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1. INTRODUCTION

Let g(x) be a function defined on the interval [0,1] such that
g € Cd[O,l] i.e. g has d continuous derivatives. For each x € [0,1]
a random variable Y, may be observed with mean g(x) and constant variance

02. The problem to be considered is to estimate g using n uncorrelated

observations. At each x_, i=l,...,r, n. = nug observations are taken.
i

The probability measure assigning mass My to the point xi(Zui=1) is re-
ferred to as the design. The function g(x) will be estimated by a function
s(x) in the class Si. The set Si is the collection of all polynomial splines
of order d (degree d-1) having k knots £l< £2 e < Ek in the interior of
the interval [0,1]. That is s(x) is a polynomial of degree d-1 on each
interval_@jf£i+l) and belongs to Cd—z[O,l]. Fod d=1, Si consiéts of func-
tions which are constant on each interval (and suitably defiﬁed at each.Ei).

For d=2, Si consists of functions s which are linear on each interval

) and continuous on (0,1). The function s(x) € Sd

X has the represen-

G

i+l

tation
k+d

(1.1) s(x) = ] 8. N.(x)
. i=1

where Ni are normalized B-splines. The polynomial splines and their B-
spline basis will be discussed further in Section 2.

Let ;; denote the average of the n, observations taken at X, . Estimates
which are linear in y' = (;i,...,;;) will be used in nearly all cases. Thus

the vector of parameters 6' = (6 "ek+d) will be estimated by

17850

=C-);.

D >

(1.2)
where C is a (k+d) x r matrix. As our crtierion_for the goodness of the

estimate we shall use an integrated mean square error (IMSE); the'integration



being taken with respect to a measure A which has a continuous strictly

positive density with respect to Lebesgue measure. Our estimate is then

(1.3 N'(x)6 = N'(X)C v,
where N'(x) = (Nl(x),Nz(x), ........ ,Nk+d(x)). The mean value of N'(x)®6
is N'(x)C g, where g; = (g(xl), ..... ,g(xr)). The variance is -

E(N' (06-N'(x) € g7 = (6°/m) N'(x) C p (W ¢ Nx)

where D(p) is an r x r diagonal matrix with diagonal elements Myoso oMo

The mean square error is then variance plus squared bias and the integrated -

mean square €rror is

IMSE = V + B

(1.4)

(¥mTr ¢ DL € MO + feCO-N' () € g)” A
where M(A) is the (k+d) x (k+d) matrix
(1.5) M(A) = fé N(x) N'(x) dA(X).

Note that V and B denote the integrated variance and integrated squared bias
fespectively.

The purpose in studying (1.4) is to use it to adaptively.estimate the
function g by 6' N(x) .

The IMSE involves three variables (i) the design u (ii) the knots
&1 < 52 ...;. < gk and (iii) the estimate or choice of C. It is difficult
to minimize the IMSE given in (1.4) directly with respect to these variables.
The approach used is to first consider the asymptotic behavior of the IMSE
for large n and k under some regularity conditions and then perform the mini-
mization. The puipose of this paper is to prove some results concerning the

asymptotic behavior of the IMSE.



The results presented here can be used in adaptively estimating a more
or less arbitrary response function g. For detail see Agarwal and Studden
(1978 b) where the details of an algorithm are presented for estimating g
by linear spline functions. The algorithm is presented in such a way that
explicit knowledge of the response function is not required. Examples are
presented to illustrate the behavior of the algorithm.

In Section 3 and 4 we have discussed the asymptotic behavior of the
IMSE for two kinds of estimator, namely, the least square estimator (LSE),
and a bias minimizing estimator (BME). The minimizatibn of the asymptotic

expression for the IMSE is indicated in Section 5.

2. SPLINES AND‘B-SPLINES

Let

(2.1) €p=)0 <& < iL... < gk < (=)

be a subdivision of the interval [0,1]1by k distinct points. These points
are the "knots'" of the spline function which is defined as follows: a
spline function, s € Si, is a function which (i) in each open interval

€ i—lé;i) for i=1,....,k+1 is a polynomial of degree <(d-1), (ii) has (d-2)
continuous derivative in the open interval (0,1).

For each (fixed) set of knots of the form (2.1), the class Si of such
splines is a linear space of functions of dimension (k+d). A basis for
this linear space is provided by B-splines, or Basic spIines (Curry and
Schoenberg (1966)). As well as being a powerful theoretical tool in spline

theory, these elementary spline functions provide stable methods, for

computing with spline functions (see deBoor (1972)). One of the desirable



property about B-splines is that their support consists of a small,
fixed, finite number of intervals betweén knots. |

For d=1, the Ni(x) are simply the indicator functions on the intervals
@jfl’gi]' For d=2 the support consists of two consecutive intervals

(except for the first and last function) and on these intervals is given by

1

(X{ i"l)/(E i—gi_l) E_l < x < Ei

(gi+1_x)/(gi+l-gi) g'1 <X gi+1
For equally spaced knots the Ni are proportional to the density of the sum
of d uniform random variables on (0,1) appropriately scaled and translated.
Explicit expressions for the B-splines will not be needed. For complete-
ness we give a precise definition and list some of their properties below.
k+2d k+1

We write T for the nondecreasinglséquence {ti}1 obtained from{Ei}O

by repeating €9 and €k+1 each exactly d times. The B-spline basis for the

family Si is formed by the following k+d normalized B-splines
_ ' d-1
(2.2) Ni(x) = (ti+d—ti) [ti, ...... ,ti+d](t-x)+
i=1,...,k+d, where [ti,....,ti+d]¢ denotes dth-order divided diffexences’

on the (d+l1) points ti""’ti+d of the function ¢. For two or more than
two coincident ti's, the differences in (2.2) are taken to be confluent
divided differences (cf. Milne-Thomson (1951)). The Ni are, apart from a
constant factor, the B-splines of Curry and Schoenberg (1966).

The Ni defined in (2.2) satisfy

(2.3) 0 < Ni(x)ks 1 for x € (ti’ti+d) and Ni(x) = 0 otherwise;

j+L . . . .
(2.4) {Ni}i=j is linearly independent over [tj+d—1’ tj+£+1]

for any £ > d-1 and any 1 < j < k+d-&;



: k+d d.
(2.5) {Ni}i=1 spans Sk’
k+d
(2.6) L N.(x) =1 for all x;
i=1 l
1 _ ) .
(2.7) fo N, (x) = (t;,4t;)/d, i=1,....k«d.

J
For (2.3), (2.5), (2.6) and (2.7) see Schoenberg (1966). DeBoor

and Fix (1973) proved (2.4).

For d > 1, Ni(x), as given by (2.2), are well-defined continuous
functions. For d=1, (2.2) makes sense only for x+tj, 1 < j < k+2d, because
of the jump discontinuity of (t—x)g at t=x. So in this case we assume the
definition (2.2) to be augmented by the (admittedly arbitrary) demand that

Ni(x) be right continuous everywhere. Thus for d=1, we let

1 , t. g x<¢t,
Ni(x) - i o i+l

0 , otherwise.

3. ASYMPTOTIC VALUE OF IMSE FOR LSE

In considering the asymptotic behavior of the IMSE, we shall be con-

cerned with the sequences Tk = {EO,E; 120 E;k,é_: k+1} of knots defined by
£ . ‘
(3.1) folp(x)dx = i/(k+1), i=0,1,...,k+1

where p(x) is a positive continuous density on [0,1]. Sacks and Ylvisaker
{1970) call the sequence {Tk,k > 1} so defined as a Regular Sequence
generated by p{RS(p)}. We also assume that the design measure p will
either have a smooth density h or will be converging to such a design as

k and n become large.

It will be convenient to introduce the following notation: for each



fixed k, and i=1,...,k¥1 let

§. =¢ -g._l, § = max 6i, and A = é/m;n Si

Letting 0 < pmin = min p(x) ¢ max p(x) = Poax’ We see that
X X

(3.2) A<po /D

max’ ‘min

Also in view of the definition of tj's in terms of'Ei's we see that

d /pmin'

(3.3) {m:;x(ti+ max

—ti)/min(ti+d—ti)} <dA<dp

In this section we discuss the asymptotic behavior of the IMSE when
the estimator used is the least square estimator (LSE).
3.1 Asymptotic Value of Variance
In the classical problem of regression theory, the analytic form of
the function g(x) is supposeg to be khown. In our case g would be assumed
k+

to be of the form g(x) = ) 6, N, (x). The estimator 6 = C y is restricted
i=1 ~

to be unbiased. The unbiasedness of 6 = C y restricts C so that
CF'=1

where F is the (k+d) x r matrix F = (N(xl),...,N(xr)) and I is the
(k+d) x (k+d) identity matrix. The quantity V in (1.4) is then minimized by
the usual least square estimate

(3.4) c=Mla Fow.

Here u represents the design measure placing mass Hy on xi, i=1l,...,r,
M(up) is the (k+d) x (k+d) matrix fN(x) N'*(x) du(x). The estimator 6 = C y

can then be represented by

~

(3.5) B = CY =M () [ NGO ¥, du(o)



where ;g is the average of the observations taken at the point x. The
LSE estimator (3.5) gives a value of V = (oz/n) Tr M_l(u)M(X).

The results of this section indicates that as k » «

(3.6) Tr M7 (1) MOV & ak [(£(x)/h(x))p(x)dx
and
(3.7) B~ /K%Y [ )%/ (0x0) 2 e x)dx

where the symbol ~ indicates that the ratio tends to one. Here a and b
are some constants, and f(x) is the density of the integrating measure A,
and h is the density of design measure p. The integrated mean square error

then becomes

(3.8) CIMSE & (a k o2/n) [ (£0) /h(x))p(x)dx

+ /Y 1™ 0002 (0 0) e dx.

‘The asymptotics found here are with respect to the number of knots k
going to infinity. 1In practice the number of observations n must, of course,’
be at least (k+d) and will usually be increasing much faster than k. Some
indication of why this is so is given in Section 5. In pracfice it may be
worthwhile replacing k by k+d since in (3.6), for example, we would then
get equality if a=1 and f=h.

Theorem 3.1. Let M(¢) be the (k+d) x (k+d) matrix

(5.9) M(4) = [ NG) N' () (x)dx

If ¢ and y and p are continuous strictly positive function defined on [0,1]

and {Tk} is RS(p) (see (3.1)) then

(3.10) Tr M1 (6) M) ~ Kk [3 (5(0/6(0)p(x)dx.



(Remark. If the design measure u and the integrating measure A have
continuous strictly positive densities h and f respectively, then
M(p) = fN(x) N'(x) h(x) dx and M(A).= f N(x) N*(x) f(x) dx and the
asymptotics given in (3.6) will follow from the above theorem. We see
that a=1 in (3.6) for a smooth design).

Proof. Let us write

(3.11) M($) = My D(¢) - E(9)

where MO is given by (3.9) with ¢=1, D(¢) is the diagonal matrix with

elements ¢(ci), i=1,2,...,k+d and the error term E(¢) is defined through

(3.11). The points Cl STy < e < Ck+d are (k+d) arbitary points in
[0,1] such that
(3.12) T, € support N;» i=1,...,k+d.
If we define
i+d-1
.= ( ) t,)/(d-1), i=1,..,k+d
i - L
L=i+1

We can see that these gi's satisfy (3.12). Schoenberg (1966) calls these
points as '"nodes" and has used them in some other context. Using (3.9) and

(3.11), we can write

(3.13) ML) M) = [1-01" D7 (8)D (W) -V]

where U = DL (¢) Mél E(¢), V = D L(4) Mal E(¢) and T is (k+d) x (k+d) identity
matrix. We want to expand (I—U)—1 as a power series. This can be done if

the matrix norm of U is less than one. In the following lemma we find

o a
1u]] %&£ max(||ux||/!|x]]), where vector norm ||x|| = (x'x)%.
X

Lemma 3.2. ||U]] < o w(¢,8), where a is a constant independent of k and



w($,8) is the modulus of continuity of ¢ and 6§ = max E.€. ).
. i71i-1
1<igk+1

Proof of lemma. The proof consists of bounding the norms of Mal and E(¢)

J

Since M0 is a positive definite matrix, it is easy to see that

-1
(3.14) ' Mg ] = (/250 )5

where gmin is the smallest latent (or characteristic) root of MO given by

= mi ' '
(3.15) %in m;n{(x Mox)/(x x)}
Now to find a upper bound on ||M61|| we use an inequality of deBoor (1973,
p. 273). The inequality states that

(3.16) o2 < (A < (v'y) for all y € TR

where p is a constant independent of k and depends only on d, and matrix A,

called as Gram matrix by deBoor, is related to matrix M0 by

(3.17) M0 = DAD

1
where D is the diagonal matrix with diagonal elements {(ti+d—ti)/dT2,

j=1,...,k+d. Using (3.14), (3.15), (3.16) and (3.17), we can show that

(3.18) M) 5 @D min  (ey,4mt)3 7
15i$k+d
Now we shall find a upper bound on ||E(¢)||. First of all since

E(¢) = [eij(¢)] is a (k+d) x (k+d) band matrix of bandwidth d-1 (i.e.

eij(¢) =0 if |i-j| > d-1; i,j = 1,..,k+d) it is easy to check that

1 kxd 1
(3.19) [IE()|] < (2d-1)% { max ] ef.(®)}"
1sigk+d j=1 *J
In view of (3.12), we have for i=1,..,k+d; |
k+d k+d
(3.20) ¥ |eij(¢)] <d w(¢,6).z / Ni(x)Nj(x)dx = w(9,8) (t,,47t;)-

j=1 j=1
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The equality in (3.20)If0110ws from (2.6) and (2.7). The equations (3.19)

and (3.20) give

1 '
(3.21) [E@) || < (2 d-1)%w(s,8) max (t. ,-t.).
1<i<k+d ixd 1

I

Finally since ||D_1(¢)|| {min ¢(Ci)}_l, we may combine (3.18) and (3.21),
1

to obtain

ol | = [0 ) M3* ECo)] ]

[t [ ] HE@

IA

1 max(t.+d—t.)
(2 d-1)%d T w(9,8)
p2 min(ti+d-ti) m%n(¢(ti))

In view of the quasi-uniformity condition (3.3) and the fact that ¢ is
bounded below, it follows that
U] < o w(6,8),
where the constant o does not depend on k. This proves the lemma.
Now since w(¢,8) + 0 as k > » (or § ~ 0) we can make w(¢,8) < 1/o and

hence ||U|| < 1. We can then invert (I-U) using a power series expansion,

(- =1 U vl .
=1 + W, say
where W = z U7. Therefore from (3.13) and the above expansion,
j=1
(3.22) Tr MY (4) M@p) = Tr D 1(e)D@) - Tr V

+ Tr W D'1(¢) D(p) - Tr VW

Now using the definition of the nodes ci's and the mean value theorem in

the expression (3.1), we see that the first term on the right of (3.22)
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divided by k (or k+d) will converge to the integral term in (3.10).
Therefore our theorem will be proved if we show that, as k > =
(i) Tr V = o(k)
(i1)  Tr W DH(9IDM) = o(k)
(iii) Tr VW = o(k).
Since V = D_1(¢) M;l E(y), from Lemma 3.2, we get
VI < 8 w(w,6)
where B is a constant independent of k and w(y,8) is the modulus of
continuity of y. Also |Tr V| < (k+d) ||V||, where (k+d) is the order of
matrix V, hence (i) holds.
Using the matrix norm properties, namely
s+ 11| = I1sl] + li7l]
and '
[Istl] < [IsI] [ITl]
we can show that
(3.23) [wl] < [lull7a-tul])
< a w(¢,8)/(1-0 w($,8)), by Lemma 3.2.
Now since

T w0 Y (e) D) || < Gerd) [[w]] [[D7r o)1 1D ],

the relation (ii) holds in view of (3.23) and the fact that ¢ is bounded
below and ¥ is bounded above.

The proof for relation (iii) follows from the proof of (i) and (ii). Q.E.D.
3.2 Asymptotic Value of Bias

Let us recall that the bias term is

B = f3 (800)-N'(0C g ) ().
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If we use the LSE, then from (3.4) C 8. = M_l(u) f N(x) g(x) du(x). If
the design measure p and integrating‘measure A have densities h-and p

respectively, then

B = fp (8N () M (h) N()g()h(¥)dy) *E(x)dx

where M(u) = M(h) = f N(x) N'(x) h(x)dx. The main result of this section is
the following theorem which yields the asymptotic expression for the bias

as indicated in (3.7).

Theorem 3.3. Let g € Cd[O,l], u and A have continuous strictly positive

densities h and f respectively. If LSE is used and {Tk}'is RS(p), then

. 2d : 1 (d 2 2
.20y 1in k2 = ([yl/an [) 16D e e e
koo
where B2d is 2d-th Bernoulli number (see Né}lund 1924 or Ghizzetti and

Ossicini 1970).

The above theorem gives the value of the constant b in (317) as
b = |32d1/(2d)!.

Before proving Theorem 3.3, let us introduce some notation and describe
two important results of Barrow and Smith (1978 a and 1978 b). These will
be used in the proof of this theorem. Let Lg = {wlfé wz(x)f(x)dx < o}

denote the L, space corresponding to the measure f(x)dx with norm ||'||f

d
K The

S

and let Pf denote the orthogonal projection operator from Lg to S
omission of the index f will correspond to Lebesgue measure.
Lemma 3.4 (Barrow and Smith 1978a). 1If g € Cd[O,l], p is continuous and

strictly positive and {Tk} is RS(p), then

.25 1im k2 [Jgp, gl]? = I8,/ ) D1 )% 0 (x0) e,

koo
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Note that the right side of the above expression differs from the
right side of (3.24) by a factor of f in the integrand and that using the
LSE with density h, the bias B is given by ||g—P2 g||§ . It turns out
that for h positive and continuous, the projection PQ g is asymptotically
independent of h as the number of knots k + ». The error function

g—Pz g on each interval @j) £ ) begins to look proportion to a scaled

i+l
version of the dth Bernoulli polynomial Bd(x). A detailed discussion of
these can be found in Schoenberg (1969), Ghizzetti and Ossicini (1970) or
Norlund (1924). We shall mention some of their properties momentarily.
To exploit the idea that locally the error g—Pkg looks approximately

like a Bernoulli polynomial, Barrow and Smith define a sequence of operator

Qk’ such that ng € Si and is "close" to Pkg in the sense that

. d |
(3.26) tim k°{] |g-Q gl - [lg-P,gl[} =0
K k k
00
Let
d (3) . 4
g) = [ g€ )(x-87750 + o(s%)
j=0
— d
=g + o(s9)
() . k+d
and denote g J €.)/j! by g!. The spline Q,g = z a N, is essentially
i i k 0=1 L8
characterized by the requirement that on every dth interval @jfgi+1)
(3.27) (E-Q.8) () = g B,((x£.)/6, )65
) k id i’ Tiell il

Due to the fact that ng must have d-2 continuous derivatives at each Ei,
the above equation cannot be made to hold on every interval @ifgi+1) but
only on every dth interval. For example if d=2 we approximate g by a

continuous broken line segment. The error g—Pkg is approximately g"@:i)
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times a scaled version of Bz(x) = xz—x+1/6. One considers approximately
the best line segment on every second interval and then joins the ends of
these line segments on the intervals between. The polynomials Bd(x) on

(0,1) have leading coefficients one, satisfy

(1) - g1 (=
By 7 (0) = By (1), 1-0,1,..fd—2

and minimize fé Bg(x)dx.

k+d
The coefficients a, for ng = z aZNR can be determined explicitly by
=1
setting ¢ (s) = dﬁl (s-t ) J = L:lljii-¢(d—l_j)@ ) and
e % a T ger?? Yo,i T (@D g,d i’
d-1 . . .
_ j j_d d-3 d o = s .
(3.28) a, jonlsi(gi g; 85,1 (j) Bd_j), L = i+l,..,i+d

By taking iZ0 (mod d) for sufficiently many i, all of the coefficients a,

can be determined. . For d=2 these coefficients turn out to be
a, = g€ )-g"€,) (62/12) + o(s%)
2+1 L '3 2 '

Barrow and Smith (1978b) have shown that the operator Qk’ defined by
the above scheme, satisfy (3.26) and the following.

Lemma 3.5 (Barrow and Smith 1978b). Let g € Cd[O,l], and £ € [0,1). Let

j be chosen so that Ei $E < €j+1 and let 6j+1 ='€j+1 - Ej' Let
Y '

(3.29) R (YE) = K (g-Q )€, + ¥ 85,0, ¥ €01

and

k) = @D EeENT B 0 /an.

Then there exists a sequence of positive constants {Ek}:-l tending to zero

and which may be chosen independently of £ such that

[R, C-.8) - KC D], = m3x|Rk(y,E) - KOE) | < gy



15

As indicated above this Lemma says, in .essence, that for k sufficiently

large, the error function g—ng is nearly equal (in a sup norm) to a

).

properly scaled Bernoulli polynomial on each subinterval Igj’€j+1

Proof of Theorem 3.3. First of all we note that the bias B can be written

as
h 2 f 2 f _h 2
B = |le-Prglls = |le-Prell® + [|Pe-Prel |
We will show that k2d times the first term on the right converges to the
right side of (3.24) and that the second term is 0(k 29).

Define an arbitrary subdivision of the interval [0,1] as

Let p = max (f, —Tj) and w = w(f,p) be the modulus of continuity. Now

g
2d f 2 2d 1 f 2
(5.5 k29 |g-plgl12 - k24 Y [ i (g(x)-Pg(x)) “£(x)dx
i=1 'i
m T,
> k2 Y teeey-wd [ e - x)) Zax
. i T, k
i=1 i
m T
2d i+l - 2
2 k7 ) {f(r)-w [T (g0 Py ) g () dx,
i=1 1 i
h = fTi+l dx, P, : L[ ( th ection
where p. = T, p(x)dx, kpi. 2 Ti,Ti+1] 81 (1575 ) is the proj

operator, and Sip (T T 1) is the class of spline functions of order d
i

and kpi knots. Define ¢i(x) = p(x)/pi, x € [Ti,Ti+1]. If the knots of
the class Sd (t.,T

kpi i’ i+l

in view of Lemma 3.4, we have

) are chosen according to the quantiles of ¢i’ then

B4l 75
+1 = 2 2d i+l !g ! ![
(3.31) 11m(kp ) (g(x)-P g(x))dx = dx
koveo f i kp; (Zd)'le (6, ()¢

In (3.30) letting k » « and then using-equality (3.31) and the fact



16

- ' €
that f(ri) > f(x)-w for x (Ti,Ti+1), we get

(1-2w) |B,, | (d) 2
1im k24| g-plg| |2 2 2t e "B fax.

k> (2d)! (p(x))

In the above inequality let p - 0. Since w = w(f,p) -~ 0 as p +0, we have

(3.32) 1im k%9 |g-plgl 12 > c,,
k=0
where C, = [B,,/a)! [4 (e 0%/ ) max.

Let us consider, using (3.29)

4 g-qel 12 = kK29 [iie-qe) (0) Fx)dx

k
1 .2
J_;O 5501 Jo RROE IEE #y 85, )3y

By Lemma 3.5, this equals
k

1 6

(d) 2 24,1, 2
L [ €0/ EDTI B0 /ADTEE y4y 85,,0dy + 85 o},

J

where IBj k| <o ey, for some constant a which depends only on d, g and p.
We also note that f@;j+y 6j+1) = f@.j) + Yj’ where ij[ < w(f,8). Hence we
have

) |
2d 2 _ .l 2 (d) d,2 '
K le-qel e = (Jo(By(y)/an “”jZo 65,1 (87 €/ PEMDITEE + o)

Let k + « in such a way that § = max Gj + 0, then

(3.33) vim k2% |g-qel12 = c,.

ke

We use here the fact that

[L (B (y)/an)dy

|B,ql/(2d)

||g—P§g||§ it follows from (3.32) and

IA

In view of the inequality ||g-ng||i
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and (3.33), that

.. 2d £ 112
(3.34) lim k7| [g-Pig| |5 = Ce
koo

and

. .2d £ 42 _ . ,2d 2 £ 112
(3.35) ilm K 1Qe-Pigl e = 1im k™ {]|g-Qel | ¢-le-Prgl[g} = 0
>0 k<o .

Since f and h are continuous and positive, the last equality implies

that
. 2d f 2
lim k*%||Qg-Pygl|; = 0
ko>
In a similar manner we can show that
. 2d h 2
(3.36) lim k“%||Q,g-P, g% = 0
Koo k k f
Since

h _f f h
|1Pye-Pegll, < Hoe-Pelly + Hoe-Pyel
we have from (3.35) and (3.36),

2d||Ph

. £ 112 _
(3.37) lim k kg-PkgIIf = 0
~»00

k
Finally, the theorem follows from (3.34) and (3.37). Q.E.D.

Here we have assumed that design measure u has a smooth_density. In
a more practical situation the design measure p will be discrete on a
finite number of points. With some regularity conditions the IMSE is
Still of the form (3.8), however the constants a and b will be different.
Generally a smoother design (resembling the uniform) will keep the bias
term small and give slightly larger values for the variance term. An
appropriate discrete design will give smaller values for_the variance term.
but will increase the bias. As an example in the linear spline case (i.e.

d=2) sce Agarwal (1978) and Agarwal and Studden (1978a).
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4. ASYMPTOTIC VALUE OF IMSE FOR BME
Various authors, for example, Box and Draper (1959) and Karson,
Manson and Hader (1969) have proposed attaching more importance to the
bias part B.

The integrated squared bias B is minimized if
_— _1 .
(4.1) E(CCY) =M (£) [N(x)g(x) £(x)dx

where M(f) = f N(x) N'(x)f(x)dx. In general a matrix C cannot be found

for which (4.1) holds, so instead we try to find a C* such that
L | 1
(4.2) E(C*y) - M (f)fON(x)g(x)f(x)dx.

The asymptotic is in the sense that | |[E(C* y) - M_l(f)f N(x)g(x)f(x)dx||

goes to zero as n (number'of observations) tend to infinity, where the

1 -
vector norm ||a|| ggg'(a'a)d. We should emphasize here that k is fixed.
Let L'(x) = (Ll(x),....,Lr(x)), where Li(x), i=1l,..,r are the norma-

lized B-spline (Section 2) of order 2 with knots at observation points X5
i=2,..,r-1. The Li(x) is a "roof-like!' function which has a value one at

X, goes linearly to zero at adjacent knots x. . and X, and then remains

i-1 1
T
zero. Let us define E(x) = z g(xi) Li(x). Since Li(xj) = Gij; i, j=1,..r,
i=1
E(x) interpolates g at X i=1,..,r. As an approximation to g, the function

E satisfies the following two properties (e.g. see Prenter 1975).
(i) If g is continuous then E converges to g as r(or n) - « in such a

way that n = max(xi—xi;l) tends to zero.
i
(ii) If g is twice continuously differentiable, then ||g—’§||°° =

max Ig(x)—g(x)l < o ||g”||oo n2, where o is a constant indepen-
Xe[O,l]
dent of n.
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Now if we take
(4.3) cr = M) [§ N L' (0 £(x)dx

then in view of (i) and (ii) we see that C* of (4.3) satisfies (4.2).

- Hence our 'bias minimizing'" estimate (BME) is defined as

(4.4) Ope = C* 7 = MTLE) (3 N L' () £(x)dx)Y.

In the following theorem we shall find the asymptotic expression for the

variance term using the estimator 6 This theorem concerns choosing

BME "

the design u to have weight My on X, such that
(4.5) u = fLi(x) h(x)dx, i=1,2,..,r

for some continuous strictly positive density h(x).
Theorem 4.1. If the estimator eBME’ given in (4.4), is used, and the

design is chosen using (4.5) and {Tk} is RS(p), then

(a.6) lim lim(aV/ko2) = [(£(x)/h(x))p(x)dx.

ke noo
Remark. We shall see later (Section 5) that the order of double limit in
(4.6) is, in some sense, justified. Actually in considering the MLE we
effectively let n approach infinity before k.

Proof. It is easy to check that V, the variance of eB

Mg 1S g}ven by

(4.7)  (V/e%) = Tr C* D L(u) C*' M1 (f)

Tr M7 (£) (J Nx) L'(X)f(X)dX)D—l(u)(f N(y) L'(M£(y)dy)!

. . r L.(xX)L.(y)
e ML) ([ N N T S S £ d)
1= 1

The proof of the Theorem will follow easily from the next Lemma.
Lemma 4.2. Let u(x) and V(x) be continuous functions defined on [0,1].

Ifn =max(x.-x. ;) > 0 as n » « , we have
i i i-1
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. 11 o r L.(xX)L.(y) 1 u(x)v(x)
(4.8) iiz Io I u(X)V(X)jzl ‘l-——gg’“" dx dy = J, - i(:)x ax.

The proof of the Lemma is deferred till the end of this section. Assuming
for the present the truth of Lemma 4.2 we complete the probf of the theorem.

Let n > @ in (4.7) and then use (4.8) to get

lin(v/o2) = Tr ML (E) M(F2/m),

n->-e

where M(fz/h) = f N{(x) N'(x)(fz(x)/h(x))dx. If we take ¢=f and wEfz/h in

Theorem 3.1, we then see that

1im(k_1 e ML (E) M(fz/h)) = f(£(x)/h(x))p(x)dx.

koo

which completes the proof of the theorem. Q.E.D.
Since the estimator eBME satisfies (4.2), we can easily check that

the bias term is asymptotically minimized, 1i.e.

(4.9) 1lim lim kK24 B = (IBZdl/(zd)!)f{(g(d)(x))z/(p(x))zd}fcx)dx.

k- no

In the above we have suggested one choice for BME, bﬁt we can suggest
some other choices, too, which would involve estimating g in
ML) 3N g0 F()dx.
Proof of Lemma 4.2. Let us denote by I, the double integral on left of
(4.8). Since Lj(x) has support on the interval (xj—l’xj+1)’ we can express

the integral I as

ro Xj+1 xj+1
= 1w Iy [T uvy) L) Li(y) dxdy,
j=1 -1 3=l >
where x0=x1=0 and xr+1=x1=1. By use of the mean value theorem, we get
I § { -1u(x Yv(x.) ij+1 ij+1 L.(x) L.(y) dx dy + v.}
= . . . . . X .
S T A M SO U i Y

j=1 j-1  Tj-1
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where ij| < a(w(u,n) + w(v,n)) where o depends only on u and v, and
w(u,n) and w(v,n) are the modulus of continuity of u and v. From (4.5),
for 1 <j <,
1
. = (2) h(x, .+ . 1+1,
¥ (2) h( J) (nl n]+l) ( J)
= - ] = = = d t

where n. = X. X5 g0 2,..,r,ny=n_,,=0, and lle < p w(h,n) where constant p

J
depends only on h. Therefore now I equals

T

{fu(x.)v(x.)/h(x.) H(n.+n, 2} + o(1
jzl w0V (x5 /M) Himgang 1)/ (1)
Now the proof of Lemma follows since this sum is a Riemann sum for the

integral on right of (4.8).

5. MINIMIZING IMSE

The results of last two section indicate that
(5.1) IMSE ~ (ko2/n) [(£(x)/h(x))p(x)dx
+ /&%y [t @)% e e dx

where b = |B2d|/(2d)!. This asymptotic value depends on the three "variables"
(i) k, the number of knots, (ii) p(x), the displacement of knots and
(iii) h(x), the allocation of observations. Note that the choice of
estimator has been eliminated. The results of minimizing the asymptotic
value of the IMSE are given in the following theorem.

Theorem 5.1. The IMSE given in (5.1) is absolutely minimized by h, p and
k given as follows:

(5.2) h(x) = ag’f{(f(x))Zd*l(g(d)(x))Z}l/(4d+1)’

(5.5) P = 8, (150 D ) D),
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(5.4) K = B;f[(z b dn/oz)ag’f]l/(2d+l)

where a;f = j(l){(f(X))Zdﬂ(g(d) (X))Z}l/(4d+1) dx, and B;f =

fieco 6@ oyt U gy,

For proof of this theorem we refer;to the proof a theorem in Section 3
of Agarwal and Studden (1978b) in which parallel results are proved for
the case f(x)=1. i

The knot displacement in (5.3) indicates that the knots should be
placed where f(x)(g(d)(x))4 is large. Using (5.2) and (5.3) (or going
back to 5.1))-vwe see that h « /?5-50 Fhat h is usually more dispersed
than p.

Equation (5.4) indicates that k is decreasing in © and of order
nl/(2d+l). For example for d=2 this gives n « ks. This indicates that
there should generally be many more ébservations than knots. This order

relation justifies to some extent the order of the double limit in (4.6)

and (4.9) of the last section.
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