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ABSTRACT
The age distribution for the supercritical age dependent branch-
ing processes is shown to converge on the set of nonéxtinction to a
particular distribution function if the offspring distribution {pj}

satisfies 1 < ijj< w.
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1. INTRODUCTION

Consider an age-dependent branching process (See Harris [3] for
definitions) governed by {pj}, the .common probability distribution of
the number of progeny born to an individual at death, and G(+), the
common distribution function (d.f.) of the length of 1ife of an indi-
vidual. For a realization w of the process, let Z(t,w) denote the
total number of individuals alive at time t, Z(x,t,w), the number
among these that have ages no more than x, and A(-,t,w) defined by
A(x,t,0) = Z(x,t,w)/Z(t,u) denote the empiric age d.f. of those alive
at time t.

There has been considerable interest shown in the past in the
limiting behavior of the age distribution A(<,t,w),as t > . In [3],
Harris showed the almost sure (a.s.) convergence of A(-,t,w) if {pj}
has a second moment and G(-) is sufficiently regular. Later Jagers [4]
obtained the same result assuming only that {pj} has a second moment.
More recently, Athreya and Kaplan [1] showed the validity of the above
result assuming that z(j-log j)-pj is finite. After the present re-
sults were obtained, a later paper of Athreya and Kaplan [2] was brought
to the attention of the author, where they have shown that the result
holds if 1 < m = £jp; < « and G{-) satisfies a certain tail condition.
In contrast to these, the present paper assumes only 1 < m < «, with no
conditions imposed on G(-).

The approach adopted here follows in part the basic steps of (1],
namely that we decompose A(-,t,s) into three terms, and then tackle each
term separately. 1In so doing we use a rather interesting embedding tech-

nique leading to the final proof.



In Section 2, we give notation adopted from [1] and our basic
assumptions. In Section 3, we state the main theorem and the three
Temmas necessary to prove it. Section 4 deals with a law of large
numbers, which may be of independent interest. Finally, to complete
the proof of the basic theorem of Section 3, in Section 5, a theorem is
given which provides certain lower bounds achieved through a special
embedding. Of the three lemmas of Section 3, one is already proved in
[1], while the other two are proven in Section 5, using also the re-

sults of Section 4.

2. NOTATION AND BASIC ASSUMPTIONS

We always assume, whether stated or not, that a) Py 0 (rather
than conditioning on the set of nonextinction), b) 1 <m= szj < o
and ¢) G(0+) = 0. For any realization w and x > 0 we define,
Z(t,») = number of particles living at time t,
Z(x,t,w) = number of particles of age < x living at
time t, |

A(x,t,0) = Z(X,tow)/Z(tw),
{xi(t,w); i=1,2,..., Z(t,n)} = the age chart at time t,

yA (x,5,w) = number of particles alive at time t+s

Xi(t3w)
with ages < x, in a Tine of descent in-
itiated by a particle of age xi(t,w)
living at time t,

and

ZX (t,w)(s,w) = Lig in(t,w)(x,s,w).



tet for x >0, y > 0, M(x,t) = E{Z(x,t)}, M(t) = E{Z(t)}, My(t) = E{Zy(t)},
My(xgt) = E{Zy(x,t)}, and m = ijj. Also for x > 0, y > 0, let
6,(x) = (Gxty)-G(y))/(1-6(y)), V(x) = m [ "G, (du),

O 8

ny = [ Z e ™ (1-G(t))dt]/[m Z t e %G (dt)],
X ot T -at
A(x) = [ é e 7 (1-G(t))dt1/[ (f) e "(1-6(t))dt],
and
o0 Z(t,w)
V_t = é V(X)Z(dx,t,w) = Z' V(X_i(t,(ﬂ)),
1=

where o is the Malthusian parameter as defined as the root of the equa-

tion m_fe‘atG(dt) = 1.
0

3. THE THEOREM AND THREE LEMMAS

The proof of the following theorem is based on a natural decompo-
sition of A(x,t) into three parts as in [1], and a separate lemma is
proven for each part, the difference being that two of the three lemmas
given below are stronger than those of [1] or [2].

THEOREM 3.71. If 1 <m < =, then

(3.1) 1im sup |A(x,t,0)-A{x)] = 0 a.s.
tre x>0

Before indicating the proof of Theorem 3.1, we will first define
the decomposition, and then give the three corresponding lemmas.

Clearly one may write (suppressing subscripts)

x.(x,s).

Z(t)
(3.2) Z(x,t+s) = ) Z
i=1 i



Also, as in [1], by defining
1 VA

t)
(3.3) at(x,s) = 7T57'1§] [in(x,s)-Mxi(x,s)]e'as,

1 Z(t) -as
(3.4) bt(X,S) i) : [Mx_(x,s)e 'H]V(Xi)A(X)],
i

1=

and
(3.5) c, = V./Z(t)
we have
at(x,s)+bt(x,s)+CtA(x)

A(x,t+s) =

where at(m,s) and bt(w,s) are the respective limits of at(x,s) and

bt(x,s) as x ~ ., The following lTemma and corollary are from [1].

LEMMA 3.1. As s + =, for fixed x,

(3.6) ;gg{lMy(x,s)e‘as_n]v(y)A(x)l,lMy(w,s)e'“s-n1V(y)l} ~ 0.

COROLLARY 3.1. As s - =, for fixed x,

(3.7) sup{|bt(x,s)[,|bt(w,s)]} + 0.

s

The next two lemmas are proved at the end of Section 5 as the cor-
ollaries of results in Sections 4 and 5.
LEMMA 3.2. If1 <m<wand s >0
then,

)

Z(ns
.Z] [in(x’s)_MX (X,S)] +~0 a.s.

i

-1
(3.8) YHG = zrﬁgy

;
In [1] it was shown that Yt - 0 in probability, if 1 <m < », and

that Yns +~0 a.s., if z(j log j)pj < w. In [2] it was shown that



Vi~ 0 as., if 1 <m<wanda certain tail condition on G(-) holds.

LEMMA 3.3. IF 1 <m < «, then for some n > O

(3.9.) Tim inf[Vt/Z(t)] > n a.s.
oo

It was shown in [1] that (3.9) holds if inf  V(x) > 0 or in-
X €supp G
stead if £(J Tog j)pj < =,
PROOF: (of Theorem 3.7) The above lemmas show that if 6 > O then
Ané(x) ~ A(x) a.s. This fact and the continuity of A(x) along with

technical arguments in [1], give us Theorem 3.7.

4. A LAW OF LARGE NUMBERS

The following Proposition 4.1 was originally used by the author in
obtaining results applicable in proving lemma 3.2. It was pointed out
to the author by Professor Prem Puri that [2] contained a very similar
result which in fact implied our Proposition 4.1. Consequently we
state Proposition 4.1 and the appropriate lemma from [2], and then re-
mark how the Temma implies the proposition.

PROPOSITION 4.1. Let Tij be a measureable array of non-negative random

variables and Ki a sequence of non-negative random variables such that:

i=1,2,...

a) For some s < =, P(Tij €[0,s]) = 1, for 3=1,2,...,Ks

b) There exists a constant C > 1, such that Tim inf[K, /K] > C a.s.
7>
Also let Xij(t) be row independent, identically distributed realizations

of a process such that for any s > 0, there is an integrable random vari-

able X where
a) P(Ixij(t)l > ) < P(|X] > a), if t €[0,s],
b) E Xij(t) = EX = 0 for all t > 0, and



c) {Xij} are independent of {Ki’Til""’TiKi} for §=1,2,...,K;

and i=1,2,...
Then
K3
(4.1) tin jg] KT/ =0 aus.

LEMMA (Athreya and Kaplan). Let {X.iys...5X5 35 1=1,2,..., be an array
i

of random variables such that,

a) for each i, X;q5...,X;, are independent,
o il 1Ki

b) E Xij =0 j=1,2,...,K1, i=1,2,...,

c) sup P(lXijl > x) < C[1-Q(x)], for all large x, where C is an
1,3
absolute constant and Q is an integrable cumulative distribu-

tion function. Assume further that 1im inf[Ki+]/Ki] > 1.
B

Then for every u > 0

K

(4.2) Xijl > U) < @,

Hr~18
Il b~ 7

POl
i=1 i =1
PROOF (Proposition 4.1). Without loss of generality assume

P(K1+]/Ki >C) = 1.

In this case the upper bound for the sum in equation (4.2) found in [2]
is a function only of CK- By a conditioning argument, the same upper
bound holds for ) P(]}

1-_-'] j=
equation (4.1). Convergence is now obvious. O

;
1 Xij(Tij)/KiI > 1) where Xij(Tij) are as in
5. A THEOREM BASED ON AN IMBEDDING AND PROOFS OF LEMMAS 3.2 AND 3.3.

By considering a certain type of process imbedded within the

Bellman-Harris process, the following theorem is proved, which in turn



implies Temma 3.3. A corollary combined with the results of Section 4
proves lemma 3.2.

THEOREM 5.1. If 1 <m < =, then for some C],Cz, both positive and

finite,

(5.1) Tim 1nf[Z(C],t)/Z(t)] > C2 a.s.

£
Before proving the above theorem, we shall need the concept of
what we call a short term branching process. Without loss of general-
ity assume G(t) <1 for t < ». (The theorem is trivially true if not.)
As usual Pp = 0.
Fix K > 0 such that
(5.2) G(K)sm > 1, and
(5.3) G(2K)-G(K) > 0.
With this particular K, for a particle born at time 0, define
(5.4) Z(t) = {number of particles alive at time
T, descended from the original par-
ticle, such that 1) each has a life-
span < K in length, and 2) each of
its ancestors, up to and including
the original particle, had 1ifespan
< K}.
The above definition implies that Z(t) is itself a Bellman-Harris
process (on set ancestor lives < K) with 1ifetime distribution
(5.5) G(x) = G(x)/G(K), 0 < x <K,

and offspring distribution

(5:6)  By= I MO, n=0,1,...



Evidently

(5.7) np, = G(K)znpn = G{K)m > 1,

so that 0 < g < 1, where
(5.8) g = p(Z(t) > 0, for all < > 0).

Another concept we need is that of particles of order n at time t.
Recursively, define them as follows.

The particles of order one at time t are those particles ever born

up to time t such that 1) their Tife-length is >K, 2) no ancestor (born
at or after t=0) has life-length >K.
We also define

(5.9) Z](t) = {number of particles of order one born by time t},

J
(5.10) Sq5(t) = Z

where ZQi(T) is the short term branching process at time t after the
birth of the jth of J; progeny of the ith of 21(t) particles of order
one born by t, as well as,

(5.11) Yy; = life-Tength of ith particle of order one.

3
We add that t is suppressed in some expressions for notational con-
venience, and i=1,2,...,Z](t).

Assume that particles of order n at time t have been defined and that

this set is not null. Define particles of order n+l at time t to be

those particles born up to time t such that 1) each has 1lifespan >K,
and 2) each has an ancestor with Tifespan >K and the nearest such an-

cestor is a particle of order n.



Tanr o1 J ,

Cleariy one may define Z_,.(t), Spe1,5 (1) Zoe1,i(t)s and Yo41,1
for particles of order n+l just as they were defined for particles of
order one. Also note that if there are no particles of order n at time
t there are none of higher order at time t.

Also define

(5.12) Aai © I[Ynje(K,ZK]]°I[lim.5 (c) > 0]

ni

for i=1,2,..., Zn(t)s n=1,2,..., [t/KI+1. We note that Zn(t) is void

if n > [t/K]+1. For notational simplicity let

(5.13) n, = [t/KJ+1  and
"y
(5.74) N, = ng} Z,(t)

The purpose of the previous definitions was to define the random
variables {Xni} and’{Zn(t)}. The following lemmas concern distribu-
tional aspects of szni' These results will be crucial to the proof
of theorem 5.1. Before proceeding to the Temmas, more notation is need-
ed. Let

(5.15) p(x”,...,xn LU PRRR )
t nt t

= P(X oK =x ,Z](t)=m],...,2

m nem

nn (t)=m, )
t t

Xqq s
11 711 Ny .

We note that some x are necesarily 0 if m; = 0 for some i < Ny

We also use p( ,..., ) for marginals also. The following is trivial.
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(5.16) p(xn,...,xn N P ) = p(XqqaeeeaXypy lml)
t Ny t 1

=p(x21,...,x2m2[m2,x1],...,x]m],m])-...

] T M 5X 3 qseeesXqoqsly)
n LI PR 1,1 Tml >

t1 & t

ep(My,e..om ).
1 Ny

LEMMA 5.1. On {Z, = m} formy > 1,

(5.17)

PO ook [Ty oXi g qoeeeaXqpmy) = 0
In (5.17), p has the value

(5.18) p = [(G(2K)-6(K))/(1-6(K))1-[1-E(1-8)"]

where J is the random number of offspring at split and 8 is as in (5.8).
~ are Bernoulli (p) random vari-
ables for p as in (5.18). Using defi;ition 2.3 from [3], one may de-

PROOF (Temma 5.1) Clear X.],...,X

i im

find particles by sequences, <i]"“’ik>’ for example, is a particle of
generation k+1. Now if we condition on event that {u1,...,am‘(a's re-

i
present sequences) are all and only particles of order i at time t, and

Xi_ 1100 9X11°M also occur} then conditioned on this set
ms m,
X Mo
p(Xﬂa---,Xim ) =p (]'p) s

.i
since the future is conditionally independent of the past. Uncondition-

ing on the particular o's gives (5.17). O
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LEMMA 5.2,

—
(%3
.
amd
w

~

noom n,om
) *ni Ng- E

5y N . =1 =] _ n
y(/\]—ig...9Knt5mnt[m]a--~7mnt) p <-i p)

PROOF.  Temma 5.1 and equation (5.16). By Chebyshev, the following

-

107 ds

n, m
t 'n
e 2
(5.20) .D(![(nz7 1_E]Xm-)/r\!t]—pb €Im},mz,...,mnt) < 2p(1-p)1/e " N,
Since i\LC is really an overestimate of the number of particles of

age >K at time t+K, one may argue, by means of results of Jagers [4],

that for any 6 > 0, there exists M(S finite and C > 1 such that
(5.21) N> als.

ifm 3-M5' Consequently, we obtain

LEMMA 5.3. For ¢ > 0,

n m
t n
(5.22) P(LY ) Xyi1/Ng < p/2 d.0., t=ms) = 0.
n=1 i=1
PROOF. Let e = p/2. Since M; <= a.s. using (5.20)

(5.23) 0, m
o n =]
LT T X I < p/2, tems) < T [p(1-p)1/[(e/2)2%C™] < o.
m=M(S n=1 i=1 m=1

Borel-Contelli gives the rest. O
Now the tools are available to prove Theorem 5.1.
PROOF. (theorem 5.1) It is easy to see that equation (5.1) is equiva-

lent to showing, for some Ci,Cé, that

(5.24)  Tim inf[Z(Ci,t)/[Z(t)—Z(Ci,t)]] >C5 >0 a.s.

Lo
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Now note that by definition of Xni (equation (5.12)),

Ny Zn(t)

(5.25) ) Xii < Z(2K,t+2K)
n=1 i=1

and

(5.26) N, > Z(t+2K)-Z(2K, t+2K).

This yields the lower bound

n Z (t
(5.27) [ f Z Xm.]/Nt < Z(2K,t+2K)/LZ(t+2K)-Z (2K, t+2K)].
n=

Directly from lemma 5.3 we may infer that, if 6 > 0
(5.28) P(Z(2K,t+2K)/[Z(t+2K)-Z(2K,t+2K)] < p/2 d.0. t=m-s) = O.

It is not difficult to show that

(5.29)
l1m inf Z(4K,t)/[Z(t)-Z(4K,t)] > 112 inf Z(2K,m+8)/[Z(ms)-Z(2K,m8)] a.s.
<0 m
Therefore with Ci = 4K, Cé = p/2 we have (5.24). O
PROOF  (Temma 3.3). If we let
(5.30) a = inf  V(x) >0
x €[0,C,]
then
(5.31) Tim inf Vt/Z( ) > a Tim inf Z(C ,t)/Z(t)
toeo oo
(5.32) z_a-C2 a.s. o

COROLLARY 5.1. For some K' > 0, there is a constant C' > 1, such that

(5.33) Tim inf Z(t+K')/Z(t) > C' a.s.

tow
PROOF. Rather than provide a tedious proof, we remark that if K' is

chosen to satisfy
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(5.34) inf GX(K‘) > n
x_e[O,C]]

for some n > 0, then an asymptotic bound from below may be found for
the proportion of Z(t) particles which split in (t,t+K']. This, and
the fact that m > 1, can be used to find a suitable C'.

PROOF (lemma 3.2). Let § > 0. Let K' = 2-8 for some % (can always in-
crease K' and still satisfy 5.33). We only need to show

(5.35) 0 a.s.

Ynta-s)+is =

for i=1,2,...,%, as n > o, If we let Kn = Z{n (2+8)+i8), n=1,2,...,

(5.36) Tnj = [s - (time from (n2s+is) to split of jth particle of
Z(ngs+is)] vV 0,
and
(5.37) an(s) = (number of particles of age < x, s time after the
split of jth particle of Z{(nas+is)),

then proposition 4.1 implies (5.35) for each i=1,2,...,%-a. This gives

Temma 3.2. O
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