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T. Introduction

Recently there is a growing interest in the study of inference
problems for stochastic processes both continuous and discrete time
in view of the large number of applications to engineering problems.
It has been found that the class of diffusion processes is amenable
for statistical analysis. A survey of the recent work in this area
is given in Basawa and Prakasa Rao (1979). Further work on asymptotic
theory of maximum 1ikelihood and Bayes estimators for parameters of
diffusion processes is discussed in Prakasa Rao (1979%a).

Dorogovchev (1976) studied weak consistency of least square
estimators for parameters of diffusion processes which are solutions
of non-linear stochastic differential equations. Asymptotic normality
and asymptotic effiency of these estimators is investigated in Prakasa
Rao (1979b). Our aim in this paper is to study limiting properties of
a process related to Teast squares estimator and hence to discuss the
asymptotic properties of an estimator derived from the 1imiting process.
We study strong consistency and asymptotic normality of this estimator.
Our approach here is entirely different from that of Dorogovchev (1976)
and Prakasa Rao (1979b). We believe that our techniques for study of

families of stochastic integrals is new and is of independent interest.



2. Study of process related to Teast squares estimator

Let {X(t),t > 0} be a real-valued stationary ergodic process
satisfying the stochastic differential equation

dX(t) = f(eO,X(t))dt + dg(t), Xx(0) = XO; t>0

where £(t) is a Wiener process with mean zero and variance osz 02
being  known and E[Xg] < o, Suppose f(6,x) is a known real-valued
function continuous on @ x R where @ is a closed interval on the real
Tine and 60€E® is unknown. Without loss of generality, assume that
@=1[-1,1] and o° = 1.

Suppose the process {X(t), 0 < t < T} is observed at time points

tk’ k =0,1,...,n-1 with t, = 0 and tn =T. Let

0

Ty T P - X - £(6,X(t, ))at, 1°
'n k=0 At

K

~tyo 0 <k <n-1. An estimator eh 1 Which minimizes

where Atk = tk+]

Q:(e) over 6 €@ is called a least squares estimator of 6. Assume that

such an estimator exists. Note that if en T minimizes QI(@), then it

minimizes QI(e) - QI(SO)'

We shall first study the Timiting properties of the process
1ql(e) - QT

n(0g)s 6€@Jas the norm of division A = max [ty1-ty | tends

1<k<n
to zero. Let AXk = X(tk+]) - X(tk) and pg = £(tk+]) - E(tk),O’f_k < n-1.

For any fixed o,



] 2
Ef; [AXk-f(e,X(tk))Atk]

-] o [ax -flog.x(t, ))at, 12

t
1 k+1 2
= E, ZEE'{{ f(eO,X(t))dt+Agk-f(e,X(tk))Atk}
k

t
1 k+1 2
- g Z€E.{{ fogX(t))dt+ag, -F(6,,X(t, ))at, )
k

b
sy ] 2
= g X; {{ [f(00-X(t))-F(e,X(t,))Idtag, }
k

k+1 )
- E = [ [f(6g.X(t))-Fog,X(t, ) Idt+ag, }

It is easy to check that
T T
(2.0) Qq,(6)-0,(sp)

) [FosX(t,))~Fle,X(t, ))1%t,

+

2 E [f(o O,X(tk)-f(e,X(tk)]Agk

t
k+1

2 é (6, X(t, )-f(e.X(t, )} { {f(6,,.X(t))-F(oy,X(t,))}dt
k

+

=TI, +2I, + 21

Tn 2n 3n
Assume that the regularity condition on f(x,0) stated at the end of

this section are satisfied. Since f(e,x) is continuous in x and the



process X has continuous sample paths with probability one, it follows

that

a.s.
=5

[F05X(t))-F(0,X(t))] dt

O~

(2.1) I

as o~ 0. Assumption (A2) implies that
m. T
(2.2) Ly 0 [ [F(00:X(t))-F(0,X(t))1dz(t)
0
as A > 0 in view of stationarity of the process X where the last in-
tegral is the Ito-stochastic integral.

Let us now estimate I3n' In view of assumption (A4), it can be

checked that

tk+1
(2.3) 1{ {f(0g>X())-F(0,.X(t, ) dt]
k
s
< Llog)f  [X(t)-X(t,)[dt
t
k
tk+1_ t
5_L(eo)f {1g(t)-g(tk)|+f|f(eo,x(s))lds}dt
tk tk _
1 s Tkt
5_L(90)f IE(t)-E(tk)ldt+L (eo)f [ f{1+]X(s)]}ds] dt
tk . tk tk
5 t
< L(eglat,  sup |e(t)-e(t, ) [+L (69)at,  sup f O+ X(s)|1ds.
b2ty LOSIALI R
§_L(60)Atk sup Ig(t)-g(tk)|+L2(eo)Ati sup {1+ X(t) |3

tkfﬁfﬁk+1 tkgﬁiﬁk+]

for 0 < k < n-1. Using assumption (A4) again, we obtain the following

inequality:



(2.4) 1y <] IOty ) fLleg) -ty tk;:gtk+]|g(t)-g(tk)l

+ Lz(eo)Ati sup {1+IX(t)|}}Ie-eof.

bttt

Since J(-) is continuous and X(:) has continuous sample paths al-
most surely, it follows that there exists a constant C*(eo) depending

on T only such that

(2.5) I, f_C*(eO){ZAtk- sup  [e(t)-£(t, )] + EAtE}]e-eol

ko7 testety

Since 0€® compact, it follows that

- 1/2 2
I < C(6g)(] Aty (2at, log 1/aty) Zep ot aus.

k k
whenever An is sufficiently small by the law of iterated logarithm for

Brownian increments (cf. McKean (1969), p.14). Therefore

- 3/2 1/2
(2.6) I3n O(E Aty logz 1/Atk) a.s.

uniformly in e€® . Furthermore the convergence in (2.1) is uniform in

6 €0 sincé
| #(8g-X(£))-F(0,X(£))]% < Jog-0/Z0%(x(t)) < ¢ P(x(t))

and J(X(t)) is integrable pathwise on [0,T] by (A4). Here we have used
the fact that;® is compact. Hence
(2.7) I = f [fleg.X(t)-f(6,X(t)]"dt + o(1)  a.s.
0
uniformly in o as by > 0. We shall discuss uniform convergence of 12n

in the next section.

Relations (2.0), (2.6) and (2.7) show that, for any fixed T,



T

T(o,) = / [F(0g5X())-F(6,X(£))1%dt + I, 0(1) a.s.

(2.8) Q(6)-q

n

uniformly in o€ @ compact as Ay 0 where 1 n satisfies relation (2.2).

2
Let us consider the Timiting process

;
(2.9)  Rylo) = [ [f(egX(1)) - £(8.X(t))1%dt
T
+ 2 [ [FogsK(£)) - £(6.X(£)1de(t)

T 2 T
= [ vo(e,X(t))dt - 2 f v(e,X(t))de(t)
0 0

where

(2.10) v(e,x) = f(o,x) - f(eo,x).

We study the Timiting properties of the process {RT(e), €@} in

the next section.

Assumptions
(A1) f(e,x) is continuous in (¢,x) and differentiable with respect to
6. Denote the first partial derivative of f with respect to o by
fé1)(e,x) and the derivative evaluated at 8y by fél)(eo,x).
(a2) E0e M (600077 < -
(A3) fé1)(e,x) is Lipschitzian in 6 for each x 1i.e., there exists a > 0
such that |

lfé])(e,x)-fél)(¢,x)l < clx)fe-9|* , x€R,8,9€0

and
ELC2(X(0))] < .

(A4) f(e,x) satisfies the following conditions:



(i) [f(o,x)| < L(e)(1+|x|) , 0€®, x€R; sup{L(6):0€0} < o .
(ii)  [f(e,x)-f(e,y)| < L(8)|x-y|, 8€@, x,y, €R.
(ii1) [f(6,x)-F(¢,x)] < I(x)|6-4], 6, ¢€®,xER
where J(-) is continuous and E[J (X(0))] < .
(A5) 1I(e) = E[f(e, X(O))—f( (0)] >0 fore #o,.
Remark: "Since E[X (0)] < =, assumpt1on A4(i) implies that
ELF(0.X(0))]2 < |
for all oc€® .

3. Study of a limiting process related to least squares estimator

Let us now study the properties of the limiting process

(3.1) Z;(8) = v(e,X(t))dg(t)

1
=

[ |

as a process in the parameter ¢€® = [-1,1] as T » ». From the central
limit theorem for stochastic integrals (cf. Basawa and Prakasa Rao (1979)),

it can be shown that

< } v(0,X(t))de(t) % N(0,E[v(6,X(0))1% )
‘/'I_' O 2 b 3

since the process X is stationary ergodic. 1In general, finite dimension-
al distributions of the process {ZT(e), 9€ @} converge to the finite
dimensional distributions of the Gaussian process {Z(6), 6 € @} with mean

zero and covariance function

R(81,8,) = E[v(e,X(0))v(0,,X(0))] .

We shall now prove the weak convergence of the process {ZT(e),eaE@}
on C[-1,1] under uniform norm. It is sufficient to prove that

(3.2) lim Tim P sup  |Z(8)-Z.(9)| > €) =
Treo 60  |6-0]<8



Since v(e,x) is differentiable with respect to 6 on [-1,1] by
assumption (Al1),it is easy to see that there exists a cubic polynomial
g(e,x) in o such that

g(-T,x) = v(-T,x), g(1,x) = v(1,x)
and

921)(-1,X) = v(1)(—1,X), gél)(l,X) = v(1)(1,X).

Let
h(e,x) = v(e,x)-g(6,x).

Then h(-1,x) = h(1,x) = o,hé1%-1,x) =hé1%1,x) = 0. Now

T ' T
1 1
(3.3)  Zx(e) = — [ h(e,x(t))de(t) + — f g(o,X(t))de(t).
LR | /0
Since g(6,x) is a cubic polynomial in o with coefficients in x which are

1
)

to check the uniform equi-continuity condition of type (3.2) for

linear functions of v(-1,x), v(1,x),vé1%-],x) andv( )(1,x),'1t is:easy

T
1
— [ g(e,X(t))de(t).
X
Let us now consider the process
1 T
(3.4) Wp(e) = — [ h(e,X(t))de(t).
/T 0

Let the Fourier expansion for h(6,x) in L2([-1,1]) be given by

(3.5) h(e,x) =} an(x)eﬂne , x €R.
n
Lemma 3.1
T T ino
(3.6) é h(e,X(t))de(t) = | { é a (X(t))de(t)ye"'"
n

in the sense of convergence in guadratic mean.



Proof An approximating sum in L2-norm for

T

[ h(e,X(t))de(t)

0
is

N .
= 0, X(t. o i
Ay jz] h( X(tJ_1))A£J
! ino
and an approximating sum in Ly-norm for Yif an(X(tz))dg(t',)}e"T N9 s
n O
A = e’lT-ine( g (X(t ) )
2N ln%<M sy A deeg)

It is sufficient to prove that E|A1N—A2NM|2 +~0as N>»and M > «. Now

E[Aq=Aon| 2 = E| ? {(h(e,X(t; 1)) ? mINO (X(t, 4))}a 12
ol = B TG AE g ))m L e e (K (e q) e

=M n
-6l ] 3, (X(t5_1))e" Mg |2
j=1 n%>M n 3-1 J
<[ {E( § a (X(t. -))ae.)2)572
< oo Fhy 2t

by the elementary inequality
2 2\\%,2
ET Ayl < (I [ (ECED)

for any sequence of complex numbers {An} and any sequence of real

valued random variables {Y,» n>1}. Hence

Ao 2 < L T € 1 Ela (X(t, )2t 132
IN2NMD = In%>M jer T J

Since

N ) . ,
j§1 Ea, (X(t;_1))7at; é Ea, (X(t)}"dt = Ty

n (say),



1
as N » », it is sufficient to prove that ) “ﬁ < o, This follows from
n

remarks following Lemma 3 of the appendix under assumption (A3).
Let

.
(3.7) W, =-£% [ ag(x(e))de(t).

Lemma 3.2. For every ¢ > 0,

(3.8) Tim P( sup ]WT(e)-WT(¢)] >¢)=0
80 |6-9|<S8
for every T > 0.
Proof. In view of Lemma 3.1, for any ¢ > 0,
(3.9) P sup [ur(e)-l(e)] > ¢)
lo-¢]<s
=P( sup |} wn(eﬂine-e“1n¢)[ > ¢)
l6-¢]<s n=-w
< P( sup Toou| [e"TMeming L oy,

[6-p]<s n=Z-e "

Let n0 be chosen so that

73 43
n n
0

(3.10)

o~1 8

n

10

This is possib]e since ) “1/3 < » by Lemma 3 of the appendix. -

| n=1
Inequality-(3.9) implies that



P( sup [W_(6)-U-(¢)| > €)
e-gf<s | T
no .

P( sup T [WjInfe-g] > 7= ) + P(
|6-¢[<6 n=-ng ‘ Inf>ng

| A

Wyl > %)

no o
5P| > ?Fﬁﬁg') +273

n=1 n=n0+1

IA

P(u | > e,)

(Here ¢_ = —17§-u1/3( Y ul/3)-1)
n=n0+1

0] 0 u
< 0 ) }ou. + ) -%
. n=1 n—n0+1 €

(since E(wn) = 0 and Var(wn) = un)

- $ 8 (ey3
=C "‘;2—(-2-)

where Cn depends only on no. Choosing 6§ such that
0

we have the inequality

P( Wo(e)-W-(s)] > ¢) < 2¢
Ie§$T<6! 7e)-Wrle)] > e) <

342
for every 0 < § < (E%ﬁ—) % and for every T > 0. This proves (3.8).
0 .
Theorem 3.1. The family of stochastic processes {ZT(e), 6€®} on
C[-1,1] converge in distribution to the Gaussian process with mean

zero and covariance function
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R(87,6,) = ELv(8,X(0))v(8,,X(0))]

as T+ = .,
4. Strong consistency

Let us now consider the 1imiting process RT(e) defined by (2.9).

Any estimator 6T which minimizes
1 2
(4.1) Rp(e) = ff(e,X(t))-F(o,X(t))1 dt
0

I
-2 é[f(e,X(t))-f(eo,X(t))]dE(t)

is called a process least squares estimator of 6.

Let Mg be the measure generated by the process X on C[0,T] when
6 is the true parameter. From the general theory of diffusion processes,

the Radon-Nikodym derivative of Hy with respect to Hq exists and is

0
given by
(4.2) dug T
- exp{_{{f(e,X(t))—f(eo,X(t))}dE(t)
er 0

:
i %.g {f(e,X(t))—f(eo,X(t))}Zdt} .

(cf. Gikhman and Skorokhod (1972), p.90). Hence

du
6 . _1
log d_ll— =-73 RT(G)

%
which proves that the process least squares estimator éT is the same as
the maximum likelihood estimator 6T of 6(cf. Basawa and Prakasa Rao (1979))

when the process X is observed over [0,T].
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Let
;
(4.3) I.(6) = é [F(6,X(t))-F(0,X(t))1%dt

and W* be a standard Wiener process. Since the solution of the stochastic
differential equation given in Section 2 is stationary ergodic by hypothesis,

it follows that IT(e) > o a.s. for 0 # 89 by (A5) and the process {RT(e)}
can be identified with the process {IT(e) + ZN*(IT(G))}. Furthermore

(4.4) IT(e) + 2w*(IT(e)) > ® a.s.
as T - » for any 9 % 0o Hence 6 and 6, are pairwise consistent. Note

that
(4.5) RT(e) = IT(e)-Z /T ZT(e), e€@, T>0

where IT(e) is defined by (4.3) and ZT(e) is given by (3.1). Let

* =
(4.6) ZT(e) T ZT(e).
Then
(4.7) %—TT(G) -~ I{6) a.s. as T > « by the ergodic theorem.

In order to study the strong consistency of the estimator 6T’ we shall
first obtain bounds on the modulus of coninuity of IT(e) and Z?(e).

Lemma 4.1. Under the assumptions (A1)-(A5),
T
|1:(0)-1:(0)] < Cqle-4] gJ(X(t))(HﬁX(t)])dt a.s.

where C] is a constant independent of T, 6 and ¢.
Proof. Note that
T
IT(e)'IT(¢) = é{f(X(t),e)-f(X(t),¢)}'

HR(X(E),0)+F(X(t),0)-2F(X(t) 60))dE



and therefore

.
< |e-9] é J(X(t))-{L(8)+Lo)+2L(0y) HT+[X(t)] }dt

-
_l
—
(e
~—
}
—
_I
——~
-
~—
A

IA

.
Cqle-¢] é J(X(E){T+[X(t)] 3dt .

Remark. Since E[JZ(X(O)] < » and E[XZ(O)] < o, it follows that

E[J(X(0))X(0)] < » and hence by the ergodic theorem

.
%-f JOX(E)) T+ X(t) [ 3dt 25 ELI(X(0)){1+]X(0)[}] < » as T » =.
0]
Therefore
(4.8) |1,(e)-1(¢)] < C*Tlo-¢| a.s.

as T » » for some constant C* > 0. In view of (4.7) and Lemma 4.1,

it follows that

IT(e) a.s 2
(4.9) T— ——> I(8) = E[f(e,X(O))-f(GO,X(O))]
. . Tim IT(G)
uniformly in ¢ §C) as T - ». But IT(eO) = 0 and Tow T 0 a.s.

for o # o, by (A5). Hence, for any § > O,

I.(e)
<

a.s. _
— A as T+ =

(4.10) inf
LR ED

for some A > 0 depending on §.
Lemma 4.2. Under the assumptions (A1)-(A4), for any T0 > 0 and any
To

(4.11) P(sup sup |Zx(e)] > ¢e) < C
o O§I§I0 T 2 ;?

for some constant C2 > 0,

14



Proof. Let h(e6,x) and g(e,x) be defined as in Section 3 and

= Ta (x0)e™",  oel-1,1].
n

let

T
w; = f an(x(t))dg(t) .
0
Since g(6,x) is a cubic polynomial in 6 with coefficients in x, it is

easy to check, by Kolmogorov's inequality, that

T 1
(4.12) sup sup | f g(e,X(t))de(t)] = 0 (T,%)
8 0<T<T, 0 P

using the fact that |g|

| A

1. On the other hand, for any ¢ > 0,

(4.13) P(sup sup |} {f a (X(t))de(t)}e w1el > ¢)

0 0<T<T0 n 0
T
< P( osup T [ a (X(t))de(t)] > e)
OiTiTon 0
T
< TP sup If a (X(£))dE(E)] > < )
n O<T<T0 0
(where Je < ¢)
T
1
<l f a (X(t))de(t))
noe
(by Kolmogorov's inequality for martingales)
T
1 0 2
<1 5 [ Ea (x(t))’dt
n e, 0
n
= _n
=To % 2
n
T

15
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u]/3)-].

n Note that M = Zul/s < o,

when e is chosen to be eul/s (2
n

Hence relations (4.12) and (4.13) together prove that

T
Psup sup |Z5(0)] > ) < C, 3
O 0<1<T €
— =0
for some constant C, > O independent of T, and .

2 0

Lemma 4.3. For any v > 1/2, there exists H > 0 such that

|z5(0)]

(4.14) Tim sup sup

<H a.s.
T>w 6 THZ(1og 7)Y ~

Proof. Let

An =[ sup sup ]Z?(e)] > H! 2n/2nY], n>T1,
n-1 n ©
2 <T<2

Observe that Lemma 4.2 gives the inequality

P(A )

n P[ sup sup [Z?(e)l > H'Zn/ZnY]
0

0<T§2n']
(by stationarity of the process X(t))

o_c2™ ¢ 1
TH %MWY ? 0’

Hence } P(An) <o which implies that P(An occurs infinitely often) = 0
n=1

by Borel-Cantelli Lemma. Therefore sup |Z3(e)|< H' 2" 207 for all
0
2n-1 < T 5_2" except for finitely many n with probability one and

hence (4.14) holds for suitable H > 0 depending on Y.

Theorem 4.1. Under the assumptions (A1)-(A5),

éT > eo a.5. a5 T » =
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Proof. Note that

and RT(eo) = 0. Furthermore, for any & > 0, there exists A » 0 depend-
ing on & such that

inf I(6) >Th a.s. asT+w

CRINE
by (4.10) and with probability one, for any v >-%, there exists H > 0
depending on vy such that

sup IZ?(G)I < H T]/2(1og 7)Y a.s.
0

for sufficiently large T. Hence
inf RT(e) >A*T >0 a.s. as T->ow
!e'eolzﬁ

.
Rr(6g) = 0, it follows that IeT-eol < 6§ a.s. as T >, Hence

~

for some x* > 0 depending on § and y. Since 6. minimizes RT(e) and
eT > eo a.s.

as T »+ o ,

5. Asymptotic normality of the estimator

In addition to the conditions (A1)-(A5) assumed in Section 2, let us

suppose that there exists a neighbourhood Ve of %9 such that
0

(A6) Ifé1)(e,x)l < M(e)(1+[x]), o€V,

and

sup {M(9): 0EV, } = M < .
" 0

We shall now obtain the asymptotic distribution of éT under the con-

ditions (A1)-{A6). Since 6T is strongly consistent, 0 €V, with prob-
0

T
ability one for large T. Expanding f(6,x) in a neighbourhood of 0gs we

have
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(])(é,x)

f(8,x) = f(6g.x) + (8-04)f,

where Ié-eol < |e-64] and hence

(5.1) I

;
£(0) = [ F(0,X(2))-F(o,X(£))3 dt
0

= 2 (1 2
= (o-00)% [ 1{1 (0. x(t)) 10t

T ~
+ (0-0g)® [ Lerg) @ k(0% r {1 (00,0617 2.

Observe that
(5.2) ]{f

~—~

6,037 08 e 03

0G0 o001 1o 1)

< 2 Mle-6y|® c(x)(1+]x])
by assumptions (A3) and (A6). Therefore

2

(5.3) [17(0) - (e-00)% [ {1 (o, x())1%at]

O —

240 T
< 2 Mle-6] é c(X(t))(1+]x(t)])dt

Let us write 8-6, = T']/2 Then it follows that
2 2+a -a/z

(5.4)  sup IIT(e)-w MAL T

)¥odt
vl <A =

v.
T
-1, (1)

T [{fg "(84:X(t)
0

for some constant M] > 0 by the erogodic theorem since

E(c(x(0))(1+]X(0)]) < .
On the other hand, let

-1/2 -172.(1)

vp(nsx) = 17200t 2 x)-ag ) -7/ 26 T (0 x)1]



for |y| i_AT. Then vT(w,x) is differentiable with respect to v and

the derivative vé])(w,x) satisfies

i (-0 ex) = #0(0310171/2 )60 (0 0712 )

and hence

(5.5) |v$‘)(w,x)-v$1)(c,x)l < c(x) “/le -¢|*

by (A3) for all y, zin [—AT,AT]. It can be shown that there exists a

polynomial in y with coefficients in x viz

(5.6)  gr(usx) = vy(Anx)Py ) + AT (AP, ()

19

T T
- b (1),_ v
ARG + ! arnp, )
on [-AT,AT] such that
(5.7) gr(A.x) = vT(AT,x),gT(-AT,x) = vi(-Apsx),
(1) = (M (1) - (M
(5.8) g (Apsx) = vq (Arsx) and gr ' (-Ap,x) = vq (-Agsx)
where P., 1 <1 < 4 are polynomials in ik-with constant coeffiecients.
T
Observing that vT(O,x) = v$1)(0,x) = 0, it is easy to check that
(5.9) |g$1 (Apsx)| < c(x)AfT K
\ (1) trm0/2
(5.10) o7 (-Apx)| < clamsT™/2
' T+a -a/2
(5.11) l9p(Apx)] < c(x)ATTe
and
T+a_-a/2
(5.12) |97(-Apsx)| < clx)alrere/

Furthermore there exists a constant M2 > 0 independent of T such that

a/2

(5.13) Ig§1)(w,X)-g$l)(z,X)l f-Mzc(X)AT [v-2|
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for all y,¢ E[-AT,AT]. But
- 1- -
A y-g] < 2 e
since |y-¢| 5_2AT. Hence there exists a constant M3 > 0 independent of

T such that

(5.14) 68 (wax)-gd (20| < maetx) o/

|p-z|*

for all v, cE[-AT,AT]. Renormalizing, we get that

2
e (x)AT]p*=c*|*T -o/

(5.15) lg$1)(w*,X)-g§])( XY < M
for all y*,c* €[-1,1]. Let
(5.16) hplp*,x) = vo(p*,x)-g(v*,x).

Then there exists a constant Mg > 0 independent of T such that

(517 [ 0%0-h{ (x| < mwsc(ong yrogx|oT/2

for all y*,z* €[-1,1] by relations (5.5) and (5.15). Now, applying

Fourier series methods as in Lemma 4.2, it can be shown that for every

e > 0,
T M4T Oemm
PC sup | f vplu*.X(t))de(t)] > €) < — ATTElc 2(x(0)]
lv*[<1 0 £
and hence

(5.18) P( sup | f{f(e0+¢T 2 x()-#(8y,X(t))
IWIE.T 0

Let us choose AT = Tog T. Since
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(M0 . x(0))7%at » 1(0,) = ELF!

as T » « by the ergodic theorem and

e

O —

L e e x(e))de(t) 2= N0, 1(6.)) as T+
0 0
/T
by the central limit theorem for stochastic integrals (cf. Basawa and
Prakasa Rao (1979)), relations(5.4) and (5.18) imply that the asymptotic

distribution of éT which minimizes RT(e) given by (2.9) can be obtained

from the process

(5.19) ¥ I(eo) - 2L, o< P<w

where 7 is normal with mean 0 and variance I(eo). Since
b= 2/1(sy)

minimizes (5.16), it follows that

(5.20) TV204 25 N0, 1/1(s,)).

1%

This result is obtained under stronger conditions in Prakasa Rao
(1979b) for the least squares estimator én,T defined at the beginning
of Section 2. Results obtained in this section as well as earlier sections
can be easily extended to the case when 02 is unknown.

Appendix

Lemma 1 Suppose ¢(u) is square integrable on [-1,1] and ¢(+) is
Lipschitz of order o i.e., then exists ¢ > 0 such that

(1) [o(u)-0(v)] < clu-v|* .

Let'¢(u)'= ) aneﬂlnu. Then for any 0 < y < a,
n

(2) Hag | 50%" < K (aim)e?
n
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Proof. It is easy to check that

1
(3) f |¢(u+h)-¢(u-h)|2du 4 Z la | sin wnh
1

Since ¢ is Lipschitz satisfying (1), it follows that

(4) 4 Z la, l sin®mh < p20*1 220

for all he[0,1]. Let h = 2K and 252 < n < 2%V 1t is clear that

sinznnh 3_%—and relation (4) shows that

k-1

< 22ac22-2ku

2
(5) ) la |
Zk’ +1

I~

n

for any k > 2 and hence for any 0 <y < a,

k-1
n=2K"241
Summing over all k > 2, we obtain that

Hence there exists a constant K](a,y) > 0 such that

(8) I la, 1202 < K (aay)e?

where c is the Lipschitzian constant given by (1).

Remark. A slight variation of the above result is due to Szasz (1922).
The proof given above is the same as in Szasz (1922) and is given here
for completeness.

Lemma 2.  Suppose h(u) is square integrable on [-1,1] with h(-1)=h(1)=0
and h'(+) exists and is Lipschitzian of order o 1i.e., there exists

¢ > 0 such that
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(9) lh'(u)-h'(v)‘ < clu-v|?.

Let h(u) =} ane"1nu. Then, for any 0 < vy < a,
n

(10) ) |an|2n2+2Y §_K2(a,Y)c2
n
and
(11) Il 1772 < kyla)e? .
n

Proof. Since h'(u) = =i ) nane1T1nu , inequality (10) follows from
n
Lemma 1. Observe that

Z lan,2/3 < (Zlan|2n2+2’Y)]/3(Zn-(1+Y))2/3
n

A

K, (asp)c(Jn~ (171))2/3

= Kylasv)e? .

Lemma_3. Let h{6,x) =) a (x)eTr1ne and suppose there exists o > 0

n

n
such that

086,008 (6,00 < clx)fo-9®

for all e, ¢in [-1,1] where fg]henotes the partial derivative of f with

respect to 6. Let {X(t), t€[0,T]} be a stochastic process such that

ECh(e,X(t)1% < =
for every t €[0,T]. Then, for any y < a, there exists a positive constant
K4(u,y) such that
T

T :
) {%.é ELa (X(t))]dt3!/3 5_K4(a,y)-{%-é E(c?(x(t))at3!/3,
n
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Proof. By Lemma 2, it follows that

Il (X(E) Y < ko (anr)cB(X(E))  ans.
n

for every t €[0,T]. Hence

I ELaZ(X(t) 1?2 < K, o,y )EL2(X(t))]
n

for all t €[0,T]. Let

=
{
——

T o2
f Ela, (X(t))Idt.
0

The inequality proved above gives the relation

.
Dt < ylawy) £ [ ELC(x(E))Jat
n

and hence

y u;Il/3 < (T n2+2y)]/3(zn-(1+y))2/3
n

n

.
J L2 (x(t))1de3 /3

g e (n T3 4 g

| A

1
*

;
[ EL®(x(t))1dtr /3 |
0

|~

| A

K4(u,y){

Remark.  Analgous argument proves that

Zul/z 5_(Zun'n2+2Y)]/2(Zn_2(]+Y))]/2

< o
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