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A law of the iferated logarithm and invariance principle for regression
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of Sen and Ghosh (1972) with simplified proofs. An inequality of
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1. Summary and Notation.

We wii] use more or less the notation of Sen and Ghosh (1972}. Lef
{Xi; i>1} bea sequence pf 1ndepehdent random‘variabTés defined:on the same
probabinty space (2,%P) with common continuous distribution function F.
“Let I(u) = T or 0 according to whether u >0 or u< 0. Define

. n B '-
Rip = kZ] I(Xi'xk) to be the rank of X; among X]""’Xn fqr i=1,...,n.

Let J be a nondecreasing, absolutely continuous function inside (0,1) such that

1 . _
[ 9%(u)du < = Set d_(i/(n+1)) = EJ_(UlT)) where U8T) < L. < U(M) are the
0 n n‘'n Sn ==

ordered values of n independént uniform (0,7) random variables. Without loss of

1
generality we will assume [ J(u)du = 0.

By a regression rank statistic we will mean a statistic of the form:

n ’ .
T = Z _(Ci-C )9,(i7/(n+1)), where CpsevesC, are
. 2 2'—
: ci/n. Set o, = Var Tn and Cn =

Hr~13

constants not all equal .and En =
n ’ . 1

-2 :
1.Z](ci-cn) .

n
-Ci )R/ (i41)) for i > 1, M= )

Denote by y; = (c. n

1 1

2 _ N _ =
T = Tpay - M M,y and s = Var M- We will set To =My = ¢p = 0.

A Taw of the iterated logarithm and invariance principle will be proven
for Tn' ~The method of proof will be to show that to obtain our results, Mn
is a sufficient apprbximation to Tn' Mn is a sum of 1ndepehdent random
variables (See Lemma A.3 Appendix). So law of the Togarithm results for Mn

should apply to Tn’ if Mn is sufficiently close to Tn' The main tool will



be an inequality (Proposition A.1 Appendix) that will allow us to obtain a
sufficient approximation of closeness of Mn to Tn. The inequality is an

extension of Lemma 2[5}Hu§k6v5 (1977).

2. Main Theorems. o

Law of the Iterated Logarithms

Theorem 1. (Unbounded Score Function)

If
1.1. J'(u) i:K(u(l-u))"?’/z«S for some K > 0 and 0- < 6<1/2
1.ii. 1im n 'l s 0
N n

1.111. Cg < nC for some constant.C > 0 and all n Z.T
1.iv Ch = €t 02 = o(L(en) )TV E) for

some r > 0 and ¢ > 0 such that (2 + ¢)(1/2 - §) <1
then

an— :E :! ats.

1.v, Tim T //ZGn&b&Lo = 1.
- oo n n
Remark 1.1.

Theorem 1 is an imprbvement on Theorem 1.2 Sen and Ghosh. (1972). Among
other additional conditions, they require that max |ci-En]C;1 = O(nf]/z).
l.iv. is a re]axatioh'of this condition. Sen algjéﬂosh's pfoof is essentially
a verification of»theCOhditionsof a martingale law of the iterated logarithm

of Strassen (1967). The proof of Theorem 1 utilizes an entire]y different tech-

nique.



Remark 1.2. (Rate of Convergence to Normality)

Let Fn(x) = P(T_ < o x). The machinery developed in this paper to prove

n n
Theorem 1 can be used to obtain a rate of convergence to normality for Tn; ,

that is, under the conditions of Theorem 1 with 1.iv. rep]ated'by |cn—E

001, sup|Fy(x) - a(x)| = o(n 23
X

n-]l -

). The proof of this is along the lines

of Bergstrom and Puri (1977).

Theorem 1'. (Bounded Score Function)

If
1.9, - J'(u) <M for some M >0.

1.4, 1.711.
and

[ - ._‘] - ' 2 -]/2 .
1'.4v (cn-cn_1)Cn 0((%@/[(Cn)) )
thén 1.v. holds.

Remark 1'.1.

Theorem 1' can be proved by the verification of theconditions of the law
of the iterated lTogarithm for martingales of Stout (1970). The proof given here
‘though will be basica]iy fhe same as the proof of Theorem 1 with a few modi-
fications. | |

The proofs of Theorems.1 and 1' will be delayed until Section 3.

Invariance Principle

For each n > 1 let Vn and W, be random functions on [0,1] defined as

follows:



R | 2 .2
Vn(t) - Snr[Mk + (Mk+]'Mk)(tsn‘Sk)/(sk+] Sk)]
and
ey o] 2. 2y,02 .2
Hn(t) = sp Iy + (Mg T (Esy=5 )/ (s -5y
whenever sﬁ f_tSﬁ 5;s§+] for k = 0,...,n-1.
Theorem 2.
If 1.3 or 114, 1,11, 1.711, and max |c,-€ |C71 = o(1), then

1<i<n

wn = W where W is a standard Wiener process on [0,1].

Remark 2.1.
See Theorem 1.2 Sen and Ghosh (1972) for an analogous invariance

principle proven under the conditions described in Remark 1.1.

Proof of Theorem 2.

It is easy to show that under the conditions of Theorem 2 that

the Vn process satisfies the conditions of Theorem 2.1 Prokhorov (1956) to

give Vn = w,

Note sup |Vn(t) - wn(t)l
0<t<l
R 2 2., 2 2
= sup S |Mk-Tk + (Mk+]-Mk- Tk+1+Tk) (tsn-sk)/(sk+1-sk) |

O<t<1 n

-1 -
<s_ max |M-T, |.
n 1<k<n k 'k

Now since Mk-Tk; k=0,...,n is a martingale (See Lemmas A.2 and A.3

Appendix), for all ¢ > 0

P( sup |V (t)-W (t)] > ¢) <&
O<t<l .



- Under 1.4 or 1.i', 1.i1 and 1.iii, Corollary A.2 Appéndix gives -

(2.2) = 0(1). Hence (2.1) = 0p(1), which implies that wn.= W.

3 Proofs of Theorems 1 and 1'.

Proof of Theorem 1.

Let Gn(x) = P(Mh i_snx) and R, = szp IGn(x) - o(x)].

Theorem 6 page 115 Petrov (1975) coupled with the fact that M, is a sum

of independent random variables (see Lemma A.3 Appendix) gives

- (24¢ n S \2+e b 24e,. .. .
R, = Asn( ) .Z (Cj'cj-l) € .Z Jj ®(i/(3*+1))/j for some
_ j=1 i=1
constant A > 0, which is
2 o o 3 2bes. e ain . - £_-¢
<As " ) (ciCi1)° )} 9TTE(i/(341))/5 max |c.-c. 4|Ss
nogs =17 35 - J<jen 9 371

A.2.v. of Corollary A.2 Appendix , 1.ii., 1.iii., and 1.iv. imply that

max fes-€; 11578 = 0((oan ) (angan) ).
]ijf.n J J .

A.2.v. along with 1.7, 1.1i, 1.i11, and thé assumption that 0 < (2+e)(1/2-6) <1

imply that

Hence Rn = 0((@nn)-](2n&1n)']-r).

Thus by the remarks on page 305 Petrov (1975),
—_ = 8.S.
Tim Mn//ZSﬁﬁwlsﬁ = 1. A.2.v. also implies that
N :
| a.s.

e Y 27279
Tim Mn/ /ZOn&@Lon | .

N>



- The following Temma will now give 1.v.

Lemma 1.1.
- a.s.
Tim(T_-M_)// ZUZJnZnoﬁ = 0
now NN n

-Proof.

It is sufficient to show that
o a.s.
Tim (T, .)//2szw,l s2 =0

Note that {(T M )//25 on on S does not converge to zerol}c {(T M )2

Sﬁ i.0.}, which since 52 is a nondecreasing function of n is

o oyl omax  (T-M)Z > s2 3 here n, = (j+1)1/S.
J:] k<n . j . J
Now since (T_n-Mn)2 is a submartinga]e (See Lemmas A.2 and A.3 Appendix), the

maximal inequality gives

P(omax  (Tm)? »s2 ) < E(T, M )%/
nj<k5nj+1 J J+1 g+l J
By Corollary A.2 Appendix.
E(T, <M )%/s2 = 0(n:%). Also note that
#Nn s Yy
SVESE 0(((J+1)/J)1/6) = o(1)
N BN
Hence P{  max (T,-M )% > s2 ) = 0((3+1)72),
n.<k<n k™ k n.
354 ’

Application of the Borel-Cantelli 1emmé completes the prdoqu



“Proof of Theorem 1°'.

Theorem 1' is proven almost exactly as Theorem 1, except that Kolmogorov's
Theorem (See Theorem 1 page 292 Petrov (1975)) is used to obtain the law of the

'iterated Togarithm for Mn' This is where condition T'.iv. comes into

p]ay.[j

4 Appendix.

For fixed integers k > 1 and 1 <m < 2k, let S be any set of indices
m
{Bysevnstpd such that 1 <27 <o < %, are integers and 121,'21 = 2k.
Let /= the class of all such S for k > 1 fixed and 1 <m < 2k. Forn > 1,

let 4 be the subclass of #where 1 <m < 2k A n.

Suppose w],...,wn are random variables such that for each S ¢ 5ﬁ’£here
exists an ng such that
% e o
‘ E(wi] e wim)_= ng for all permutations i,,...,i of T,...,n
taken m at a time.

With the above notation and assumptiqns we will now prove the following %

inequality.

Propositon A.1. (An Inequality)

For each k > 1, there exists a constant C(k) independent of CyseresCp

2k _ 2k .2k o -
0 < C EW;", where by = izl (Ci'cn)wi‘

such that E¢
Remark A.1.
| Proposition A.1 is analogous to Lemma 2.5 Hu§kov$ (1977), but with less

specified assumptions-and a simplified proof.



Proof of Proposition A.1.

Observe that EgZ¥ -
() e e e
; . ) (cq-C c -¢ ]
j.|+,,,,+jn=2k J'l ’---an 1 "n n-n ]
2k e o
= X (94 2 ) z (C.i -Cn) ...(C_i -Cn) M
SE-% ]:--.’m 'i],..-sim ] m.

distinct

The proof will now follow directly from:

Lemma A,].

For all S ¢ 5ﬁ,

% %
I R R O M ERCOICAN

11"ff’1m m
distinct

Proof.

Case 1. Suppose all the 2],...,2m are even integers. Then’

. 21 - lm
L (c; -c) TR CAECI

1]""’Tm 1 m
distinct

20 20

[}

L (c; -c,) L (c; -c,) m
1],...,1m 1 m
distinct

where 2? = 21/2 for i=1;...,m, and the z? are integers.

m .
Since 7} 2% =k, (A.1.2) is obviously less than C
i=1

2k
X,

(A.1.7)

C(A.1.2)

Case 2. Suppose 2],...,2m consist of 2r odd integers > 3 and m-2r even

integers where r > 1.



| Let us relabel QT,...;Qm, so that ey,...,e , . are thg even integers
and d1’f"’d2r are the odd integers.
We can now rewrite our sum as

: e e o
|1 ey —cn) v (c; -C,) m 2r(c <) e
1],...,1m 1 m-2r

distinct

But since each lci—Enl j_Cn, the above is

. e e
<D e e e €)™ -2)
i],...,i' o
m
distinct

(cs

- d, -1
m

n
Observe that e]”"’em-2r’d1'1""’d2r;] are now all positive even

intégers which add up to 2k-2r. Application of Case 1 gives us that the

above is‘f_Cﬁk.

Case 3. Suppose g];;..;gm consist of gy = ... =g =Tand 2 . > T,..., &

p

pti
“where 1 < p < m.
Assume first that p.= 1.
- 21 - m
Then |f Y (Ci -cn) “'(Ci —cn) I =
11”"’1m 1 m
distinct
- T (e ) e+ (e € (er 60 (e, -2 )™
- c. -C . c. -C c. -C c. -C <
12""’im Tp M h N T M Tm M
distinct
_ e = Em =\ t2
| ¥ (c; -¢,) Thoa(ey ¢ ) 7 +oov | 7 (c; -c.) “o.n (e
iaeeesi 12 m Tpoeneady 2 om
2’ Sm . .
distinct

distinct

m

> 1



10

- Which by Cases 1 and 2 is f_(m-l)Csk.
Proceeding 1nduttive1y in the same manner as above, we.get for all

T<pzm

| -4 - 2k
) (Ci -cn) - (e -cn) o 5_(m-1)...(m-p)Cn .
11’-.-,1m ] m - - . h

distinct

Now by noting that m 5_2k; we get (A.2.1).

To complete the proof of Proposition A.1, application df Lemma A.2 gives:

Boc€ < ]
" sco

2k
2k
(z],...,zm)(Zk)!Cn ,”S'

2

< ((2k)1)° card #¢2K  max Inel.
n c S

Se¢
Note that each lnsl 5_EW$k, also the card.%”depends on]y-on k. "Let
C(k) = ((2k)!)? card + 1 | | |
Let,Sz be the o-field generated by Z, = (R1n""’Rnn) for n > 1 and
% = {s:0}. |

Lemma A.2.

{Tn,iz, n>0} is a martingale (Tg = 0)
Proof. See Lemma 2.1 Sen and Ghosh (1972).
Lemma A.3.

For each n 3.1,"y1;...,yn are independent random-variab]és'where yi =

(ci-C5_1)d4(Reu/(i41)) for i = 1,...,n.



H

Proof.
Suppbse the lemma is true for some n > 1. Note that it is true for
n=1. We will show that it is true for n + 1. Pick any set of reals

'{t1,...,tn+1}. Then

n+l n+l

(A.3.1) E exp(i 521_yjtj) = E(E(exp(i jzl thj)lﬁﬁ)) =
“n .
E(exp(i j§1 yits)E(exp(i yp gt )| F)).
. ' a.s.
But E(exp(i yp4qtoey)|F) =
_y . - . . |
(n1) 121 expli tn+1(cn+1'cn)Jn+1(J/("+2)))- - = Eexp(i ypqtoe)
. ) n . .
Hence.(A.3.1) = E exp(1‘j§]yjtj)E exp (i tn+1yn+1)’
. . :
which by the inductive hypothesis equals [ E exp (i tjyj).[j
§=1 |

Lemma A.4.

Suppose for some constants K> 0 and 0 < § < 1/2

J'(u) 5_K(u(1—u)f3/2+6for all u¢(0,1).
Then there exists a constant K' > 0 such that for all n > 2 and

1 <J <n-1
3oL (3+1)/(n41))-3, (37 (n#1)) < K* (1) L(G+T) (me1-3) /() 2173/ 240,

Proof.

Pick any 1 < j 5;h—1, n > 2. Note that there exists a K; > 0 such that

1
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NTES <k (w4 (1o

. ) U(j+])

. . e n -

- Hence J_((j+1)/(n+1))-d (i/(n+1)) = E [ J'(u)du.
n

)-3/2+6)

K(u(1-u for all ue (0,1).

u(3#1)
n .
<K E [ ..,(u-3/2+6 + (1_u)-3/2+5)du _
ne2
n
.K1(1/2-6)‘]E[(1-U£j+1);1/2+6 ) (]_Uéj))-1/2+5 )y -1r2s i)y 172

n n -

n n

K (1/2-8)71 T A/(ike-1/2) - i/(i+6-1/2)
: i=n-j i=n+1-j
n n
- M i/(i+8-1/2) + T i/(i+s-1/2)] =
i=j+l i=]
. n
K, (1/2-6) 1L ((n-3)/ (n-3#s-1/2)-1) T i/(i*6-1/2)
' _i=n+1-j -
n o
+ (37G+s-1/2)-1) ©m  i/(i+s-1/2)]. ' (A.4.1)
i=3+] |

Now it is easy to show that there exists a K(S > 0 such-that for all
1< k<n-Tandn>2 |
n

I i/(+6-1/2) < K ((n1-K/(n+1))71/2*S ) which implies that
i=n+l-k :

(A.4.1) <

Ky [(V (-3+8-1/2)) ((n+1-3)/ (n#1)) " 1/2¥6

(1/(3+6-1/2)) ((3+1)/ (n+1)) 1/ 2%47
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K5[(1/(n—j+8@1/2))((n+1_j)/(n+]))-1/2+6 .

I A

(1/(3+8-1/2)) (37 (n+1)) "1/ 2%8;

KiKs | |
L2 [((n+1-3)/ (n-3+6-1/2) ) ((n¥1-3)/ (n+1)) "3/ 248 4

(3/(§+8-1/2)) (37 (n+1) )34 2487, - (A.4.2)

Note that K/(k+s-1/2) = 1/(1+(s-1/2)/k) < (1/2+5)" for 1 < k < n. Hence
(A.8.2) < KK (17246)  (m1) T3/ (1)) T2 4 (571 )) /248

It is simple to verify that there exists a constant K2 > 0 such that

(1-u)~3/ 248 4 3/248 5_K2(u(1—u))'3/2+(S for all u¢ (0,1). Now let K' =

KyKoK, (1/2+8) -1,

Lemma A.5.

Suppose for some constants K> 0 and 0. < 6 < 1/2
3'(u) < K(u(1-u)"32*8 £or a1 u e (0,1).

In ~ n(Rln/(n+]))" Jn-](R]n-1/n)’

Then for every integer k > 1, there exists a D(k) > 0 dependenf only on J and

Set W

k such that for all n > 2

2k
Tn

k-28k-2

EWCK < D(K)(n+1)

Proof.
Pick k > 1.
Note that E(2X|% ) =
‘ Inn-1
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n " =Ry [ (R, /(n+1))-d (R, ./n)]%K &
Tn-1+"n'"1n-1 n-1 .1n-] ’

n_]R]n_][Jﬁ((R1n_]+1)/(n+]))—Jnn](R]n_]/n)]ZK. - (A.5.1)
Now Ly application of the identity: for 1 <i <n-1
3oy (i) = 07 (n=1)3 (37 (n¥1)) + n"ian(<1+1)/(n+1)); ’
we get (A.S;]) =
(1-R]n_]/n)(éin;1)n)[(R1n_1/n>2k" + (1R, /)2y
| L3y (R q#1)/(041))-3, (Ry 7 (n41)) 1%

< 1Ry /) Ry g /)DL (R 410/ (m41))=0 Ry /(1)) 12K

2k
Thus Ew]n.i
ot . . 2K ’
(n-1) _Z] (1-1/n) (i/n) 03, ((1+1)/(n+1))-a_(i/(n+1))]1°*. (A.5.2)
1= .

Now by Lemma A.4 there exists a K' > 0 such that for all n > 2,

(A.5.2) <

(k)% (n-1)"" _:z:_ (l-i/n)(i/n)(n+1)'Zk[(1-i/(n+1))(1/(n+1))]'3k+25k
which is < o |

K" (n+1)72k ig][(1-i/(n+1))(i/(n+1))]_3k+26k+]/(n-1) O (as.3)

for some K" > 0.

But (A.5.3) is in turn <

D(k)(n+1)k'26kf2 for some D(k) > 0 for all n > 2. —
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Proposition A.2.

Suppose for some’constants K>0and 0 <8 <1/2

3'(u) < K(u(1-u))"32* for a1l u e (0,1).

Then for every integer k > 0, there exists a constant A(k) >0 .

dependent only on J and k such that

, n '
E(M =T )2k < nk-]A(k) Z Cgk (j+])k-26k-2
nn’ - oo d-1
j=2
Proof. _
= 1,.
Set ¢ J TJ 1 (MJ J ]) for j
Note that X b5 = Tp-Mos E¢; =0 for j = 1,....n and by Lemmas A.2

and A.3 {Tj—M 57, 1<Jj<n}isa mart1nga1e
Direct application of the moment inequality for martinga]es of

- Dharmadikari,. Fabian, and Jogdeo (1968) gives

2k k-1 N op
E(Tn-Mn) <n" 'B(k) ) E¢j

» where B(k) > 0 is a constant
j=1 o

dependent only on k.

Observe that for each 2.§_j <n, ¢, =

J
- g (c, -c )J (R, /(J+1)) ji] (c-8: ) 1 (Ro 1/3)
i=1 s i 73-1"75-113-1
- (Cj'Ej_])Jj(Rjj/(j+1)) =
J=1 -
L (Ci_cj—l)wij’ where wij = Jj(Rij/(j+1)) - Jj-1(Rijf1/j)‘

Also observe that 2 = 0.
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Note that for eaeh choice of integers 2],...,2m 3_0,1 5_m < j-1,
9 9 _ - .
E(w.] w.m.) is independent of all permutations i],...,im of 1.

1]:].'.. TmJ- seeesd-l

taken m at a time. This is enough to apply Proposition A.1.

Therefore

2k 2k

Zk < C(k)C Ew] » where C(k) > 0 is a constant dependent

J J-1
only on k; and by Lemma_A.S

2k
1=
only on J and k.

EWS, < D(k)(J+] yk-28k-2 for some constant D(k) > 0 dependent

Now Tet A(k) = B(k)C(k)D(k).

Corollary A.2.

Suppose J satisfies the condition in,Proposition A.2.

If
A2.4. lim nTle? > 0
' N-><o
and
A.2.114. Cﬁ_i nC for some constant C > 0 and all n-i_l |
then

L2, 2 28
A.2.7i1. E(Th'Mn) /on = 0(n =)
A.2.1v. E(an_-M )

' 2 -28
A.2.v. (sn/oh—]) = 0(n )

and
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A.2.vi. (on/sn-l)2 = O(H-ZG)

Proof.

Set-k = 1 in Proposition A.2, then for n > 2

E(T -M )2 < nA() T 2 (3%1)725 Vn, which by A.2.17 is
n.n - j=2 J-1 . .
no -28
< nA(1)C ) (§+1)7%%/n.
j=2

But (3+1)7%/n = 0(n"2%) and by A.2.1

It t~13

j=2

0;2= O(n']);-‘Hence wé have A.2.1i1.
Note that E(Tn-Mn)2 3_(sn-on)2. Thus by A.2.i1i. we have A.2.v., from

which we immediately get A.2.iv. and A.2.vi.
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SMALL SAMPLE RESULTS FOR THE 27% RULE

George P. McCabe, Jr., Purdue University

I. MOTIVATING PROBLEM

In social science research the following type
of problem is occasionally encountered. A fairly
large collection of individuals, e.g. all students
in an introductory psychology class, are measured
on a variable, denoted by X. The observations are
ordered and two groups are formed: one corre-
sponding to low-X scores and the other correspon-
ding to high-X. Sometimes the split is performed
at the median; in other instances, the upper and
lower thirds are used. In the latter case, no
further observations are taken on the individuals
in the middle third of the collection.

The designations Tow-X and high-X are used
subsequently as a dichotomous variable, with the
actual X-score being ignored. This dichotomous
variable is then treated as a two-level factor in
an experimental design. The simplest case of
such a design, which will be the only one studied
here in detail, is when a single additional vari-
able, denoted by Y, is measured. The two sample
t-test is then used to compare the performance of
the low-X and high-X groups on Y.

The purpose of this investigation is not to
defend the appropriateness of the above procedure.
Rather, the properties of the procedure are
examined and some useful information for deter-
mining efficient low-X and high-X groups is given.
II. MODEL ASSUMPTIONS AND NOTATION

Let (Xi’Yi)’ i=1,...,N be bivariate normal

random variables. In what follows, it can be
assumed without loss of generality, that the means
are zero and the variances are one. Let X(]) <

X(2) 5—"5-X(N) denote the order statistics of the
X variable.
X

For any n < N/2, Tlet
"Xy
= X(n-j+l)’ for j = 1,.

15 for j = 1,...,n

23
The Y observation paired with X, j will be denoted

by Y . fori=1,2and j =1,
Let a be the fraction of observations in each

and
X

tail to be designated low-X and high-X. Thus, we
let o € (0.5] and define n by n = [oN], where [-]
is the greatest integer function. The sample

means and variances for the Y variable are

- 1 .
Vilo) = 07" Jigg Yy 1= 152
and
s2(a) = (D)7 (V57T (), d=1,2.

The t-statistic for comparing the Y means of
the low-X and high-X groups is

¥.(a) - Y5(a)
t((x) = ]__L._ .
“(a) + s5(a)
n-1

LARGE SAMPLE RESULTS
In [1] it is shown that

III.
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of N,

2°(1-0(a))
M (a)+o? (att(a)-1)

where p is the correlation between X and Y, &{.)
is the standard normal cumulative distribution
function, a is defined by o = 1-¢(a) and M(.) is
the Mills ratio, M(x) = (1-¢(x))/e(x), with ¢(-)
being the standard normal density function.

For a given value of p, the value of o which
maximizes the above expression can be found.

lim N t2(a) =
Nooo

Details are given in [1]. As |p2| approaches
zero, the optimal o approaches 27% from below.

For |92| = .5 the optimal value is about 24% and
falls off to about 20% for lp2| =

102] = .95, o = 16%.

In summary, the large sample results indicate
that a choice of a = 25% is effective for a rea-
sonable range of values of p that one might expect
to encounter in practice.

IV. SMALL SAMPLE RESULTS
0f course, choosing a which maximizes the

1imiting value of N']tz(a) is not equivalent to
finding the o which maximizes the power of the t-
test for detecting nonzero values of p. In addi-
tion, the relevance of the asymptotic calculations
for reasonable size samples must be examined.

To address these questions, several simula-
tions were run. Values of N chosen were 10, 20,
30, 40, 50, 60 and 100. For the first four values
10,000 simulations were run; for the next
two, 5,000 and for the last 4,000. The following

values of |p2| were used: 0, .05, .1, .2, .3, .4,
.5, .6, .7, .8, .9, .99. The five percent and one
percent powers were estimated for all possible
values of a.

In the simulations, the same generated random

For

variables were used for all values of |p2| by con-
sidering the appropriate conditional distribu-
tions. The normal random numbers were generated
using the routine described in [2].

Inspection of the results of the simulations
reveals that the large sample results are appli-
cable for practical values of N, i.e. it is
reasonable to choose o = 25% for cases where ]p |
is expected to be small or moderate and slightly

lower values of o when |p2| is expected to be
large.

A very interesting fact revealed by the simu-
lations is that the power as a function of a is
very flat. The difference in performance between
the optimal o and close values is often negligible
from a practical point of view. This observation
led to the construction of Tables 1 and 2. In
Table 1 values of o* are given for all values of

Ip2| and N considered. The quantity o* is defined
to be the smallest o giving power that is not less
than .01 less than the power of the optimal «,
where power is the power of the t-test using a
type I error of 5%. Table 2 gives the powers for
these o*. Results for a Type I error of 1% are
qualitatively similar.

Reprinted from the 1978 Social Statistics Section
Proceedings of the American Statistical Association.



Since observations on the variable Y are REFERENCES

taken on 2n = 2[aN] cases, substantial savings can [1] McCabe, George P. Jr. (1977) Use of the 27%
result by choosing a as small as possible while rule in experimental design. Purdue Univer-
still retaining good power. As can be seen from sity Department of Statistics Mimeo Series
Table 2, it is often possible to have excell?nt No. 499.

i i . mple,
power with very feg observations. For examp [2] Rubin, Herman (1974) RVP-Random variable
with N = 50 and [p®] = .5, one only needs o = 8%, package. Purdue University Computing Center.
i.e. n = 4 to get 99% power (rounded to 2 places.)

Table 1 Table 2
Values of a* Power of the 5% t-test for a = o*
N N
o*(%) 10 20 30 40 50 60 100 Power(%) 10 20 30 40 50 60 100
.0530 25 23.3 22.5 24 23.3 27 .05 13 20 27 33 40 45 66
1030 25 26.7 25 24 25 22 0 19 32 44 55 64 71 89

WWww~NWw

L2030 30 23.3 25 22 21.7 13 .20 28 54 70 8 90 94 99
.3030 30 23.3 22.5 20 15 7 , -30 39 72 87 95 98 99 99

, -4040 30 23.3 15 12 10 - 4 [o°] .40 51 85 95 98 99 100 99
lo°].5040 25 20 12.5 8 6.7 3 .50 62 93 99 99 99 100 99
.60 40 25 20 10 8 5 3 .60 73 98 100 100 100 100 100

.70 40 20 10 7.5 6 5 3 .70 83 99 100 100 100 100 100
.8040 15 10 7.5 6 3.3 2 .80 92 99 100 100 100 100 100
903 15 6.7 5 4 3.3 2 .90 98 100 100 100 100 100 100
9930 10 6.7 5 4 3.3 2 .99 100 100 100 100 100 100 100

m



