Calculation and Simulation in
Errors-in-Variables Regression Probiems
by

Leon Jay Gleser
Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #78-5

May 1978

*Invited paper given at 163rd meeting of the Institute of Mathematical Statistics,
New Brunswick, New Jersey, June 1, 1978. Research on this paper was sponsored by
the Air Force Office of Scientific Research under Grant No. AFOSR-77-3291 at
Purdue University. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes.



Calculation and Simulation in
Errors-in-Variables Regression Problems*

by

Leon Jay Gleser
Purdue University

}f-'l. The Model. The multivariate errors-in-variables regression model can be

| -j.{ described as follows: An unobservable vector Vs of the values of r dependent .

varjab]es and an unobservable vector u, of the values of p independent variables

are generated by some natural or sociological phenomenon of interest, i = 1,2,...,n.

These unobservable vectors are related by the linear model
C(1.T) Vi =e+Bu, i=1,2,...,n,

'where a: rxl and B: rxp are the unknown vector of intercepts and the unknown
matrix of regression slopes, respectively. We observe Vs and us with error.

That is, what we actually observe is

o (1.2) Xq: = U, + e

' where

1i i 1i°
x2i = Vi + e21’ _ i=1,2,...,n,
. e, .
11
e. = : (p+r)x1
L €24

- is a vector of random errors having mean vector 0 and covariance matrix
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(1.3) z =j£{eie%) =¢ 1 .., o > 0.

| We also assume that the e; ‘s are independent with a common (p+r)-variate
normal distribution.
| A]though the assumpt1on that the error covariance matrix is a multiple
"of the identity matr1x is customarily adopted in classical regression
.liana1¥s1s, the practical statistician may nonetheless be a little disturbed
g thaffsuch a strong restriction is placed on the error covariance matrix in
thetprésent prob]em Indeed, more general models for I have been proposed
1n the 11terature, part1cu1ar1y when r = p = 1 (the case of simple linear
regress1on with errors in variables). However, some restrictions on & must
be adopted for if £ is allowed to be a general (p+r)x(p+r) positive definite
fcqvar1ance matrix, Gleser (1978) shows that the maximum of the likelihood is
-'fnfinite and no maximum 1ikelihood estimatbrs of the unknown parameters exist.

Further, a recent paper by Nussbaum (1977) shows in the case r=p =1 that if

Z is general, then no consistent estimator of B can exist. Admittedly, there
is some room for a model for r intermediate between g = 021p+r and a general 1,
fbut with one exception [Bhargava (1977)] such models have not been treated
correctly in the literature. Of course, we can assume that ¢ = 0220, where

Zy is known, and then transform the data so that the transformed data obey an

- errors-in-variables model where the errors have covariance matrix 021p+r (see
the Appendix for a way to do this), but this is only a minor relaxation of

the restrictions on z. Thus, at the present “"state of the art", if we wish

to apply errors-in-variables regression models to data, we must be wi]ling

to make the assumption that we know the covariance matrix £ of the measurement

errors e, i=1,2,...,n, except for a scalar mu1t1p1e 02.



2. Computation of Estimators. To compute estimators of the unknown

parameters in our model, we start by computing the sample mean vector

- : _ )z X
(20) X = -]> a1
. XZ i=1 X21
~and the sample cross-product matrix
(i=x) (%) 't (prr)x(pr),

T
[

X
X, = 1i
X2i

In order for W to be almost surely positive definite we require that

e~

(2.2 W=

I~

where

(2.3) n-1 > p+r.
There are now two possible ways to compute our estimators. Either way,

up to errors produced by roundoff, will yield the same values for the estimators.

Method 1 Find the largest p eigenvalues d] 3_d2 3,..3_dp of W and the

- corresponding orthonormal eigenvectors g,, g,,...,9 . Let
: 1> 92

p
P 511
’,; €?-4) GZ] = (g]sgzs---sgp): (p+r)xp,
sd:that
| Gy Gy
»(2.5) W . = [diag (d]’d2’°"’dp)]‘
21 21
'Then compute
. | SR
(2.6) | B = 621611’
2.1y @=X,-Bx



tri - ‘E di
(2.8) o2 = =1
nr

and

~

(2:9) w5 = xp + By kg 1466 Op5-,) 1 = 102,

Method 2 Find the smallest r eigenvalues dp+] 3_dp+2 3"'Z-dp+r (dp+] E_dp)
of W and the corresponding orthonormal eigenvectors gp+]’gp+2""’gp+r Let
(2.4') 2] ): (p+r)xr
' 6pp) ~ “Ipr17Tpr2r s Gpey )t IPTOIXT
so that
G G
12 12
2.5' W = diag(d_,,,d . .,...,d .
(_ ) 6oy Gy [diag( p+1°p+2 prr )]
Then compute
[} " t —] l}
(2.6') B = -(Gyp) 7' (61,,),
(2.7) (x=X2—BX],
ptr
AR
(2.81) 82 = 1=pt] s
nr
and
(2-9 ) u.i = X'l + (Ip 12 ]2)()(]] ]) 12 22(X2 "X2) 1 = 1,2,...,n.

The equivalence of these two methods of computation follows from the fact that

Gy Gyp

Gy Gop

(2.10) G =

is a (ptr)x(p+r) orthogonal matrix.
Healy (1975) ard Gleser (1978) show that B, o, r(p+r) 152 , and u],

i=1,2,...,n, are maximum likelihood estimators of B, a, 02, and us >

-
It

1,2,...,n, respectively. They also show that if



n
(2.11) W= limd o= Tim o ) u exists
n .5 o
N n>e =l
and
17 ~ -
(2.12) A = lim A, = Tim — ) (uj-u)(us-u)'  exists,
n-e n»>e =]

~and A is positive definite, then B, «, and o2 are strongly (a.s.) consistent
j estimators of B, «, and 02, respectively. Gleser (1978) also shows that under

- these same assumptions

A= L

(2.13) A= G]](D -0 I )G

max 11°

where Dmax = dlag(d], 03 dp), is a strongly consistent estimator of A, and

]/Z(B B) have a limiting (as n » «) rp-variate normal

that the elements of n
distribution with zero means and a certain covariance matrix depending on B, A
and 02. It follows from this last result that a 100(1-a)% large-sample

 iconfidence region for the elements of B is'

. (22 2501 amye -] “20 V200 (Rnye
(2.14) - (B: (6°)7" tr[(1,+BB')7'(B-8)Gy;D7) (D -6 1)}, (8-8)']

2 -
< Xr.p[]‘a]}a

where x [1 a] is the 100(1-a)-th percentile of the chi-squared distribution
.w1th rp degrees of freedom. |

Note that the confidence region (2. 14) 1is an ellipse in rp- d1mens1onal
space To my know]edge this is the only reasonably-shaped (convex) confidence
';reg1on for the elements of B published in the literature. Thus, it is of
%¢onsiderab]e interest to determine how well this confidence region. performs

_when the sample size n is of small to moderate size. Unfortunately, the

- _ _féxtreme distributional complexity inherent in the errors-in-variables model

'fﬁ(sée Section 3) forces us to evaluate the performance of this region by

- . Simulations.



To do simulations, it becomes necessary to generate many repetitions of
the sampling situation for varying values of o, B, 02, and the ui's. In
consequence, it becomes very important to determine the most efficient ways
to calculate the estimators and construct the confidence region (2.14),
since even minor inefficiencies in calculation mean a major cost in computation
time when totaled over hundreds of simulations.

Which method should we use to calculate the estimators - Method 1 or
Method 2? Looking at the formulas for the estimators, we see that & is computed
in the same way under either method. Further, since the Gi's are not consistent
estimators and are not needed to construct the confidence region (2.14) [and are
also rarely of much interest in practice], we need not consider differences in
cqmputation efficiency between Methods 1 and 2 for these estimators. Thus, we
can compare the computational efficiency of Methods 1 and 2 in terms of the
number of elementary arithmetic operatiens needed to compute é, ;2, and the
confidence region (2.14).

At first glance, the choice of method seems to be obvious. To compute
é under Method 1, we must invert a pxp matrix.and then multiply an rxp
méfrix times a pxp matrix, while to compute ;2 we must average p quantities.

To compute é under Method 2, we must invert an rxr matrix and then multiply
an rxr matrix times an rxp matrix, while to compute 52 we must average r
quantities. Thus, it appears that we should choose Method 1 if p < r, and
choose Method 2 if p > r, with either method being used if p = r. If the
choice were this easy, I would have been embarrassed to discuss it. What
has been forgotten in this comparison is that we must use an eigenvalue-
eigenvector réutine to obtain the matrices and scalars used in computing

é and 32.



There are basically two types of eigenvalue-eigenvector routines available
to the statistician. One.type, which is called the iterative type, was once
the only available method, and is the method described in most textbooks for
hand computation. In this method, the largest eigenvalue d] of W is obtained
first, along with its associated eigenvector 9y- Then the influence of this
largest eigenvalue and associated eigenvector is subtracted from W, and the
largest eigenvalue and associated eigenvector of the remaining matrix are
obtained. (These are, of course, actually the second largest eigenvalue d2
of W, and the associated eigenvector 92.) This process is repeated over and
over, so that d3 and g3 are obtained next, then d4 and 94, and so on.

The second type of eigenvalue-eigenvector routine became feasible only
with the coming of the big fast computer. A1l variants of this type first
ro%ate W to a special form, using symmetric orthogonal matrices known as
Householder matrices. Once W is rotated to a special form W*, the
characteristic polynomial of W* is easily calculated, and the so-called
Sturm polynomials are used to locate the roots of this polynomial within
intervals. Numerical techniques which are basically variants
of Newton's method then are used to find the eigenvalues of W* (which
are also the eigenvalues of W). Once the eigenvalues of W* are found, the
eigenvector g? corresponding to the eigenvalue di is found by solving the

Tinear system of equations
*ak = *

and then the eigenvector 9; of W corresponding to di is found from g? by
reversing the rotations that rotated W to W*. Such a computational routine
is most efficient when the eigenvalues of W* (and W) are found in a certain

order (smallest to largest, or largest to smallest) and the routine is stopped



before all eigenvalues are obtained. Routines of this kind are often called
QR (or QL or QRL) routines. They tend to be both more efficient and more
accurate than the iterative routines, and thus are to be preferred in practice.

Suppose, however, that we use an iterative eigenvalue-eigenvector routine
to calculate the di's and corresponding gi's. Such a routine will use an order
of magnitude greater computing time than the simple matrix operations used to
compute é, even if the procedure is stopped before all eigenvalues are obtained.
If we use Method 2 to compute B and ;2, we must carry out the iterative routine
until the last eigenvalue and eigenvector are obtained; whereas if we use
Method 1, we can stop the routine once dp and gp have been obtained. The
extra calculations required to run the iterative eigenva]ue—eigenvector routine
tq the end under Method 2 will lose the saving in computations for B and &2
over Method 1 noted earlier, and much more. Further, it is well known that
roundoff errors in the early eigenvalues and eigenvectors propogate as the
iteration continues, so that dp+1""dp+r and gp+],1..,gp+r are calculated less
accurately than d],...,dp and g],...,gp. For these reasons, statisticians using
the iterative method to compute the eigenvalues and eigenvectors of W should
use Method 1 to compute the estimators almost regardiess of the relative
magnitudes of p and r. The only exception to this rule is when r is 1 or 2
and p is very large, and even then the convenience of being:able to stop the
iterative eigenvalue-eigenvector routine early would argue in favor of
Method 1.

As long as we are not planning to construct the confidence region (2.14)
and provided that we are able to use an eigenvalue-eigenvector routine of the
noniterative (QL, QR, QRL) type which is flexible enough to permit us to
obtain eigenvalues either from smallest to Targest, or from largest to smallest,

stopping at any time we have found all the eigenvalues-we want, then our earlier



analysis of the re]ativevmerits of Method 1 and Method 2 remains unchanged.
That is, we use Method i if p < r and Method 2 if p > r. However, this
comparison is based on computational efficiency alone. It is well known
that accuracy of computation of eigenvalues and eigenvectors increases with

increase in the spread of the eigenvalues. In large samples, Gleser (1978)

shows that
I I
Vim L W = 621 +r+( p) A( p)',
n- n P B . B
so that
timld o= of, i=1,2,..,,
e 1 p i
while
.1 2 .
lmﬁdi:a +’l.'_i, i=1,2,...,p,

where 2T, 3,..3_rp > 0 are the positive (non—zefo) eigenvalueS'of
(Ip, B')'A(Ip,B'). Thus, assuming thaf the ri's are unequal, the p largest
eigenvalues of W will be more widely dispersed than the r smallest eigenvalues,
and thus Method 1 is Tikely (assuming p and r are not greatly different) to
give greater accuracy than Method 2.
If we plan to calculate the confidence region (2.14), however, Method 1
is always preferable to Method 2. The reason for this assertioh is that
regardless of how we compute é and ;2, to construct the region (2.14) we
must know the value of the matrix G]]. Using only G]2 and 622 and the orthogonality
of the matrix G in (2.10), we can determine G]] up to an orthogonal rotation, but a
look at (2.14) shows us that this is not enough. Thus, our choice becomes one
of using Method 2, in which case we must obtain all eigenvalues and eigenvectors

of W in order to obtain G]Z’ 622, ggg_G]], or Method 1, in which case we

need compute only the largest p eigenvalues and their associated eigenvectors.
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The choice now is clear. We should use Method 1!

In this section, we.have seen how one can come to erroneous conclusions
in statistical computation by not considering the entire process of data
manipulation. Theoreticians are in particular prone to this kind of error—
treating the symbols in their formulas as if they were given pieces of data,
rather than quantities that must be computed from data, often in very expensive
ways. Although I am only sometimes a theoretician, I must admit that I was
trapped in the error of preferring Method 2 until I was forced by the need to
do simulations on the region (2.14) into considering the entire process by
which the statistical computation§ must be done. Thus, this section is

partly in expiation for my earlier sin.

3: A Canonical Distributional Form. Where theoreticians have an advantage

over data analysts and other practical pedp]e is that they are not as prone
to becoming wedded to a particular coordinate system. I have seen many
complicated (and poorly designed) simulation studies which could have been
greatly simplified (and théreby improved) by a little use of invariance theory.
Thus, for the present problem, I rotated the variables in various ways trying
to achieve distributional simplification.

Let us start this exercise by counting the number of parameters that
would have to be sbecified if we started simulation of our model directly
from (1.1), (1.2), (1.3). There are r components in o, rp components in B,

pn components in
(3.1) U= (u],uz,...,un): pXxn,

and 1 component in 02, making a total of (n+r)p+r+1 parameters to be

specified. Even when r = p = 1 and n = 3, this means that our simulation
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design must be crossed over the values of 6 parameters!

However, we are interested only in simulating to study how accurately
our estimators of «, B, and 02 estimate these parameters, and how close to
100(1-a)% the true probability of coverage of the large-sample confidence
region (2.14) is in moderate samples. We note that &, é, and ;2 are functions

of the data only through ;1’ §2’ and W. It can be shown that

Xy u 02
(3.2) %, vMN Y e ] s o Ip+r ,
. 1 N | .
where u = n ) ujs that W has a noncentral Wishart distribution with
| i=1
(n-1) degrees of freedom, covariance matrix parameter 021p+r and noncentrality

matrix parameter

2 -].- Ip n - S\ Ip 1
(") (") 1‘21 (ug=u) (us-u)' ()
(3.3)
I I
= (o) (P (),

~and that (ii, ié)' and W are statistically independent. Thus, we can perform
ouf simulations by specifying the parameters u, a, B, 02, and An, and then
simulating (ii, ié)' and W. Noting that (3.3) is a (p+r)x(p+r) matrix of rank
p, an algorithm developed by the present author [Gleser (1976) ] fbr simulating
the'noncentral Wishart distribution with singular noncentrality matrix will

be useful. .

- Counting parameters once again, we now have p components in u, r
_Cthonents in a, rp components in B, 1 component 1in 02, and p2 components in
JAn for a total of (r+p)(b+1)+] parameter values that must be specified. Notice
that the sample size n no longer enters into our counting of design parameters,

although n must be specified in order to do the simulations. If r =p =1, we
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need to specify (1+1)(141)+1 = 5 design parameters.

In making the reduction in parameterization above, we are in essence
utilizing an invariance argument. What we have shown is that the joint
distribution of (ii,ié) and W, and thus the joint distribution of our estimators,

is the same for all

I
i _ - 1/2,%py 172
(3.4) u (u],uz,...,un) uln + n (B )An ry

’ A]/2

where ]n = (1,1,...,1)": nxl n

is the symmetric square root of An, and

rn is any (p+r)xn row orthogonal matrix for which Fn ]n = 0.

(X]> <x” X1p «- x]n)
X = = = (Xy5XoseensX )
X2 X2] Xoo «n- Xon 1’72 n

E €4 €15 ... .

1 11 M2 “In
- = =(e »€ 3+.+-5€ ))
(E2> (;2] Y IREE e2n> 1°%2 n

where both X and E are (p+r)xn. In terms of X, U, E, our model (1.1), (1.2),

() )+ 2

where the columns of E = (Ei, Eé)' are i.i.d. with a common MVN(0,o

Let

and

rm
f

(1.3) is

(3.5) X

2
)

distribution. Also, letting

we have

X Xy
1. -1 _ -1 (N
(3.6) | <x2> n = X ]n n <X2> ]n’

and
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(3.7) W= X Cn X',

Consider the linear transformation

X? F] 0 kF] X]
(3.8) X* = = k X = :
XE 0 F2 kF2 X2

where k # 0, r] is a pxp orthogonal matrix, and P2 is an rxr orthogonal matrix.

Then from (3.5) and (3.8),

XT kP]U kF]E1 .
(3.9) X* = « | = \ +
_ X2 . kr2a1n+r28r](kr]u) kr2E2
U* .E*
= + 1
a*] n+B*U * E§ >
where
(3.10) U* = kF]U, a* = krza, B* = PZBTi

and the columns of

kF]E]

kl“2E2

E* =

are i.i.d. with common distribution MVN(O,k2021p+r). Also

: Xy r; 0\ kry X,
(3.11) x* = X = k1o r, f\n ) = kr,, 7(2) g
and
. . . 2Ty 0 . ri 0
W = (X )(Cn)(x )t =k O\FZ XC X'1g Té

n
~
N .
-~ _
O
~

1 0 ri 0
W
2 0 1,



Let df 3_d§ 3"'3-d;+r be the (ordered) eigenvalues of W* and let

G, G
1 &2

(3.12) G* = (
651 63,

be the (p+r)x(p+r) orthogonal matrix whose ith column is the eigenvector

cofresponding to d?’ i=1,2,...,ptr. Then

v2

(3.13) a* = K., i=1,2,....ptr,
and _
* %
Y A T P WY A S TV WY B S1C DI S c 9%
(3.14) G* = * M = G =
G5 63, 0 1, F2B21 Tabap

from which we conclude that

~

-1

_ -1 2 = -l
B = G5y (679) " = Tp6p(TyGy7)7" = 1,6p9GyqT;
(3.15)
= rzBri,
(3.16) a* = x§ - B*xf = kF2x2 - PZBri(kP]x])
= kT, o
and
ptr , Pir
S
a2 _di=ptl L el b gm0
(3.17) (o*) D p = k7o".
Also
a* = 7 E (u*-u*) (u*-u*)' = nTlu* ¢ (U*)"
n i1 1 i n
(3.18) |
- 2 ] ] - 2 ]
= k P]UCnU P] =k F]AnP],
and '
& = 07 l(a ) (0% - (o%)21 )(a%,)"

2. %
k P]AF].
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Finally, note that the confidence region (2.14) for B has the form

A

{B: F(B; é,G DI ,02) < X2 [T-a]}

11’ “max rp
“where
F(B; B,G ,02)
? 11’ max’
(3.20)
—_ - "] AAI '] o '] _A 2 [} o '
= (¢7) tr[(Ir+BB ) (B-B)G”Dmax(Dmax o} Ip) G]](B—B) ].

Using (3.10), (3.14), (3.15), and (3.17), it is easily shown that

~ ~

(3.21)  F(B*; B*,G*,,0* ,(o*)%) = F(B; B.G

2671 0hax 50" )5

]1’Dmax

so that the probability of coverage of the region (2.14) is invariant under

transformations of the form (3.8).

What this argument has shown is that the properties of the estimators

~ ~

as B, 32, A, and the confidence region (2.14) when u = GO’ @ = ap, B = BO’
2_ 2  _ (0)
%

o = ogs A, can easily be inferred from the properties of these

estimators and this confidence region when

- ) 2 _ 22 _2 (0) ..
u = kr]uo, o krzao, B = ZBOF], o} k 00, =k F]A r],

and k, r], r2 are chosen at our convenience. In particular, we can let

k =.061/2, Iy be the pxp orthogonal matrix whose rows are eigenvectors of
A(O), so that
n A
(O p = gi
rya, Ty = D d1ag(6],62,...,6p),

where 81 > 4, 3,..3_6p are the eigenvalues of Aéo), and Ty be the rxr orthogonal

matrix for which (when r < p):
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where H]: rxr is upper triangular, HZ: rx(p-r) is arbitrary. When r > P,
Iy is chosen so that

rp(8,r1) = (41,

where H] is pxp upper triangular, 0 is a (r-p)xp matrix of zeros. That is,

2 _
our parameters are now ¢ = 1, and:

Parameter Number of Components
a = no special form r
u = no special form p
H
B = (Hy,H,) or (') (2p-r+l)r p(pHl)
1°7°2 0 2 2
) §s - §
= diaq(—. _2 P
A_d1ag( 2) 2’~--) 2) p
00 CO 00

for a total of either (1/2) [2p(r+2)-r(r-3)] parameters when r < p, or

(]/2)(p2+5p+2r) parameters when p < r. Although, we have dramatically reduced
the number of parameters that must be specified in order to do our simulations,
the number of parameters that must be specified in our simulation design (apart

from n, p, and r) is still large, as illustrated by the following table:

N T Y

4 5 6 7 8
79 10 N 12
10 13 15 16 17
13 17 20 22 23
16 21 25 28 30

G B WA ——

- If we are willing to consider simulating only in order to evaluate the
coverage of the confidence region (2.14), then since (2.14) depends on the

data only through W, and the distribution of W depends only on 02, B and An
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and not on « or u, we need not specify the values of o and u. This reduces

the number of parameters we need by ptr, so that we now need .to specify only
g 2 o, 2 2 .

A= d1ag(6]/o0 ,62/00 ,...,dp/oo) and B. Thus we need to specify the

values of (1/2)[2p(r+1)-r(r-1)] parameters when r < p, and (1/2) (p2+3p) ’

parameters when p < r. OQur table of the number of parameters which we need

to specify in our simulation design now becomes:

o\’

Cl W N —

SO PN |[—
=0 oM N
OROON |~
O_»OWOIN |01

1 1 1 1
1 1 1 2
Well designed simulations in this case appear feasible when p=1<rc<h,
and possibly even for p = 2, r = 1. For other values of r and p, we might
consider concentrating on specific choices'of B and A for our simulations.

One final comment about the simulations heeded to evaluate the confidence

region (2.14) should be noted. In performing the simu]étidns, it is helpful
and not very expensive, to print out a histogram of values of F(B; B’G11’Dmax’;2)'

By looking at this histogram, we can see whether x&p[]-a] exceeds the ]00(1—a)th
percentile of the histogram distribution (in which case.the confidence of our
region exceeds 100(1—a)%). What we gain is information that may later allow
us to change the cutoff point xip[]-a] so as to obtain greater control of the

coverage of the region in small samples.
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Appendix. We here show how to transform an errors-in-variables model in which
the error covariance matrix g = 0220, where

(0) (0)
b 212

11
(A.1) I, =

(0 (0
Z21) Z22)

is known, into an errors-in-variables model in which the error covariance

.. 2
matrix is o Ip+r' Suppose that
(A.2) 213 T W T
. = *
22_l a¥* + B*W_i + f2'|,
where Zyio Wy and f]i are pxl; Zyss a* and f21 are rxl1, and B* is rxp.

Wé assume that

f]i) |
f. = . i=1,2,...,n,
i fZi

are i.i.d. with a common (p+r)-variate normal distribution with mean vector 0
and covariance matrix 0220.
To define the matrix T: (p+r)x(ptr) which will transform the data, first

let

w3 g =l - a6,

and then define

I R L e CRL
where (zg?))]/z and (Zgg?])]/z are any square roots of Zg?) and Zég)],

respectively. [For computational purposes, lower-triangular square roots

are recommended.] Also Tet
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: - (0)
(A.5) T21 = —T22L2] T]]
and define
T . 0
(A.6) T = T] I : (ptr)x(p+r).
' 21 22

Using block matrix multiplication and the definitions of the elements of T,

it can be shown that

(A.7) TZO T' = Ip+r'

We can now use T tc transform the old observations z, = (Z]i’ ZZi)l to

new observations X; = (X]i’xéi)l’ i=1,2,...,n:

X, . T.,2Z+.
- N R B _ - 117714
(A.8) Xs = <‘ > =Tz, = +T

*2i T21711*T22%1)

It follows from (A.2), (A.6), and (A.8) that

a9y 0 (Tnaa
X3 121211772224
T, W,
(A.9) - 1 r + TF,
*
Togt* 4 (T #T 0B ) T Ty w5
u.
= 1 +te., i=1,2, ,N,
o + Bu. 1
where
u1 = T]]w1, i=1,2, ,n,
(A.10) @ = Ty,
_ -1
B = (Tyy#T,8*)T7q,
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and the new error vectors

e. =Tf., i=1,2,...,n,
i i

are i.i.d. with a common multivariate normal distribution with mean vector 0

and covariance matrix

2 .2 .2
T(o ZO)T =g TZOT =0 Ip+r'

If we now form estimators of o, B, 02, and Uss i=1,2,...,n based on
the transformed data Xi’ i=1,2,...,n, then we can use these estimators to
construct estimators of the parameters a*, B*, 02, and W i=1,2,...,n, of

our original model as follows:

= Ty = gV,

R - r/(0) (1725 (0)4,.(0)y-1/2
(A.11) B* = T22(BT]]-T21) = [(222.]) B + %51 ](z]] ) .

w, = 721G, = g{ohwe , i=1,2 n

iy 1 i

Of course, 52 is the same under both models.



