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1. Introduction.

In many fields of research one is faced with the problem of comparing
k experimental categories with reference to a 'standard' or a ‘control’.
Following the initial investigation by Paulson (1952), this problem has
been studied in several different formulations by Dunnett (1955), Gupta and
Sobel (1958) and Lehmann (1961) among others.

Let Sl denote the k experimental categories or 'treatment'

10
populations and let " denote the 'control' population, where the quality
of each population s is characterized by a real-valued parameter 05

(i =0,1,...,k). Each treatment population s is said to be 'superior',
‘equivalent' or 'inferior' to the control population ™ if 61—80 > A,

-A < Ui - OO
constant. We consider a problem in which the treatment populations are to

<A, ai—oo < -h, respectively, where & is a given positive

be classified as one of the above three cases based on the observations from
the populations. Bhattacharyya (1956, 1958) studied this problem for the
normal populations with unknown means when the control population is

assumed known. A similar problem has been considered by Seeger (1972).

We apply the I-minimax principle to this problem.

*This research was supported by the Office of Naval Research contract
NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



r-minimax principle is known as one of the techniques for the use of
incomplete prior information. Such an idea was first used by Robbins (1951)
and independently by Hodges and Lehmann (1952) and Menges (1966). The name
r-minimax was first used by Blum and Rosenblatt (1967). Randles and Hollander
(1971) applied such a principle to a problem of selecting the treatments
'better' than the control. It has been applied to various problems, and
recently to selection problems by Gupta and Huang (1975, 1977), Berger (1977)
and Miescke (1979).

In Section 2, necessary notations, definitions, a loss function and
the incomplete prior are introduced. A lemma is given to help find I'-minimax
rules. Section 3 treats the case of known control population, and a I'-minimax
rule and a minimax rule are derived. In Section 4, the case in which the
control population parameter %9 is unknown is treated. Rules are derived
which are r-minimax among rules for which the decision about the i-th
population depends only on the observations from s and o A minimax rule
is also derived. A normal means problem and a normal variances problem are
given as specific examples. Section 5 consists of comparisons of I-minimax
rules with Bayes rules for independent normal priors for the normal means

problem.

2. Formulation of the problem.

Let XO’X]"'

control population i and the k treatment populations LAETERRY O respectively,

"Xk be k+1 independent random variables representing the

with X; having pdf fi(x—ei) with respect to the Lebesgue measure on the real
Tine R where 61 €® =R, 1=20,1,...,k. The random variables XO""’Xk may

be sufficient statistics or other statistics based on which we wish to make



statistical decisions. We assume that each fi(') (i =0,1,...,k) is symmetric
about the origin and strongly unimodal, i.e., f1<') is log-concave on the real
line. llence fi(x—oj) has the monotone Tikelihood ratio (MLR) property.
Obviously, we do not need any observations from o when 8y is assumed known;
therefore, it will be understood that, in such a case, the random variable

XO is deleted from our consideration.

The action space G can be written as G = G] XouuX Gk where Gj =¢1,2,3)
for i = 1,...,k. The action a = (a],...,ak) € G is to be interpreted in such
a way that, for i = 1,...,k, the treatment population m; is classified as
"inferior', 'equivalent' and 'superior' to 0 for a; = 1,2,3, respectively.
The loss L(g,a) incurred by the action a € G for ¢ = (eO,...,ek) is assumed to

be of the following form.

where L.(g,a;) is defined as in the following table;

Table of loss Li(g,ai)

\
4
State of nature ™~ 1 2 3
Thp0i70g = Ty 0 0 Ly (v 2 0, i=1,...,4)
!Ui_“OI <A Lo 0 2o
A] gvoi-OO < AZ Q4 0 0
01_00 > by 1]+z3 21 0

Here, Ay T ASE, A, = At for a given constant €: 0 < € < A and it will be



understood that the second row and the fourth row will disappear when ¢ = 0.
Bhattacharyya (1956) derived a minimax rule assuming the above loss function
with Ly % 4, = Lithg = 1 and € = 0 when 99 is assumed known and Oys---50, are
the unknown means of normal distributions. However, the irregularity of such

a loss function has been pointed out in the sense that the minimax risk does not
tend to zero even if the sample sizes increase indefinitely, and the same
problem has been studied afresh by Bhattacharyya (1958) assuming the above loss
function with 2y 0y =, = 2]+23 =1 and € > 0. Note that the above loss

2 4
function with € > 0 assumes the indifference zones.

For given x = (XO’X]""’Xk) consider decision rules of the form
8(x) = (69(x)5...58,(x)) (2.2)

where . (x) = (65 (T]x), 8:(2]x), 6.(3]x)) and, for j = 1,2,3, 5.(3[x)
denotes the conditional probability of taking action j in the i-th compaonent
decision problem. Note that there is no loss of generality in considering
decision rules of the form given in (2.3). The risk function of a rule

k
Z] R; (e, 55) where R (0,6 ;) = E L, (0565 (X)) 7.
;

il

§ for fixed ¢ is then R(g,s)

For a prior distribution t(g) of 6, the overall risk of a ru]e § wrt 1 is
K v

denoted by r(7,s) = § 1(r,a ) where ri(e,6,) = R ( dt(g).
i=1

It is assumed that partial prior information is available to a decision
maker such that, for each i, he can specify vy = P[[ei-oof z_Az] and
y% = P[[ei—eo] < A]] where Yi+y%‘i I for i=1,...,k. Let r denote the
class of all such prior distributions, i.e.,

r = {T(Q)Z f dT(Q) = Yq» f dT(Q) = Y% for i=1,...,k}.
[6;-00]>2, [05-601 <2,

Note that when € = 0, i.e., A] = AZ’ Y; + Y; T 1.



A rule o is called a r-minimax rule if sup r(rt,s') = inf sup r(t,s),
T€r § t€l

and sup r(x,§r) is called the r-minimax value. The next result is useful

to find the r-minimax rule.

Lemma 2.1. Suppose {r,» n = 1,2,...} is a sequence of priors in r.
e . r . =
I[f Tim inf r(Tn,a) > ¢ and if sup r(t,6 ) < c, then s is a r-minimax
n S T€T
rule and ¢ is the r-minimax value.

Proof. The result follows from the following inequalities.

minf r(t_,8)

sup inf r(c,s) > N

:
T€r 8 n 8
C

| v

sup r(r,s")
T€r

v

inf sup r(r,s)
§ t&r

v

sup inf r(z,s).
€l §

|v

3. Known control population

In this section %9 is assumed known and thus we may assue 0g = 0 without

loss of generality. Hence x and g in this section denote (x],...,xk) and

(“1”"’”k)’ respectively. Let us consider a rule §(x) of the form in (2.2)

where ai(jlg) (3 = 1,2,3) is given by
6-(]‘X> = I(-w,"di]<xi)’
61(2|>_() = I(_d-j’dj) (Xi)’ (3.1)

61(3|§) = I[di,m)(xi)’

for 0 - dj <wand 1 =1,...,k.



Lemma 3.1. Suppose that a decision rule §(x) is given by (2.2) and (3.1).

Then, for i = 1,...,k,

sup Pi(r,di) <V

€T
where v, = é'L23y1fi(X+A2)+£2Yi(fi(X—A])+fi(X+A]))+24(]-Y1‘Y1)fi(X+A])]dx
i
d;
+ [ l]yifi(X—AZ)dX.

oo

Proof. It follows from the definition of Li(g,ai) and the symmetry of fi(')

that, for fe,| < 4y,

'(0,6,) = 22[f1(di-61)—f1(—d1—6')]

1

f.(e,;-d.)

171 1
ol ey 1

it

where R% denotes the derivative of Ry wrt 0,

It follows from the MLR property of fi(x—ei) that R%(Q’di) has at most
one change of sign, from negative to positive if there is any sign change
at all; therefore, Ri(g’éi) attains the supremum over 8; € (—A],A]) at

either 85 = -A; or o, = 4. Hence, for 051 < 895

R, (856:) < 2, éf[fi(x-A])+fi(x+A])]dx.

i
It can be easily shown that

d.
1 oo
<0 {mfj(x—Az)dx+x3 é fiOcra, )dx for Joo| » My
.i
R.(8,65) )
<ty f . .
4 d.fi(x+A])dx for a, 5Ajui|

1



Thercfore, it follows from (2.3) that sup ri(r,éi) <V which completes
Tl

the proof.
Now we derive a r-minimax rule for the case where eO is known.

Theorem 3.7. Assume that independent random variables X]""’Xk have

f](x]—o]),...,fk(xk~ek), respectively, with fi('> being symmetric and

strongly unimodal, and that the loss function is given by (2.1). Then

r

the r-minimax rule &' is given by (2.2) and (3.1) where each di = di in

(3.1) is defined by dg = max(ci,O) with c. being determined by

3.2

R v. . (x=7 a >, < C..
SR Ne ](x AZ) 5 X2, <,

Proof. The existence of a oy satisfying (3.2) follows from the MLR

property of fi(x~oi). Therefore, the decision rule df is well defined.

First, we will consider the case when € > 0, i.e., by > bq. For n > A{],

let T be a prior distribution in T under which 6],...,6k are independent,

P(01=A2) = P(Oi = ~A2) = yi/Z, P(01=A]) = P(E}.i = - A]) = (]—yi-yi)/Z and
P(o.=a —n"]) = P(o. = -a +n']) = v:/2 for i = 1,...,k. Then it can be
1 7] i 1 L
easily verified that inf r(rn,d) = ) inf ri(Tn,di) and, for i = 1,...,k,
S i=1 s,
i

igf ri(fn,di) = {w pn(x)dx/Z,

;
where pn(x) = min{pn(l,x), p(2,x), pn(1,—x)} with p(2,x) = Q]Yi[fi(X+A2) +

r _ 1 "'] _-] 1 -
ri(x_AZ)] and pn(],x) = zzyi[fi(x—A]+n )+f1(x+A]—n )]+ 24(]-y1 Yi)fi(x A])+

(%.+m3)y1fi(x—A

] Since fi(') is strongly unimodal on the real line, fi(') is

2)'
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continuous and thus pn(x) converges, as n - =, to p(x) = min{p(1,x), p(2,x),

p(1,-x)} where p(1,x) = 1im p_(1,x). Note that p(1,x) > p(1,-x) if and only
N0 n

if x > 0. This follows from the fact that, for any t > 0 fj(x—t) > fi(x+t)

if and only if x > 0. Since pn(x) is bounded above by p(2,x) which is

integrable, it follows from the Lebesgue convergence theorem that

1im inf ri(Tn’di) = [ p(x)dx/2

n cS,i —co

min{p(2,x), p(1,-x)}dx.

O 8

Note that [ min{p(2,x), p(1,-x)}dx can be written as

min{p(2,x), p(1,-x)}dx

O § O~ 8

Min{a gy 3 (xap )ty (Toy =y FL ooy Moy S LF; (xrag )46 (x-n) T,

i}
O 8

0 _
giYifi(x—AZ)}dx +_£ K]Yifj(x—AZ)dx

= é'[23Yifi(X+A2)+24(]—Yi-y%)fi(X+A])+sz%(f1<X-A])+fi<X+A]))]dX

i
d.

i
[ aqvyfi(x-a,)dx,

where di = max(O,ci) with c. defined as in (3.2).

.(T,5§). Therefore,

It follows from Lemma 3.1 that Tim inf ri(Tn’di) > sup r,

n S T€rl
K i
Tim inf r(t_,8) = lim yoinf or.(t ,6.)
's :
> ) osup ri(,6s)
i=1 <ér

sup ri(r,sr).
T€r

v



Hence Lemma 2.1 yields that s' is a r-minimax rule. This completes the proof
of the case when € > 0. Note that Ay = by =4 and vi * y% =T fori=1,...,k
if ¢ = 0. When € = 0, let us consider a sequence of prior distributions,

Ligs N> A—]}, in 1 under which g,,...,0, are independent, P(61=A) = P(g.= -a)

v;/2 and P(01=A~n—]) = P(Oi: -A+n-]) = y}/2 for i =1,...,k. Then we can
prove in the exactly same manner as the above that &' is a r-minimax rule.

Now we discuss the derivation of the minimax rule for some special cases.
A minimax rule can be derived from the arguments in the proof of Theorem

2.1. For this purpose, assume that Ly T o5 By 5_22] and ¢, < 2y We may

3_
assume that Ly T ay = 1 without loss of generality. Let us consider a rule
§* of the type given by (2.2) and (3.1) where each di = d? in (3.1) 1is

determined so that, for Fj(x) = fi(t)dt,

Fi(di"A2)+%3Fi(“di—A2) = Fyl=dy=aq )45 (=d*ag). (3.3)

i

Note that the existence of such a non-negative d? follows from the strong
unimodality and the symmetry of f1(°). Let us define Y5 and y% = 1-Y1 for

i = 1,....k by
vi T L (dgma g af (ddrag ) I/DF, (d¥-0p) =25 F (dta, )+F, (d¥-ag )+F, (d¥+ag) ]

Since Y5 € [0,1], we can consider a family of prior distributions, r, given
by (2.3). Then it follows from Theorem 2.1 that the corresponding T-minimax
rule is of the same type as §* except that now dg = max(ci,O) where c is
determined so that

H(C]) = Y‘ILQ\?f](C]+A2)-f](c1—A2)]+Y;[f1(CT—A])+f1(C1+A])] = 0.

Since H(d?) = 0 and d¥ >0, dg = d¥, i.e., the rule & is the T-minimax
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rule; therefore it follows from the arguments in the proof of Theorem 2.1

that

1im inf r(rn,d)

| v

k
. ” S S
.Z]YitFi(d? B HgF s (~df-0,) Iy [F (-df-aq 4R (=dFng )]

n S 1=
k
= - *- - *
121 [F,(=d-0y)4F, (-d¥+a,)]
k
= ) sup Ri(Q,é*)
i=1 9

> sup R(9,6%)
)

Therefore, we have the next result which includes the results in Bhattacharyya

(1956, 1958) as special cases.

Corollary 3.1. Under the assumptions in Theorem 3.1, if S P 1, Ly <

1

M L. . M
and %, = 2, then a rule & of the type given by (2.2) and (3.1) with d = di
in (3.1) being determined by (3.3) is minimax.

4. Unknown control population.

In this section we will consider the case when 80 is unknown and
will derive a r-minimax decision rule dr in the class &O of decision
rules for which 61(5) in (2.2) depends only on Xg and X for i = 1,...,k.

Let us consider rules &(x) in 8, where 6i(j]§) (J = 1,2,3) are given by

§:(1x) = I<_m’_di](xi—x0),

61(2]>_(> = I(_d1’d1)(x1'xo)a (4-])
53 (31%) = I[di,w)(xi—xo)’
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Note that the pdf of Yi = X1.—XO is given by

. (y-(0,-0,)) = fmfi(t+y—oi)fo(t—eo)dt, (4.2)

and that gj(') is strongly unimodal by the result of Ibragimov (1956) and
symmetric about the origin. Therefore, the next follows from this fact and

Lemma 3.17.

Lenma 4.1. Suppose that a rule &(x) in 8y 1s given by (2.2) and (4.1).
Then, for i = 1,...,k,

sup r.(1,68,) < w.,
e | i i

L237;9; y+A2)+22Y;(91(y~A])+91(y+A1))+£4(1-Yi-Y;)91(y+A])]dy

We now proceed as in Theorem 3.1 by considering the following sequence

byyen > A_]} of prior distributions in T for the case when € > 0. Under T

(1) 01 = Upa--+>0,-8y are independent,

(i1) P[oi—e =4

0= 8pd = PLE-8y = 4,1 = v/2,

P[oi—o = P[Oj—90= —A]] = (]—y.~yi)/2,

0 = 4]
. _ -1 ) - _
PLoj-oO = AN 1= P[oi % 8 +n~ ] v !/2 and

(i11) 0y has uniform distribution over [-n,n] and is independent of 6]—60,.

It can be easily shown that the overall risk of the Bayes rule is given by
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foed

k
inf r(:t ,8) = 1 Z f f (i,x,y)dxdy (4.3)
n 4n .t
66390 - - -

where Dn(i,x,y) = min{sn(i,x,y), t {i.x.y), s, (1,-x,-y)} with

n
sn(i,x,y) = sz% f [fi(x-u—A]+n—])+f (x- uth, -n )]f (y=-u)du +
-n

n
* 2, (T -vs) [n fi(x~u-A])fO(y—u)du +

n
(2]+23)y1 [n fi(x—u—AZ)fO(y—u)du and

+

n
tn(i,x,y) = 297; {n [fi(x-u+A2)+fi(x~u-A2)]fO(y—u)du.

From change of variables x = nv-w and y = nvtw, it follows that

[/ pn(i,x,y)dxdy/4n [ f pn(i,nv—w,nv+w)dvdw/2
—00 =00 -0 =00 (4.4)

fv

f [f Py (i,nv-w,nv+w)dv]dw/2.

—oo-

Note that

n{v+1) - -1
sn(1,nv-w,nv+w) = L, {(V_])[fi(z—w—A]+n )+f1(z—w+A]—n )]fo(z+w)dz +

n(v+1)
4 ] YTV )f f.(Z—W—A])fO(Z+W)dZ +
n(v-1) !

+

n(v+l)
(2]+23)yi g(v—]) fi(z-w—Az)fO(z+w)dz and

+

. n{v+1)
tn(1,nv—w, nvtw) = 2]y1 £(V~]) [fi(Z—W+A2)+fi(Z—W A )]f (z+w)dz

Therefore, for any (v,w) € (-1,1)xR, pn(i, nv-w,nv+w) converges, as n - w,
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to p(i,w) = min{s(i,w), t{i,w), s(i,-w)} where
s{i,w) = 9574 {w[fi(z—w—A1)+f1(z—W+A])]fo(z+w)dz +

[e~]

T A A N
+ Q4(] \ yi) J_001”1.(2 W A])fo(z+w)dz +

4

(z]+z3)yi [mfi(Z—W—AZ)fO(Z+W)dZ and

o

t(iw) = aqvy f [fi(z—w+A2)+fi(z—w—AZ)]fO(z+w)dz.

It follows from (4.4) that, for i = 1,....k,

11m [ f P, (1.,x,y)dxdy/4n > f p(i,w)dw

-0 00 -0

h(i,y)dy,

O~ 8

where n(i,y) = min{e,vilos (y-a)+9, (o) IHe, (T-y -v3) s (yray) +
t(0qteg)y95 (vran) s aqvile; (yray )+, (y-0,) 10

Then from (4.3), we have

ne~1x

Tim inf r(z _,6) >
n o §ey 0 i

ot~ 8

1

Note that [ h(i,y)dy can be written as
0

@

h(i,y)dy. (4.5)

éh(i,y)dy = émin{z3y191(y+A2)+z4(1-Y1-Y§)91(Y+A1)+22Y%(91(Y+A1)+91(Y’A1))’

0
277795 (y=8,) 3y + [m 297395 (y-8,)dy
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[}
Q. 8

Logv95 (0o )va,v g, (y=09 049, (y+ay ) J4a, (T-v;-v2)g. (v+a,) Idy
i

d,

;

+ {wZ]Yigi(y“Az)dy:
where di = max(ci,O) with C; being determined so that

23Yigi(y+A2>+22Y%(gi(y'A])+gi(y+A]))+£4(]'Yi'Y%)gi(y+A])
(4.6)

< 2 297495 (0-8,) as y 2, < el

Let &' be the rule given by (2.2) and (4.1) where di = dg in (4.1) is
defined by di = max(cj,O) with c; determined by (4.6). Then it follows

from (4.5) and Lemma 4.1 that
k

Tim inf r(rn,d) > ) sup Fi(r,6§)
n 56@0 i=1 qer
> sup r(T,6F).
T€r

Therefore, Lemma 2.1 yields the next result.

Theorem 4.1. Assume that independent random variables XO""’Xk have

pdf's fo(xo—eo),...,fk(xk-ek), respectively, with fi(') being strongly
unimodal and symmetric, and that the loss function is given by (2.1). Then
the r-minimax rule s’ in 84 is given by (2.2) and (4.1) where d_i = dg in
(4.1) is defined by dg = max(ci,O) with c. being determined by (4.6),

for all i = 1,2,...,k.

Remark 4.7. It can be easily shown that the symmetry of fi(') in Theorem
4.1 can be replaced by that of gi(-). It should be noted that the symmetry

of gi(-) follows when fo(-),...,fk(-) are identical.



15

The next result follows in exactly the same manner as Corollary 3.1

was proved.

Corollary 4.1. Under the assumptions in Theorem 4.1, if by 7 A, = 1,

by s T and ¢, < 2, then a minimax rule dM in 9y is given by (2.2) and (4.1)

where d. = d.
i i

=~

in (4.1) is determined so that, for G f 9.

Gi<d1"A2) + 9 G.(—di—A

3 i = G_i("d_i"’A

2) )+G1<'d1+A])

1
Now we provide some examples to illustrate the application of the above

results.

Example 4.1. Suppose n; represents a normal population N<ei’0§) for
i =0,...,k with o? (i =0,...,k) known. We assume that a random sample
of size n; is taken from each of the k+1 populations LIERRRTL IR By
sufficiency we can restrict our attention to the decision rules depending

only on the sample means X ’Xk where Xi has normal distribution with

0>

. 2 2 .
mean 0. and variance ny = Oi/ni for i = 0,1,...,k.

(A) r-minimax rule: The r-minimax rule &' in Yy in Theorem 4.1 is

\ i
determined by d% = (n? + ng)2 max(ci,O) where . is defined so that

—2(A1+Ei)x ~2€1(x-xi) —2A1(x—€1)
L3y;@ + zzyi[e +e ]+
(4.7)
—2A1(x~6i)
o, (1-y-vl)e -Lyv; 2 < 0as x <, > ¢y,

2, 2y~
where Ai = A(n1+no> < and Ei = E(n2+ng)
(B) Minimax rule: Assume by 78 = 1, %3 <1 and»z4 < 2. Then the
minimax rule dM in wo in Corollary 4.1 is determined by dg = (ns 2 S) t.

wheretj is defined so that



16

AL -EL ) “t. ).
<1>(’c1 A 61) 2,0( t1 Ai-€

3 L) o= ¢(—ti-xi+ei)+¢(-ti+xi-ei) ; (4.8)

i

with A and €, defined as in (A) and ¢ denoting the cdf of the standard

normal distribution.

Example 4.2. Assume that m, represents a normal population N(O,n?) for
i=20,1,...,k with c? unknown, and that we have a random sample of size n
taken from each population - Consider a problem of partitioning the
treatment populations in terms of variances with a loss structure

analogous to that given by (2.1), i.e., a loss function obtained from the
latter by substituting Tog 0?, log A and log € for 655 b and €, respectively.

Thus A and € are assumed such that 1 < € < A. By sufficiency we need to

consider only the decision rules depending on 58""=5§ where s? denotes
the sample variance corresponding to - Since ns?/o? (i =0,1,...,k)

are independently distributed chi-square random variables with degrees of
freedom n, it can be easily seen that the associated location parameter
problem satisfies the assumptions in Theorem 4.1 except the symmetry
which is not necessary in this problem because of Remark 4.1. Therefore,
with obvious modifications we have the following results. Let Yy denote
the class of decision rules § =

2 2 2
Sy and Si and let Xi denote si/s

(6],...,dk) for which ] depends only on
2 .
0 for i = 1,...,k.

(A) r-minimax rule: A r-minimax rule st in @O is given by

6i(1]x;) = I (x:)5 65(2]x;)=I

I_‘ —
UK B @y ) e B ) Og)
:

1

3

.i

for i = 1,...,k where di = max(ci,]) with op being determined so that



Here A] = AE—], A2 = A€.

(B) Minimax rule: Assume ty =
M. r
rule & in &O is the same as &

so that

Gn(d/A2)+z3[1—Gn(dA2)] =

A2+y n A] n/2
(o351 2 +
1 2
<5 2 Q]Y] as y >, < C-i'

A
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Lo = 1, fq < T and L < 2. The minimax

in (A) except that dj

Gn(A]/d)+1—Gn(dA])

where Gn denotes the cdf of F-distribution with degrees of freedom

n and n.

We note that if i, represents N(ui,cg) with both i and 0? unknown,

then the above results still hold with n-1 replacing n.

L.

5. Comparison of r'-minimax rules with Bayes rules.

d is determined

(4.10)

When we represent our a prior information about the parameters by

prior distributions over the parameter space, one method for the use

of such information is to find a rule which is r-minimax with respect to

the class, I', of such prior distributions.

Another way is to select one such prior distribution

and use the corresponding Bayes

rule. Thus Bayes rules wrt prior

distributions in I' are natural competitors of a r-minimax rule.

In this section we consider k+1 normal populations N(ei,oz) with

~

2 . .
o~ known, and derive Bayes rules wrt normal priors and then compare

them with the corresponding r-minimax rules from both points of view.
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For this purpose, assume that (60,...,ek) have prior distribution 10 under

which 8 .0, are independent and each 0 has a normal distribution

0
with mean M and variance v?. Let L EREREE denote the observed sample
means based on samples of size n; (i =0,1,...,k). To simplify forthcoming

formulas, let us introduce the following notations;

-2

[t}

2 2 -2, =201 2\-1-1
O 9) /n-]: b.] - [(01 +V-i ) +(OO +VO ) ] s

TR T

-2
m. = {o. X.F V. u. . .
( 1 V1 1 1 1

1 1 .y = (m'_mo)/b.i‘

1 1

The following theorem describes the Bayes rule.

Theorem 5.1. Assume the loss function is given by (2.1). Then the Bayes
B . . B _ B _
rule 6" wrt 1y is given by 6. (1]y) = I(—m,—di](yi)’ 85(2]y) = I(_di’di)(yi)
B . o ) ) :
and 61(3]¥) = I[di,m)(yi),for i =1,..,k where d; = max(ci,O) with c, being

determined so that

-1 -1 -1
23®(—A2b1 —y)+24[¢(—A]b1 —y)—@(-Azbi -y)]

1

_'] _] . -
+ 22[@(A]bi -y)-e(-a4bs —y)]-z]@(—Azb1 +y)

>, <0 as y <, > cy.

Proof. It suffices to find the Bayes rule for each of the k component
decision problems. This reduces to the comparison of posterior risks of
three possible actions. We will do this for the first component decision
probTem without loss of generality. Let p](y]), pz(y]) and p3(y]) denote
the posterior risks of the actions 1, 2 and 3, respectively, in the first

component problem. Then it can be shown that
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(eyteg)el-0pb7 H4y) + gy[o(a,b7 -y)-a(s;b71-y)] +

w]
—
—
«
—
i

+upLa(agp]1-y)=0 (-aqb7Toy)1,

= z][m(—AZb{]—y)+®(—A2b{]+y)] and

©
N
——
<
~—
i

ke
(o8}
—~
&
~—
1

= py(-y).

Note that p](y) - p3(y) can be written as EyH(Z) where Z has a normal

distribution with mean y and variance 1 and H(-) is given by

. -1
[ z]+23v if z> Azb]
. -] -1
14 if A]b] < Z < Azb]
H(z) = 0 if —abTl < 7 < ppT]
4 171 =228
-9 if -a b_] < Z < =A b-.l
4 271 171
) i —]
~(L]+23) if z 5‘—A2b] ]

Since the density of the normal distribution N(y,1) has the MLR property,
it follows that p](y) - p3(y) has at most one sign change.
Furthermore, it can be shown that p](y)-p3(y) is strictly increasing on
(-ab7"s #671) and p(0)-p4(0) = 0. Thus py(Y)-py(y) >, < O as y 5, < 0.
Similarly, we can show that p3(y)—p2(y) >, <0asy <, > for some real
number ¢y unless p3(y)—p2(y) < 0 for all y. Therefore the result follows.

Now we compare the T-minimax rule &' given in Example 4.1 and the
Bayes rule 58 given in Theorem 5.1 under the assumption that £y % 8y = by = 1,
t3 T 4, Ny =N and v? = v2 for i = 0,...,k. Note that we compare these
rules under the relations i = @[(—A2+p1—po)(ZVZ)_%]+®[(—A2-U1+UO)(2V2)—%]

2

. ~d -k
and 3= 4l (g=ugtug) (2v5) 210l (=aq-u 4w g) (2v9) 5 For 4= 1,... k. Each

of them is the best in its own merit. Therefore there are two ways of any
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meaningful comparison of these rules. One way is to examine the increase

in the overall risk wrt T resulting from the use of dr. Another way is

to compare them in terms of sup r(¢,s). When n, =n and v? = 2 for i =
T€r
0,1,...,k, the Bayes rule depends on X only through X1™Xge -0 X X and
k
it can be shown that sup r(r,aB) = ) sup P1(1,6?). Thus it suffices to
T€r i=1 té€r

compare these rules wrt classification of one population. We choose " for
this purpose without Toss of generality.

Now we introduce the parameters used in the comparison as follows.

_ "1
s 83 - ____and 64 = .

V2V /2v2

It can be verified that the overall risk wrt T of these rules can be

written as

20(-A-B-C)+o(A-B-C)+a(D-E)+26(-D-E)

—@O(—A—B—C, -D-E; p)+(1-2)®0(—A-B—C, D-Esp)

i

@O(—A+B-C, D-E; o) + o,(A-B-C, -D-E; p)

of

Qo("A+B"Ca 'D“E; p)_®0(A‘B'C: D"E; D)
* 0g(-A+B-C, D-E; p)-04(A-B-C, -D-E; o)

- @O(A+B—C, D-E; p)-(1-2)o,(A+B-C, -D-E; )

o
where @O(-,-; o) is the cdf of a bivariate normal distribution with zero

means, unit variances and correlation coefficient o, and where A = o
1 L 1
p=4

p“]B4 for 58 and E = p84 for 5F wWith d] and <y being those in

it

for s, E

Theorem 5.1 and Example 4.1, respectively. Also sup r](T,G]) for both rules
€l
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can be written as

VLo (RE[S{-T-U)=0(-R+[S[-T+U) +20(-R+|S|-T-U)]
+ Yi[¢(-R-S+T-U)+¢(—R+S—T+U)]V[Q(-R+S+T-U)+¢(_R_3_T+U)]

+ (]«yi)®(—R+fS)-T+U)

1

R 1 "
where xvy = max(x,y), T = 6282, U= By ?, S = 64812 for 68, S=190

i

. 1 1
for a[, R = ;a]‘d(]ﬂ-;])B d] for GB, R = max(c],O) for s with d] and

Cy being those in Theorem 5.1 and Example 4.1, respectively. For

selected values of b (i =1,...,4), Table I and Table II give r](r0,61)

and sup r](T,§]) for 81 = 6{, 6? for 2 = 0 and ¢ = 1, respectively. It
e

can be observed from these tables that, in many cases, the increase in the

overall risk wrt . from the use of 65 is only slight compared to that

0
in sup r](w,dl) from the use of 6?. In this sense, SF is more robust
aga;iét other formulation than 68. Such properties of SF become more
prominent as the difference between the prior means (34) increases and
the prior varijance (B]) gets smaller. When we have the same prior means
and the prior variance is large, both rules compare favorably with each
other. In most cases, we can observe that &' compares favorably with SB

in terms of the overall risk.



Table I

Overall risks and the values of sup r(t,s) of dB and s' when ¢ = 0.
T€r
o7 B o7 <8 o] 5B
5
By .25 1.0 4.0
B, = 0.5 By = 0.125
L4961 .9696 .4097 .7784 .2816 L5404
1.0 .3930 . 2587 . 2864 .2097 .2001 - 1189
5344 8274 L4577 5201 33712 . 4359
0.5 L4520 .3957 .3321 .2963 2121 1615
.5164 .5527 . 4568 4626 3473 . 3492
0.0 .4599 L4544 .334] .3315 .2103 1786
B, = 0.5 By = 0.05
.5250 9731 47T 8117 .3261 6276
1.0 L4140 . 2853 .3103 .2395 .2413 1493
.5768 .8460 .5088 .6703 .3999 .5306
0.5 .4898 .4330 .3840 .3368 .2899 .2021
. 5680 .5937 .5170 .5190 (4270 4391
0.0 .5027 .4978 .3828 .3764 . 2856 .2232
B, = 0.8 By = 0.2
4770 .9598 .3793 L7074 2574 J4408
1.0 .3909 .2824 .2539 .1931 .1369 .0923
.3739 .7920 . 3450 5344 .2692 . 3449
0.5 .3594 .3163 2424 .2237 .1152 .1083
.3172 5276 3066 3794 2546 2667
0.0 .315]1 .3050 . 2404 .2298 .1133 1131
B, = 0.8 g5 = 0.08
. 5365 .9699 L4547 7840 .3573 .5860
1.0 . 4380 .3309 .3190 2411 .2407 .1353
L4357 .8308 L4278 .6286 3960 4890
0.5 L4311 0 L3742 .3137 .2801 .1632 .1588
.3789 .5827 .3785 . 4658 .3679 3967
0.0 .3789 .3658 .3509 .2887 .1939 .1659

The numbers on the first (second) row in each box are the va]ues»of

sup r(t,6) (r(wo,é)).
TET
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Table II

Overall risks and the value of sup r(r,s) of 68 and 6P when 2 = 1,

TET
N B ;T N: o7 ;B
_ 6 1
fg .25 1.0 4.0
B, = 0.5 By = 0.125
.6655 1.6167 .5435 1.0979 .3258 .5696
1.0 .5218 .2929 .2947 .2195 1674 .1194
5746 1.2757 5098 .7758 .3496 -4498
0.5 .5280 L4325 .3367 .3082 .1941 .1620
5209 6991 4365 5208 3529 3560
0.0 5085  .4817 .3474 .3437 .1985 1791
B, = 0.5 By = 0.05
7117 T7.6587 6084 T.7727 4027 6698
1.0 .5688 .3264 .3280 .2523 .2059 .1500
62047 T.2762 5775 8566 4372 5520
0.5 5872 4778 .3828 .3522 .2445 .2030
5877 7627 5545 6032 4457 4502
0.0 .5683 .5316 L4017 .3923 .2510 2242
B, = 0.8 By = 0.2
5077 T.4714 3987 87181 2580 RVAK
1.0 L4248 .2883 .2465 .1938 .1355 .0923
3745 19929 3470 5707 2603 3451
0.5 | .3642 .3195 .2448 2243 1151 .1083
3172 5774 3070 .3900 7546 2667
0.0 .3157 .3062 .2420 .2303 1133 1131
B, = 0.8 By = 0.08
5665 T.4765 4867 9276 3617 5877
1.0 L4891 .3393 .2966 2423 .2239 .1353
4357 T7.0748 4289 6799 3960 1894
0.5 | .4337 .3789 .3222 .2811 .1632 .1588
3789 6540 3785 4823 3679 -3969
0.0 .3789 .3675 .3520 .2895 .1939 .1659

The numbers on the first (second) row in each box are the values of

sup r(i,68) (r(wo,a)).
el
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