , x>0 , A>0 and o2 1) is known and n > max{r, %} , then
6
, T k-1, x
(2.47) inf P[CS|R, ] = [ H ~(—)dH(x)
0 6 0 C6

where H(x) is the c.d.f. of a Xz random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let ﬂl,...,ﬁk be k populations with densities

o a,-1
fi(x)=1-.(u)x e , x20 , >0 , a.,>1

>
=
e
I
w
x

» 171,600,k

Let Fi(x) be the distribution function of T, i=l,...,k + We are given
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a sample size of n from each ﬂi . Let Tg be total life statistic until
rth failure from m, . Let 0 < eee S0 be the ordered values of O, 's .
i [1] [k] 1
We are interested in selecting the population with the largest value &[k]
O,

. 1 . . .
(unknown). Since the mean of ﬁi is i selection of the population with

largest mean is equivalent to selecting the population with largest value,

a[k] . The subset selection rule based on Ti is:
R7 :+ Select population ﬂi if and only if
(2.48) T* 2 ¢, max T¥ ,
+ 1<j<k
where c7(0 <cyq <1) is the largest value chosen to satisfy P[CSlR7]_ZP* .
Since the rule R7 is scale invariant, we can assume B=1 ,

Case 1: All a, are unknown and 21 . Let Ql= {_OL_= (Otl,..,,uk) : OLiZl Vil .

In this case, by Corollary 5.1 and FigG(x)=l—e—x , x20 , i=1,...,k we

have the following result. If n2>max{r, §:% } , then inf P[CS‘R7]=
—c, Q

j Hk_l(7§FJdH(x) , where H(x) is the c.d.f. of a X? r.v. with 2r d.f.
0

7
Case 2: o, are unknown but assume 150Li$A , 1=1l,...,k and A is
known. Let FA(x) be the c.d.f. of X with density function fA(x)= fé?sxé—le—x ,
x>0 . Let H(x) be the c.d.f, of a XZ r.v. with 2r d.f. apd let h(x) be

its density function. The following theorem is the lower bound for the

probability of correct selection without any condition on n .

Theorem 2.6,

(2.49) P[CS|R,] > { Hk'l(-i—rl x) %‘3@_ e dx
0

-1 _
where y = F, (L-e %y .



Proof., P[CS|R,] = P[T*, . >c. max T5..] ,
SES 7 (k) 715j5k—l (3)
where T%, is associated with o, sy i=1l,...,k . Since
(1) (1]
-X

Fy(x) <F (x) <G(x) =1l-e ™ ,

(2.50) PlCS|R,] 2 P[TA* > c; max  T¥ ]

: 1<ji<k-1

where Ti* is the total life statistic until rth failure from G(x) and
T?*(j==l,...,k—l) is the total life statistic until rth failure from FA(X> .

Since A > 1 themn F,<G . Let ¢(x)==G_lFA(x)

Ac
¢y
(2.51) P[Ti*;:c7 T?* » J5l,ee.,k-11 = P[¢G— T**)>> ¢Q—— T* *) 3=1,...,k-1]
By Lemma 4.1 of Barlow and Proschan [5] with a; = ...==ar_l==c7/n ,

(n—r+l)c /n , a; =0 for i>r+l and ¢(X)£EY where X(Y) is a r.v. with

distribution function FA(G) respectively, we have

Cc C
1 7 1 7
— L33 P, ¥ 1= — — P33 — = -—
(2.52) P[¢(n Tk )ch(n Tj ) 5 ] 1,..05k l]ZP[¢(n Tk ) > n Yj s J ls"'ak> 1]

where Yj (j=1,...,k-1) is a r.v. with x2 with 2r d.f., From (2.50), (2.51)

and £2.52), we have

B ER @B , where B(o) = PI6G ) <x]

P[CS]R7]Z
©7

o~— 8

Since B(x) =H[2n F (l-—e )], then

[ 1(23 DaBG) = B Ly ZhQny) x
0 ¢z 0 ¢y £,

This completes the proof.
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Let S denote the size of the selected subset. The expected value of

S when R is used is given by

(2.53) E(S|R7) = I P[T%>c, max T*] .
i=1 1<k

Let Q'—{QL_= (Obl,...,OLk) :1l<a, <A, i=l,...,k} . For QL_EQ' , since

Fp(x) SF,(x) £6(x) =1-e™" , then

E(S|R;) < k P[T§*2c, max TH* ]

T ogier

where TT* is the total life statistic until _rth failure from FA(X) and

T?*(j=2,...,k) is the total life statistic until rth failure from G(x) .

Thus . | - .
(2.54) sup E(S|R,)) = k| Hk_l(%—}i)ds(x)
Q' 0 7

where H(x) is the c.d.f. of X2 r.v, with 2r d.f. and 8S(x) is the c.d.f. of

the.total life statistic until rth failure from FA(X) .

Remark 2.2, (i) We can show that the lower bound for case 2 in Theorem 2.6
is less than or equal to the lower bound for case 1.

(ii) Now we are dealing with the problem in case 2. Let
? Hk_l(jf;ﬁdﬁ(x)==P* , then ¢, can be determined. If ILZHBX{I,(r—l)/(l—C7)} s
Shen we ;;ould use the lower bound for case 1, If r<n< (r—l)/(l—c7)', then
the lower bound for case 1 cannot be applied. In this case, we can use the lower
bound for case 2,

(iii) Sometimes, the distribution function S(x) which is defined

above the remark 2.2 is hard to compute. From E(SlR7)5J£P[Ti#ZC7T§* s 3525 004e,k]
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where Ti* is the total life statistic until rth failure from FA and
T?*(j=2,...,k) is the total life statistic until rth failure from G(x) .
Using the similar arguments in the proof of Theorem 2.6, we can get

X

T k-1{2n -1 T Ton
E(S|R,) < k g H [};; Fy <1 - e j} dH(x)

where H(x) 1is the c.d.f. of a X2 r.v. with 2r d.f. In this case, the upper

bound of E(S]R7) can be computed.

3. Selecting a best population - using indifference zone approach.

Let TysesesTy be k populations. The random variable Xi associated
with T has an absolutely continuous distribution Fi .« We assume there

. X . e —
exists a F[k](x) such that F[i]O{)z F (6) for all x, i=1,...,k-1

[k]
and 8(0< §<1) 4is specified. Let

(3.1) Q%) ={§=(FP.u,ﬁg:‘Haj such that Fi@)sz%JVi¢j}

The correct selection is the choice of any population which is associated with

F[k] « We propose the selection rule R8 : Select population ﬂi if and only if

(3.2) Ti = max T, where Ti is defined as in (2.5).
1<igk

We want the P[CS]R8];3P* , for all FeQ(S8) , where P* is specified.

Theorem 3,1. If Fi » GeF , i=1,...,k , aj_ZO s J=1l,0ee,r ,

<
e ¢

g(0) <1 and arzé., then

X
Gk;l (§) d6p(x)

(3.3) inf P[CSIR8] =
Q(8)

oO~— 8

where GT(X) is the c.d.f, of T ,
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Proof. P[CS|Rg] = PIT g2 max  T.y] .

1<i<k

Since F[i](ij > (x) , i=1,.4.,k-1 and by Lemma 2.1, then

k]

T,.
Pos|Rg) = Ty, 2 6 —(E—J—)Vj#k] 2 P[T(py 26 % Vi#K]

' * * . 3 . .
where Ti""’Tk—l R T(k) are i.,i.d. with c.d.f,. Wk(x) . Using the same

argument as in Theorem 2.1, we have our theorem.

For given k,§, P* and G(x) , we can possibly find the values of the

pair (n,r) , (n>r) which satisfy

k

(3.4) a_>9o and G ;1 (%) dG(x) 2 P* .

O~— 8

If G(x)=x for 0<x<1l , we can always find the values of the pair

(n,r) , (n>2r) which satisfy

. ] k-1
i n-i
n-1 n n e ) X r-1 n-r
fo —— - - - - > px
n j T ( i)( 3 1-3 x (1-x) "dx 2P
r-1 0 |i=r .
If G(x)=1l-e >~ for x>0 , we can find the smallest integer <t , say
T k-1
ry s which satisfies J a (%)dH(x);:P* where H(x) is the c.d.f. of a
0

Xz random variable with 2r d.f. Since %—arz:l iff n > {E%— , Wwe can

find the minimum n satisfying Ilznmx{ro,(ro—l)/(l—ﬁ)} .

Acknowledgement .

The authors are very thankful Mr, Woo-Chul Kim of Purdue University for
critically reading this paper and making several helpful comments and suggestions

leading to an improvement of the paper,



~24—

REFERENCES

[11 Barlow, R.E. and Doksum, K.A., (1972), Isotonic tests for convex
orderings. Proc, Sixth Berkeley Symp, on Math. Statis. and Prob.
Vol., I, 293-323.

{21 Barlow, R.E., Esary, J.D. and Marshall, A,W, (1966). A stochastic
characterization of wear-out for components and systems. Ann, Math,
Statist., 37, 816-825.

[31 Barlow, R.E, and Gupta, S.S., (1969). Selection procedures for
restricted families of probability distributions. Ann. Math Statist.
40, 905-917.

[41 Barlow, R.E., Marshall, A,W, and Proschan, F., (1963). Properties of
probability distributions with monotone hazard rate. Ann. Math.
Statist., 37, 375-389.

[51 Barlow, R.,E, and Proschan, F. (1966). Inequalities for linear combin-
ations of order statistics from restricted families. Ann. Math, Statist.
37, 1574-1592,

[6] Barlow, R.E. and Proschan, F. (1966)., Tolerance and confidence limits
for classes of distributions based on failure rate, Ann. Math, Statist.
37, 1593-1601.

[7] Barlow, R.E. and Van Zwet, W.R. (1970). Asymptotic properties of isotonic
estimators for the generalized failure rate function. Part I: strong
consistency. Nonparametric Techniques in Statistical Inference (ed. Puri,
M.L.) 159-173, Cambridge University Press, London,

[8] Gupta, S.S. (1963). On a selection and ranking procedure for gamma
populations. Ann. Inst. Statist. Math., 14, 199-216.

[9] Gupta, S.S. and McDonald, G.C. (1970). On some classes of selection
procedures based on ranks. Nonparametric Techniques in Statistical
Inference (ed. Puri, M.L.) 491-514, Cambridge University Press, London.

[10] Gupta, S.S. and Panchapakesan, S. (1974). Inference for restricted
families: (a) multiple decision procedures (b) order statistics inequalities.
Reliability and Biometry (Ed. F. Proschan and R.J. Serfling), SIAM,
Philadelphia, pp. 503-596,

[11] Gupta, S.S. and Panchapakesan, S, (1975). On a quantile selection procedure
and associated distribution of ratios of order statistics from a restricted
family of probability distributions. Reliablity and Fault Tree Analysis
(Ed. R.E, Barlow, J.B. Fussell, and N.D. Singpurwalla), SIAM, Philadelphia,
PP. 557-576. '



[I2]

[13]

[14]

[151]

[16]

[17]

[18]

-25-

Gupta, S.S. and Sobel, M. (1958). On the distribution of a statistic
based on ordered uniform chance variables, Ann. Math, Statist., 29, 274-281,

Hooper, J.H. (1977). Selection procedures for ordered families of
distributions., Tech., Report No. 339, School of Operations Research and
Industrial Engineering, Cornell Univ., Ithaca, N.Y, 14853.

Lawrence, M.J. (1975)., Inequalities of s—ordered distributions. Ann.

Statist., 3, 413-428,

Lehmann, E.L. (1959). Testing Statistical Hypotheses, John Wiley,
New York,

Patel, J.K. (1976) Ranking and selection of IFR populations based
on means, J. Amer, Statist. Assoc., 71, 143-146,

Santner, T.J. (1975). A restricted subset selection approach to ranking
and selection problems., Ann., Statist., 3, 334-349,

Van Zwet, W.R., (1964). Convex Transformations of Random Variables.
Mathematical Center, Amsterdam,



yneiassiricq
SECURITY CLASSIFICATION CF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE . BEFORE COMPLETING FORM
1. REPOT??NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT’S CATALOG NUMBER
Mimeograph Series #518
4. TITLE (and Subtitie)

Subset Selection Procedures for Restricted | Technical

Fam111es‘of Probability Distributions  tERTom o ORG REFGRT NOWBER

Mimeo. Series #518
®. CONTRACT OR GRANT NUMBER(a)

5. TYPE OF REPORT & PERIOD COVERED

7. AUTHOR(s)

Shanti S. Gupta and Ming-Wei Lu " |ONR NO0O14-75-C-0455

GRAM ELEMENT, PROJECT TASK
A& W UN MBER

purt
z:
c

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Purdue University
Department of Statistics
West Lafayette, IN 47907

11. CONTROLL!NG'OFFICE NAME AND ADDRESS 12. REPORT D.ATE
Office of Naval Research ‘ ' 'NSYﬁmHS;al?Zans
Washington, DC ' : kY

| 14. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Ofﬂco) 8. SECUR[TY CL ASS. (of thias report)

Unclassified
1Se, ggm. ASEI FICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for pub]ic release, distribution unlimited.

17.. BISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)

8. SUPPLEMENTARY NOTES -

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Selection Procedures, Reliability, Convex, Star-shaped, IFR, IFRA,
Total Life Statistic, Probability of Correct Selection.

20. ABSTRACT Conunuo on reverse side if necessary and ldenufy by block m.mbor)
is paper we are interested in studying multiple decision procedure

for k(k > 2) populations which are themselves unknown but which one assumed to
belong to a restricted family. We propose to study a selection procedure for
distributions associated with these populations which are convex-ordered with
respect to a specified distribution G assuming there exists a best one. The

procedure described here is based on a statistic-Ti = Z'aj_Xi_i n for

DD ‘F°“" ]473 EDITION OF 1 NOV 65 IS OBSOLETE

JAN 73 : . o
S/N 0102-014~-6601 | Unclassified

o R e e o —vrv
SECURITY CLASSIFICATION OF THIS PAGE (When Date lnulod)



LLCURITY gLAssmch.non' OF THIS PAGE(When Data Entered) : ' : . ‘
i ='],;;;;§QWhere_xi;j n 1s the j-th order statistic'fromgFi3 r is a fixed
positive integer (1< <n), a; = g67 () - g6 (d) for go1,...,r1,

la, = gs*'(fgl) and g is the density of G. This statistic_Ti was considered-

| by Barlow and Doksum (1972). 1f 6(x) =1 - & for x > 0, then nT, = X, _

oot Xi~r—1‘n +‘(n-r+1)xi,r n is the total life statistic until r-th failure
from Fi; This shows that the procedure based on Ti_generalizes Patel's result
(1976) for the IFR family. '

The infimum of the probability of a correct selection is obtained and the
asymptotic expression is also obtained using the subset selection approach.
Some other properties of this procedure are discussed. We also study the
asymptotic relative efficiencies of this rule with respect to some selection
procedures proposed by Barlow and Gupta (1969) for the star-shaped ordered
‘distributions, Gupta (1963) for the gamma populations with unknown shape
parameters and etc. An example is given to illustrate the use of the selection
procedure for the two independent uniform distributions. Application to
quantile selection rules for distributions convex ordered with respect to
Weibull distribution is given. A selection procedure for selecting the best
population using the indifference zone approach is also studied.

o ~ Unclassified v
' SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




