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1. Introduction. Consider a polynomial regression situation on [-1,1].
For each x or "level" in [-1,1] an experiment can be performed whose out-
come is a random variable Y(x) with mean value .E Bixi and variance 02,
independent of x. The parameters Bi’ i=0,1,...T;0and 02 are'unknown. An
experimental design is a probability measure £ on [-1,1}. If N observa-
tions are to be taken and £ concentrates mass £(i) at the points X5
i=1,2,...,r and E(i)N=ni are integers the experimenter takes N uncorrelated
observations n, at each X5 i=1,2,...,r. The covariance matrix of the
least squares estimates of the parameters Bi is then givén by (cZ/N)M_l(E)
w?ere M(E) is the information matrix of the design with elements mij =

f xi+jd£(x). For an arbitrary probability measure or design some approxima-

-1
tion would be needed in applications.

Let f'(x) = (l,x,xz,...,xn) and d(x,&) = f'(x)M_l(E)f(x) when M(&) is
nonsingular. It is known for general regression functions, see Kiefer and
Wolfowitz (1960), that the design minimizing s:p d(x,&) and the design
maximizing the determinant IM(E)I are the same. This is referred to as
the D-optimal design. It concentrates equal mass (n+1)—1 on each of the
n+l zeros of (l—xz)Pﬁ(x) = 0, where Pn is the nth Legendre polynomial,

orthogonal to the uniform measure on [-1,1].

It is also known that the design that minimizes the variance of the

(nearly equal) on the zeros of (l—xz)Tﬁ(x) = 0 where Tn is the Chebyshev

polynomial of the 1st kind. These are orthogonal with respect to (l—xz)_l/z.
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The purpose of this paper is to consider the Ds—optimal design which
minimizes the determinant of the covariance of the least squares estimates

of the parameters B ,Bn. The estimation of all coefficients is

s+17Psezr
the D-optimal situation. It will be easily seen below that this is what is
referred to here as the Do-optimal design.

Lét f(x) = (fl(x),f (x)j where fi(x) = (l,x,...,xs) and fé(x) =
(x5+1,...,xn) and let the information matrix M(Z) have a similar decom-
position

M (8) M, (E)

(1.1) M(E) =
My (B) My, (E)

The covariance matrix of the estimates for Bs+ ’Bn is proportional to

120

the inverse of _
(1.2) I =1 = My,(8) - My, ()M]] (M, , (%)

The problem is to maximize the determinant of Z(E). Corresponding to the

ordinary D-optimal situation the design maximizing |2(€)| also minimizes

the supremum over [-1,1] of
3 408 = (£, 00-AE)E ()] 7T(E) (£, (0 -AE) ] (x))

where A(E) = MZIMIi. Moreover for the optimal design £

(1.4) ds(x,gs) < n-s,

To find themax}mum of lX(g)I we use the result that IZ(E)I = IM(E)IIMll(E)I—l.
Note that s=0 corresponds to the D-optimal case since M11=1. The quantity
‘do(x,E) in (1.4) is not, however, equal to d(x,£) defined above.

In the fellowing the moments mij and the determinants IM(£)| and TMll(i)]
» will be expressed in an appropriate form using certain '"canonical moments'.

The maximization of the determinant IZ(E)I then becomes very easy. The



solution is then converted back to the moments mij = fxi+jd£(x) and the
design ES. Section 2 contains the maximization of the determinant NGIR
The relationship between the ordinary moments and the canonical moments is
described in section 3. This relationship involves some simple recursive
formula which also relate the ""generating function" for the ordinary moments
with its continued fraction expansion. The continued fractions are used
more fully in section 4 in obtaining the support of the Ds—optimal design.
Some examples are given in each of the sections and in section 5.

The problem considered here is described for polynomial regression on
[-1,1]. It can readily be seen that it is invariance under a simple linear
transformation onto any interval [a,b]. In the sections below it will be
‘seen that'certain‘expressions are more readily available and possibly
simpler for the interval [0,1]. We have chosen the interval [-1,1] because
the cléssical orthogonal polynomial are usually given on this interval and
symmetry considerations allow us to calculate our examples somewhat more
readily.

The results in Theorems 2.1, 4.1 and 4.2 provide some simple and useful
Ds—optimal designs. A comparison of these designs with others in the lit-

erature for polynomial regression is being considered.

2. Maximization of |}(£)].
The maximization of |X(£)| defined in (1.2) is done in terms of simple
expressions for IM(E)I using canonical moments. For an arbitrary desigﬁ or

probability measure £ on [-1,1] let
1 x
¢ = [ xMdex), k=0,1,2,...
-1

. + . .
For a given set of moments c ,C. 1 let ci denote the maximum of the

0°€17 5%y



ith moment fxldu(x) over the set of all measures u having moments CprCyr S5

Similarly let ci denote the corresponding minimum. The canonical moments are

defined by

(2.1) p. = — i=1,2,...

Note that 0 < p, < 1. The canonical moments for the "Jacobi' measure
(1+x)a(1—x)8, along with other considerations, are given in Skibinsky (1969).

For o= it is shown that p; = 1/2 for i odd and

_ 1 i
pi - 2(i+2a+1)

for i even. Note that for the arc-sin law or the measure corresponding to

the ordinary Chebyshev polynomials the canonical moments are P; g 1/2.

Theorem 2.1 The determinant IX(E)| in (1.2) is maximized by the unique

design & whose canonical moments are given by

p;=1/2 for i odd
%— i=1,2,...,s
: _ i+l
(2.2) , P2i T \en-21+1  i=s+l,...,n-1
1 i=n
Proof. 'Let AZm denote the determinant
o C1 “n
c]. c2 cm+1
A2m = 1. . . m=0,1,2,.
cm cm+1 C2m




The maximizing canonical moments can easily be found once we express the
determinant A2m in terms of the canonical moments. These are found using
Skibinsky (1968). First consider transforming the measure £ on X = [-1,1]
to Z = [0,1] using a simple linear transformation x =2z-1 and let the corre-
sponding moments on Z = [0,1] be denoted by bi' It is shown in Skibinsky
(1969) that the canonical moments are invariant and the determinants A

2m
for the moments bi is given by

m

m+l1-3i
(2.3) = T (g5 10930
. i=1
where
(2.4) Mg T 9. My = a5 _1P; j=1,2,...

and pj+qj = 1 for all j. The determinant A2m for the moments

1 . 1 .
c, = f xldé(x) = f (22—1)1d€(22—1) is then a multiple of 2 times the quantity
1 0

(2.3). Therefore, the maximization of the determinant IX(E)I is equivalent

to maximizing

n+l-i
(N23-1M23)

s+1-1

.
nAHwjn =23
Ll .

—

(M25-1M23)

[

Some fairly simple algebra shows the answer to be given by (2.2).
The uniqueness is a consequence of the fact that the values P;»
i=0,...,2n uniquely determine co,cl,...,c2n and the value P2n = 1 implies

that (CO’cl""’CZn) is a boundary point of the corresponding moment space

for which the measure £ is unique.




3. Ordinary and Canonical Moments.

The relationship between the two types of moments is expressed by the
use. of certain simple recursive relationships which relate the power series
or generating function for the moments to a continued fraction expansion.

For a probabilify measure u on [0,1] with moments bi the power series
i

b.w

(3.1) P(w) = :

He~18

i=0

has a continued fraction expansion of the form
UPR A DAL

1
(3-2) T-T1T -71 -

where the quantities n; are given in (2.4). All of the series and continued
fractions we consider will be convergent. These questions will not actually
concern us since our interest will be in finite sections of the expansions

and the formal relationships between the coefficients.

Define the numbers Sij recursively by Soj £1, j=0,1,2,... and for
i<
(3.3) ij = kgink-i+lsi—1,k i,j=1,2,...
The corresponding moments bi are given by
(3.4) b =8 m=1,2,..
m mm

These are taken from Skibinsky [1969] and presumably originate with works
of Stieltjes. The moments c, of the tra?slated measure on [-1,1] can be ob-
tained from the b, by the relation ¢, =fd(22—1)idu(z),

The moments ¢, can be found from the n, more directly using (3.3) for
the canonical moments of interest given in (2.2) where the odd values are

all p; = 1/2. The powers series

P(w) =

Ho~18
(¢}
=
[

i



has a continued fraction expansion of the form (see Seall and Wetzel (1959))

; 2 2
} 1 dlw d2w
g e1w+1 - e2w+1 - e3w+1 -
where '
di = 4mi(1-mi_1)2i(l—li) i=1,2,.
(3.6) S8 = 1-mg (1-2, )-2(0-mg )L, i=1,2,...
m, = Pys and li = Py 1 i=1,2,...
. . 21 _
For the P; glvin in (2.2) the odd Pys_q = 5 SO that €1 = 0 and
= 4
di = 9i-1Po5 T Mpi-

Thus the recursive relations (3.3) can be used to

calculate the even moments Criv the odd moments being zero.
Consider for example the uniform probability measure on [-1,1] or on

i/ (2i+1).

[0,1]. We note previously that for this measure Pris1 = 1/2 and Py

1
Therefore we have

1

=1 =1 1 2 1 3
Py =22 P2 5% P53 =5 Py =5 Pg =7 Pg =5 -

The first few values for Sij in (3.3) give

b, = pl(p1+q1p2)

Substituting the values in gives b1 =1/2, b2 = 1/3, b3 = 1/4. On the interval

[-1,1] the same three formulas give the six moments co,cl,. .,c6 using
c2i+1 = 0 and

€27 P
¢4 = Pp(Py*a,p,)

Xl 6 = P2 [Py (Py*ayp)*+ayp, (Py*q,p,+q,p )]
/3

This gives c, =

2 » €, = 1/5, ¢, = 1/7.

4 6



4. The Moments s and the Design £.

In this section we prove the following two theorems.
Theorem 4.1 The support of the Ds—optimal design Es consists of the points

*1 and the n-1 zeros of

] ]
(4.1) : _Pn_S(X)ts+1(X) -ap o ()t (x) =0
where
4.2) o =i, (nostl) s=0,1,...,n-1

] 2 (2n-2s+3)
and 1 and ti are the Leggndre and Chebyshev ‘polynomials Pn(x) and Tn(X)

normalized so that the leading coefficient is one.

Theorem 4.2 The weights of the Ds-optimal design attached to the points

XgpXpseee X of (4.1) are given by

. 2 .
(4.3) Es(l) =m 1=0,1,...,n
2s 1
where Uzs(x) is the Chebyshev polynomial of the 2nd kind Uk(x) = Ei%%%i%lg,

X = cos 6.

Thé support points of the Ds—optimal design on the polynomial in (4.1)
can be expressed in another form. It is known that the support points other
than il‘aré the zeros of the polynomial orthogonal to (1—x2)d£;(x). This is
explained more fully below. This polynomial can be obtained by calculating

the moments cs from the p; as explained in section 3. The required polynomial

is then
cO-c2 cl—c3 cn_z—cn 1
€17% €27% n-1"n+1 X
4.4)
¢ .-C c -c X1
n-1 "n+l e 2n-3 2n-1




which must be proportional to the polynomial in (4.1). Our proof of Theorem
4.1 goes directly from the Py value to (4.1) using continued fractions.

Proof of Theorem 4.2. The weights gs(i) are obtained by using the fact

that for each point Xy in the support of the optimal design, equality must
hold in (1.4). That is ds(xi,gs) = n-s. The quantity ds(x,g) can be re-
written in the form

. -1 ' -1
(4.5) d (x,E) = £ COM T (B)E() - £ (M) (B)E, (x)

We now change the basis for the two terms on the right hand side. For the
first term we use the Lagrange polynomials Rj(x), j=0,1,...,n associated
with the optimal points X, The Zj(x) are the polynomials of degree n

satisfying lj(xi) = Gij i,j=0,1,...,n. If £ has mass &(i) on X, then

2
' -1 _ n li(x)
£1OOM T ()(x) = izo 0

For the second term, note that the canonical moments up to order 2s (those
used in Mll) are p, = 1/2. These correspond to the Chebyshev measure (l-xz)a

with o = -1/2. For the second term use the polynomials, 1, /f'Tl(x),

V2 Tz(x),.... which are the orthonormal Chebyshev polynomials. In this case
! _1. S 2
£, COM ] (B () = 1+2jZlTj(x)

Using the fact that ds(xi,gs) = n-s we then find that

n-s = L - (1+2 E Tz(x M)
ED s

The solution Es(i) in (4.3) is then obtained using the fact that Tj(x)=cos je

and
s -
I 700 = & (s + cos(stDosin so
j=1’ ‘
1 UZS(X)

1
-7
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Proof of Theorem 4.1. For the optimal design Es the canonical moments

= 1 implies that c has a maximum value given the set c,.,c.,...,cC .
Pon P 2n 0’1 2n-1
The support. points of ES are then the zeros of the polynomial orthogonal
to the measure (1-x2)dg5(x). See Karlin and Studden (1966), Ch. IV. These

polynomials will be obtained using continued fractionms.

Consider a given set of moments CprCyoet- corresponding to some £ and
take
Jewilo0 91 %2
L T w2+ 3+
i=0 w W

in a continued fraction form

1 S %

A1w+B1 - A2w+B2 - - AkW+Bk -

(4.6)

The polynomial orthogonal to & of degree k is given by the denominator of
the kth convergent. That is, take the expansion (4.6) only up to the kth
term and express it as a ratio of two polynomials. The denominator is the

required polynomial. See Szego (1959), p. 55.

. . _ 2i
For the optimal design Es we have Cri1 = 0 and Zc2iw has the ex-
pansion
d w2 d w2
4.7 ‘ 1 1 2
l-1 -1 -
where di = mi(l-mi_l), 1=1,2,...,m0 = 0 and m, = Py;- The moments for the

vmeasure (l—xz)dgs(x) are c,-c.

oy Using Wall (1940) the expansion for

2i . .
Z(c2i-c2i+2)w can be obtained from (4.7) and is

2 2
(4.8) | ‘072 YW %Y
1 - -1 -
where a; = mi(l—mi+1) i=1,2,... and m, = Py;- We require the polynomials in

the denominators of the convergents of the continued fraction expansion of

€2i7%2i+2

2i+l
w

o~ 8

(4.9)

i=0

|
i
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Replacing w by 1/w in (4.8), multiplying by 1/w and making some "equivalence
transformations" (see Wall (1948)) the expansion for (4.9) can be expressed
as

o
(4.10)

_za_l
w

0.
_k
w - w

N

A number of comments are required concerning the quantities a, =
p2i(1—p2i+1)' For the Chebyshev or arc-sin measure proportional to (l-xz)a,
with o = -1/2, the canonical moments are all p; = 1/2.  (See Skibinsky (1969))
These are the same as the first part of the canonical moments corresponding to

.the optimal ES. For the uniform measure Py; = i/(2i+1). It can readily be

seen that the corresponding values A%y, .. are the values LTI TR
. 1 .
That is a. = a .. Thus the values o_,0, ,...,0 correspond to the
i n-1-i 1°72 s-1
Chebyshev measure, a  is given by (4.2) and g2 Cgpnr s 2% o correspond to

the uniform measure in reverse order. We note also that the polynomials for
the difference moments as in (4.9) correspond, at least for the classical
polynomials, to the derivative of the corresponding polynomial for the given
moments. For example, if we truncate the expansion (4.10) at k < s-1 the
corresponding polynomial is TL+2(W) with leading coefficient equalrone.
The proof can now be completed by taking the terms in (4.10) up to

k = n-2. The resulting polynomial can be seen to be the one in (4.1) using
certain basic formula in continued fractions. These are given in Perron

(1954) and are as follows. Let

o

A
ol b —
b B

v

st
<

and define
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Then
(4.11) . a, 3, a =K a, a, 1 a,
by by b, b, by b
Moreover if
B2 ez o By
Bia™ K 1o b b
A+l A+2 A+V

then
(4.12) B = B

ver-1 - Ba-1Byac1 o @aBaioByor

The polynomial in (4.1) is obtained from (4.12) if we let A = s+l,

v = -s+l, a;,1 = "% bi = w and ﬁse (4.11) on the two B terms with double
subscripts.
5. Examples. .

From Theorems 4.1 and 4.2 the Do—optimal design has equal weight 1/(n+1) on
the zeros of (l—xz)P;(x) = 0. It was mentioned earlier that the DO and D- |
optimal are the same. That is, the design maximizing |M|/]M11] and |M| are
the same since f0 = 1 and M11 = 1. The D-optimal design has the property
that d(x,£) = f'(x)M_l(g)f(x) < n+l while by (1.4) do(x,€)<__n for the DO—
optimal. A small amount of matrix calculation will show that d(x,§) = do(x,€)+1
so that one may show the equivalence of the Do and D-optimal designs using the
quantities do(x,E) and d(x,&).

At the opposite extreme where s=n-1 and the variance of the least
squares estimator of only the highest coefficient Bn is being minimized,

Theorem 4.1 shows the support of En—l to be on the zeros of (l-xz)T;(x) = 0.
These zeros are X, = cos !%-, v=0,1,...,n. For the interior zeros U2n_2(x)=i

which implies weight 1/n is on each interior point. This leaves 1/2n on #1.

- This is the design mentioned in the introduction.
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It is easily seen that U, (*1) = 2s+1 implying that the weight given

25(
to +1 by Es is

1
n+l+s

(5.1) Es(+1) = ES(—l) = s=0,1,...,n-1

Whenever n is even x=0 is in the support of gs for each s. Since
— (.18 .
UZS(O) = (-1)" we find

2
(5.2) £.(0) = —— s
" S 2n+1+(—1)s

1!

0,1,...,n-1, n even

Consider the case n=4 and s=2, where for example, we might have a
. . . . . . 4
quadratic regression but are guarding against terms involving x3 and x .
To investigate these terms a design using 52 might be appropriate. Theorem

4.1 shows the interior support points are the zeros of

1 1] 1 1]
(5'3) chx)ts(x) - Etz(x) =0
Checking the polynomials Pn and Tn’ say from Davis (1963) p.369-371, equation
(5.3) becomes 12x3—5x = 0. Using (5.1) and (5.2) and the symmetry of €2 we
find that the D2-optima1 design 52 concentrates mass

)

1
(5.4) = 3E

1
7

i 2
5 35

on the corresponding points

(5.5) -1 -‘,g-_ 0 »/%— 1.

We can reverify that this is the D2—optima1 design by checking that dz(x,Ez) < 2.
Using the design above or using the results of section 3, we find that the

moments of 52 are c,. = 0, and

2i+1

3

=
[}
E=N
~
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It then follows that

3
0 ) 0
_1_
M22M11 -
1 13
s ° 1.
and
1
TE 0
M, -M M_lM =
227721711712
1
N

The inequality d2(x,g2) < 2 then becomes

16(x> - 3% + 2 - B2 L2

Bl

This can be checked and equality shown to hold for the support points given

in (5.5).
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