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1. Introduction

We assume that G is an unknown prior distribution on ®, and denote
the minimum Bayes risk in a decision problem by r(G). Robbins, in his
pioneering papers (1955), (1964), proposed sequences of decision rules,
based on data from n independent repetitions of the same decision problem,
whose (n+1)st stage Bayes risk converges to r(G) as n » <. Such sequences
of rules are called empirical Bayes rules. Empirical Bayes rules have been
derived for multiple decision problems by Deely (1965) , Van Ryzin (1970),
Huang (1975), Van Ryzin and Susarla (1977), and Singh (1977). However, the
forms of densities of the populationsthat these authors éonsjdered are either
c(e)h(x)eex, for continuous case or c(8)h(x)e”, for discrete case, and the
loss functions are either squared error or merely ]quk 6.-6; type. Fox

<j<

(1978) discussed some estimation problems under thé_;auared error loss, in which
empirical Bayes rules were derived for uniform distributions for the first

time. Barr and Rizvi (1966), and McDonald ( 1974) also considered selection

problems related to uniform distribution by subset selection approach.

*This research was supported by the Office of Naval Research contract
NO0O14-75-C-0455 at Purdue University. Reproduction in whole or in par
is permitted for any purpose of the United States Government. '



The problem considered in this paper is related to truncation parameters
and can be illustrated by the following example. Suppose that there are k
treatments for a certain disease, and the effect of the treatment i follows an
unknown distribution G, 1 < 1 < k. The effectiveness of the treatment i has. been
tested on n subjects (for different treatments, different groups of subjects
are used. If the same subject has to be used for more than one test, let
there be a wash-out period between tests, so the effects of different treat-
ments are independent.). Let eij be the parameter which represents the
effectiveness of the treatment i on the subject j. The treatment i is good for the
subject J if eij > 90 and hence is called a good treatment, otherwise it is called a
bad tregtment. 8o is called the control parameter. Let Yij be an observable
result of the treatment i on the subjéct j and assume that 61j 1; underestimated by
.5(;). Our purpose is

_ N
to find an empirical Bayes rule: which decides on the quality (better or worse

than the control) of the treatment i based on Yij (1 <i<k, T<j<n)
and Xj (1 <1 < k), where Xi is the endpoint result of the treatment i on
the present patient. In Section 2, a general formulation is given and
empirical Bayes rules are derived for selecting populations better

than a known control when the populations are uniformly distributed

(i.e. pi(x) = 1). In Section 3, the same problem is considered except that the
control parameter is unknown. In Section 4, empirical Bayes rules are found for

0,65) )

Rate of convergence is also discussed. Monte Carlo studies are carried out for

truncation parameters (that is the densities are of the form pi(x)ci(ei)l(

the priors G(e) = QE'I(O C)(e). The smallest sample size N is determined to
c” [}
guarantee that the relative error is less than e.

2. 8 known
Assume that MysTpsesesT) ATE k populations and Xi is a random observation
for a certain characteristic of w;. Assume that Xi " U(O,ej),where 0, is

j
unknown for 1 <1 < k. Let 6, be a known control parameter, we define m,



to be a good population according to the specified characteristic if 8; > 8
and to be a bad population if 6; < 0. Lleto = {e = (61""’6k)|61 > 0 for
all 1 < i <k}. For any 6 € @, let A(g) = {ife; > oy} and B(o) = {ile; < o5}s
then A(g) (B(8)) is the set of indices of good (bad) populations. Our goal is
to select all the good populations and reject the bad ones. We formulate the
problem in the empirical Bayes framework as follows:

(1) Letg = {S|S< {1,2,...,k}} be the action space.

When we take action S, we say ms is Ebod if i€ S and ms is bad if

i¢ S.
(2) L(e,8) =1Ly 7} (65-89) + Ly T (85-0:)
Viehions 7 07 2 4chns O
is the loss function. (2.1)
k
(3) Let dG(e) = =& dGi(ei) be an unknown prior distribution on @, where
i=1

Gi has a continuous pdf 9; with respect to the Lebesgue measure.

(4) Let (61],Y1]),...,(ein, Yin) be pairs of random variables from T and

Y ~ U(O’eij) for T <4<k, 1<Jj<n. Let Yj = (Y1j""’ij)’

131943
then Yj denotes the previous j-th observations from TyoesesTpe
k
(5) Let X = (X],...,Xk) be the present observation and f(x|e) = T %—
h : - o i=1 Vi

I(O,e_i)(x'i). Note that X_l =Y and e.i =9 Since we are

i,n+l i,n+]” |
interested in Bayes rules, we can restrict our attention to the non-

randomized rules.

(6) Let D = {8]|s: x ~ G is measurable}, then r(G) = inf r(G,s) is the
N &b~
minimum Bayes risk.

The decision rules {Gn(g; Xl,...,xn)}:=]are sajd to be asymptotically
optimal (a.o.) or empirical Bayes (e.B.) relative to G if rn(g,an) =

JEf L(Q,an(g;!1,...,Yn))f(x]e)dG(e)dx > r(G) as n » ». For simplicity,
Z © b T



(x Y1, ces n) will be denoted by & ( ).

Let mi(x) be the marginal pdf of X; and Mi(x) be the marginal

distribution of Xi' Then we have

m (x) = I +de.(0) for all x > 0, (2.2)
and §
—X°°-I _°°X-I xe1
M1(x) = é { 5 d6;(0)dt = { é 5—dth1(e)+é é 5 dtdG. (e)
= xm, (x) + Gi(x)
Hence, Gi(x) = Mi(x) - xmi(x). (2.3)

Now, the Toss function defined in (2.1) can be expressed as

(65)]

i

L(,S) = 1g5[L2<90'ei)1(0,60](91)'L1(ei'eo)l(eo,m)
k
"L hemo) (g e (04): (2.4)

Since the second sum in (2.4) does not depend on the action S, we can
omit it and need only to consider the first sum as our loss for finding

an empirical Bayes rules from now on. Therefore,

(G,8) = [ L,(84-0;)f(x]6)dG(e)
o % iga(g) {éijﬁo} 2:% |

- f L (6:-6,) ]e dG (9) ldx.
(8500 | "

So, if §3(x) = S* is the Bayes rulewrt G, one finds 1 € S* if

< f L e -9, 1 dGi(ei)' Hence,



S* = {ilxi > 853 u {i]x; < 6j and Hi(x;) < c;(84)}, where

9
| 0
_ 1
Hi(x) = L,8, £ Eidai(ei“ L,6;(x;) and

(@]
-
—
D
o
~—
|

= L261(90)+L1(]‘Gi(eo))‘L1eo g 6;'d61(91)'
0

Since Hi(xi) is decreasing in x; for x; < % and H(eO) <c

; .(eo), SO

i
S* = {ilxi.i 0y-b;}. where b, > 0 satisfies H(eo'bi) = ci(eo). This shows for any G,
the above type rules are Bayes rules [see Gupta and Sobel (1958) and Gupta (1963,1965)].
Now, G is unknown? the Bayes rules are not obtainable. We wish to find

a sequence of rules {Gn(g)}:=] to be a.o. Let

AGi(Xi) = Hi(xi) - Ci(eo)

and

SB(g) = {1|x1 < 8gs AG.(X') < 0}.

o
Also, for any i (1 <1 <k), let Ai,n(xi) = Ai(xi’ Yi]""’Yin) for all
n=1,2,..., be a sequence of real-valued measurable functions; we define

n(xi) <01} (2.5)

w

—_
>

~—
"

{i|x; < ¢, and By,
and

5,(x) = Lilx; 2 09} U S, (x). (2.8

One can show that

(x:) ~ AG.(Xi) in
i

(p) for almost all X; < 8g. Then {én(§)}:=1 defined by (2.6) is empirical Bayes.

Theorem 2.1. If ée dGi(e) <w, i=1,2,...,k, and By n (X

Proof: For a]] Seqa, let



Zg = {x|x; > 8y if i€ Sand x; <0y if i ¢S3.
Now, for any x € X, GB(X) =Sy SB(x) . Therefore

[L(8,85(x))f(x|e)dG(e)

~

6 ~ -~ ~

z [f Lz(eo'ei)f(§|e)d§(

]

1D

~—
}
—
p—

—

[an]

]
@
o

~—
—
—

1323

1D
~—
Q.
[y
P

1D
~—
—_

= (— . - > 3
igs Q(x)) + iesg(z) Aei(x1) jgi m; (x;)

where Q(x) = L,(0:-0,)f(x|0)dG(o).
- {£1>eo}] i700)Txlo)d(e

Similarly, for x ¢ %S, we have

))f(x|e)dG(e)

@‘ﬁ
—
—_
D
v
(o]
—
14

= 1gs(_ Q(x))+ iesz(x)Aei(xi)jgi ms (x5).

~

Hence, if a;  (x;) » Aﬁi(xi) in (p), then

s

0 < f [L(0,8,(x)) - L(8,55(x))If(x] 8)d8(e)

® ~
5-1€S§(x)IAGi(Xi)-Ai,n(Xj)Ijgi mj(xj)
+ - T m.(x.) (2.7)

(X,
1635({) 1es§(§))A1’n %) j#i J0 9

+ Ay (%:) = ap (X:)] T omi(x)
ies 1) 7 fe g My
E (x:)
< 2 I m.{x.
= gk g 99

with probability near 1 for large n. Note that (2.7) is non-positive by the

definition of Sn(g). Thus, we have proved



[ L(o,8,(x))F(x|0)dG(e) > [ L(o,85(x))f(x|e)dG(e)
® " ® T

in (p) for all most all x. By Corollary 1 of Robbins (1964), {an(§)}:=] is

empirical Bayes. This completes the proof.

In view of (2.2) and (2.3), we have

Ag (X

1) = Lgmy (x5 (3g7x;) + LIy (x;)-Hy 0g)] + Ly (0)-11.

Hence, if we define

M on(xq) = Lamy n () (Bgmx) + LolMy o (x5)-M5 5 (80)]

+ Ll[Mi,n(eO)']]’ (2-8)

and m, (x) = %—[M. (x)1, h >0, (2.9)

then A? n(x1-) > Ag (Xi) in (p) a.e. in x, if h = h(n) > 0 and nh > » as n » =,

So, by Theorem 1, sx(x) = {i]x; > 6g}y {i[x; < 8g,a% (x;) < 0} is empirical
Bayes.

Remark: In (2.8), M. (x) and m; n(x) can be defined as any functions such

i,n
that M, n(x) - Mi(x) in (p) and m; n(x) - mi(x) in (p) for almost all x.

| 0 oy _1 0 XYy s
For example, let m; (x) = -« ) w( ) where w(-) > 0 satisfies
i,n nh 321 h
(1) sup w(x) < K for some constant K,

~00< X <o

I
-—

(i) fw w(x)dx

fl
(@]

(ii1)  1im xw(x)
K>



and h = h(n) satisfies h -~ 0, nh > » as n + = then m? n(x) is a consistent

b

estimator of mi(x) (see Parzen (1962)).

3. eO unknown

Let T be the control population and assume that XO’ a certain observable
characteristic of Ty follows U(O,eo). Let YO]""’YOn be the past data
collected from T Based on this further information, we will search for
empirical Bayes rules for selecting populations better than the control.

Note that now o = (90’61”"’ek)’ X = (XO’X]""’Xk) and

k
G(e) = 1 Gi(ei)' Under the loss function in (2.4), the Bayes rule 8g is:
=~ 4=0
i€ 68(5) if
1 ]
L, [ — f — (8,-6.)d6G. (6. )dG,(6,)
2 XO 60 (O,GO]ﬂ(x-,m) e_i 0 1 1 1 0'\"0
i
<L Lo 1 (6.-0,)d5, (6. )da(o,)
=1 9. i 0 vt 00’

X % (8gs=)N(x;5m) %4

Hence, i € GB(x) if

(1) X'i kd XO and AéO’G'i(XO,X-i) < 0, where
'I _ oo
AGO,Gi(XO,xi) = (L]-Lz)[£ m; (05)dGy(8y) + i my(6,)d6, (8:)]
i i

- L1[1-Gi(xi)]m0(x0)+m1(xi)[L2+(L1—L2)Go(x1)-L1Go(x0)] (3.1)

(11) x; < xy and AéO’Gi(xo,xi) < 0, where
2 < @

- g (xg) [yt (LpmLy )Gy (Xg) LBy (x1)T + Lymy (x;) (1-Gy(xg)).  (3.2)



When L. = L2 = L, the Bayes rule is greatly simplified. We find

1
i€ gp(x) if
GO’G (XO’x'i) = mO(XO)[1_G‘i (X.i)]‘m-i(x.i)[]'Go(xo)] > 0.

Let an(§) {1]A1 n xi,xo) > 0}, where
Aj n(XjsXg) = mo,n(xo)[l-Gi,n(xi)] - mi,n(xi)[1-60,n(xo)],

Mi,n(xi) and mi;n(xi) are defined in (2.9), and Gi,n(x

Y = M, (x:)

i i,n*"i
- Ximi,n(xi)' Then, {Gn(g)}n=] is e.B. by Theorem 3.2. When L] # Lo,

one needs to find consistent estimators of f mi(eo)dG
a

O( 0 ) and fm dG (o )

Theorem 3.1. Llet Mi n(x) and m, (x) be defined by (2.9) with h = h(n)

i,n

o]

satisfying h > 0, nh” > = as n > w. If [0 dG;(6) <= for all 1 = 0.],...,k,
0

then - ? Xm, ( )dm0 n( X) - ? mi(x)dGO(x) in (p) for any a > 0.
a a

Proof: See Appendix A.

Theorem 3.2. Assume that fe dGi(e) <o forallg <1 < k. If for all
0

. . 2
1 <1<k, A}’n(xo,xi) > Ahi r (XO’Xi) in (p) for X5 > Xgs and Ai,n(XO’Xi) >

sJO

2 .
AGi,GO(XO’Xi) in (p) for X; < Xg- Then
s5(x) = 8| (x) u SE(x)

: 1
{i]x; > x5 and By,

n{XgsX;) < 0Ty

{i]x; < x, and A?,n(XO’Xi) < 0} (3.3)

defines an empirical Bayes rule.
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Proof: f L(e,GB(x))f(§|§)dG(e)
— ) ~ ~ ~

! 2
= ) A (XasXs) T mo(x:) + ) A (XnsX:) T m. (X,
st C°f0 0 gpt 9T ey Gifo 0

. 1
{1|Xi > X and AGi,GO(XO’Xi) < 0}

where Sf(x)

. 2
55(5) = {1IX1 < Xg and AGi,GO(XO’Xi) < 0},
and [ L{g,85(x))f(x|e)dG(e)
B
- 1 2
T oL g g (o) Iomilxg)t L ag g (xgaxg) Xmy(xg)-
ieslx) 10 i1 iesf(x) U0 ua

Now, following the same method as in the proof of Theorem 2.1, we can show

%
) Aé G (XO’Xi) I m.(x:) -~ A (XqsXs) T m.(x.)
[ s g J J . * G-,G 0 1% .4 J J
1ESﬁ(§) i*70 j#i 1652(5) i*”0 J#i
in (p) for ¢ = 1,2. Hence {Gﬁ(x)}z=] is empirical Bayes. This completes the proof.
Now, let
'I [ee]
Ai,n(XO’Xi) = (L2 -L ){f Xms )dm0 n( x) + £ xmo’n(x)dmi,n(x)}
X3 i
- L][]_Gi,n(xi)]mO,n(X0)+m1,n(xi)[L2+(L]_L2)
B0,n(%;)-L160,n(xg) 1> (3.4)
and
03 L (xgexq) = Lyl {f xns (x)dmg () + [ g | (x)dmy | (x))

X0 X0

+ Lal1-8g,n(Xg)Imy 1 (x3)-mg 1 (xg) [y #(Lp=Lq)G5 1 (xg) »

- L2G1 n(X1)]’

where Gi n(x) = M, n(x) - xmg n(x). (3.5)

E 13 >
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Then, by Theorem 3.1 and Theorem 3.2, (3.3), (3.4), and (3.5) define an

empirical Bayes rule.

4. Generalization and Simulation
Let pi(x) be a positive continuously differentiable function which is

)
defined over (0,») for 1 < i < k. Let Ci(e)-] = f pi(x)dx for 6 > 0, then
0

fi(xle) = pi(x)ci(e)I(O,e)(x) is a density function and 6 is a truncation
parameter. In this section, we assume that wiis fi(xlei) for T < i < k.

Under the formulation of Section 2, we wish to find empirical Bayes rules

for these more general density functions. For simplicity, we assume that

L; =L, = L and that 65 is known. Also we assume Gi(e) has a continuous
density gi(e) with a bounded support [O’“i] with a known o for al1 1 < i < k.
We find

O

OL_i i
ms (x) = é f.(x[e)dG; (o) = pi(x)£ c;(e)dG;(e).

If we follow the same discussion as in Section 2, we can show that the Bayes

rule 8g is 1¢ 63(5) iff

('l) X: > 90 s Or

[o Y o .
i i

(i) X; < 8g and o4 £ ci(x)dGi(x) 5_{ xci(x)dGi(x).
i i

O
i

Hence, 85(x) = {i|x; > 0p-d;},where d; > 0 satisfies £ (6g-x)c;(x)dG;(x) = 0.
i

Let di n - d. (Y ,Y. ) be a consistent estimation of di’ then

i,n*'i1*>°°"2"qn
62(5) = {i|x1 > 8g-d; ,} is e.B. and they are (weak) admissible in the
sense that 62(-,!1,...,Yn) is an admissible rule for the non-empirical problem

for all Y;,...,Y and n (see Houwelingen (1976). Meeden (1972)). However,
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to find such a sequence {d. _}

in :=] is very difficult. In view of Theorem 2.1,

a more practical way to find empirical Bayes rules is to estimate

Q.
i

/ xci(x)dGi(x).

X
i

Theorem 4.1. Let pi(x) and Gi(x) be defined as above. If m; n(x) is

defined by (2.9) with h ~ 0, nh » o,

then
i xp}(x) N X
X; P?(x) My, n(x)dx - ii'B;(ZY R
N f1 xc; (x)d6, (x) in (p).
X

3
Proof: See Appendix B.

Now, let
OO I P e L L SRS 2 LI PO Y
A% X.) = L + m. X) - m X)dx )
i,n' " p1<xi) X3 p1(x) 1. X3 p?(x) 1an
then sx(x) = {i]x; 2 0p} u Li[x; < 8 and A7 n(x3) <03 (4-2)

defines an empirical Bayes rule.
The following lemma is a direct result of Lemma 3 of Van Ryzin and
Susarla (1977).

_i
1

X——

Lemma 4.2. Let Bg (x) =
i

then 0 < r (G,8%) - r(G) =

—e
e~ x
—

Ul lag, () s (x)[PLa% | (x) < 0dx
1 1

¥ folAgi(X)Ipi(X)P[A$,n(x) > 0]dx}
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where A? n(x) and 6; are defined by (4.1) and (4.2) respectively, and

Hg = {x|x < 8, and AGi(X) > 0} and H? = {x|x < 85 and a; (x) < 0}.

j
O(an)

Now, let O(an) denote a quantity such that 0 < 1lim < o, Then

ne  n
since IAG.(X)|pi(X) < M; for all x < 6, for some constant M., so
i

k
rn(g,éﬁ) - r(g) 5_121 Mi{f] P[Aﬁ,n(x) < 0]dx

Hy

+ f P[A? n(x) > 0]dx}.
2 9
H:
i

Therefore, if for all x < 9

P[|A$,n(x)-AG.(x)| > IAG.(X)I] = O(an) as n >
i i

then
rn(g,aﬁ) - r(g) = O(an).

Now, by the inequality

Var[A$,n(x)]

PLIa% | (x)- > M1 < ’
i i ’

we conclude that if Var[A$’n(x)] = O(an) for all x < 8 then

rn(g,sﬁ) - r(G) = O(an). Note that if o + 0, then 6; is empirical Bayes.
In the following, we have carried out some Monte Carlo study to see

how fast the derived empirical Bayes rules converge. We let Xi ~ U(O,ei)

for i = 0,1. N is treated as unknown. Assume that gi(e) = g%—I(O,c)(e)

c
for i = 0,1 and L1 = L2 = 1. The smallest sample size N such that

N v (6,5%)-r(6)]
Relative error: 1) < e

~
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for N-4 < m < N is determined. Here r(G) = PG[(61 > 8> X1 < XO) U
(e] < 8ps X] > XO)] = %gu The Monte Carlo studies are repeated for 55 times and

the values of N and the associated standard deviations corresponding to

selected ¢ and c are shown in the next table for h = n']/4, for h = n']/5 and

for h = n']/6, where h is used to define (2.9).
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Appendix A

Proof of Theorem 3.1.

For i fixed, [ xm, n(x)dmo’n(x)

0’
-LL T T (Vi dlpy oy y(x
11 x 1 dI
e h2 §51 g51 8 (Xexth] [Ygyhs¥g) ™
”EE( )
11 U. -V. ), where
n2 he j=1 g=1 I 3¢
U. = (Yo -h)I (Y. -h)I (Y. .)
js 0% (a,»)' 0% (Y02'h’Y02] ij
V. =Y. 1 (Yo )1 (Y5)-
j2 02 (a,»)' 0% (Yoz 02+h]

Since Y0 ~ MO(x) and Yij ~ Mi(x) for 1 < j, 2 <n, so

Ef xmg o (x)dng | (x) = L5 ELUp;-Vq, ]

h
o 1 x+h 1
= g X ﬁ-i dMs (y) ¢ Dmg (xh)-mg (x) Jdx.

Now, by (2.2)’m1(x) is decreasing in x, hence

p Xth ]
H‘£ M (y) < my(x) < o [1-6;(x)]. (A.1)
] Xth 1
Then |x- H—f dMi(y) ﬁ-[mo(x+h)—m0(x)]|
X
< [1- G ? %—dGO(e) 5_%—go(x+6h), for some & € [0,1].

The last term is integrable over (a,=), then by Lebesgue Dominated Convergence

Theorem (LDCT),
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E£ xm1’n(x)dm0,n(x) > f xmi(x)mé(x)dx
=- ] mi(x)dGO(x) in (p) if h> 0 as n » . (A.2)
a
" 11
Now, Var [ xm, (x)dmy .(x) = Var — — 7 (U. -V. )
a i,n 0,n n2 h2 ite Je s
1 2(n-1)
= g Var(Uyq=Vyp) + 5575 Cov(Uyp-Vyqs Upp-Vy,). (A.3)

n-h n~h

2 2 2
But Var(U]1—V]]) iE[(UH_VH) ] = E(U]]) + E(V]) [ because UyqVYqp = 01,

1 2
and F'E(U11)

< [ X% % (146, (x))dMy (x+h) < [ x dMy(x+h)
a a
M G G
< £ 90x3 = £ P[EDX|ey]] = 5 E %log] < =,
1 Gy
hence ﬁ-Var(U]]—V]]) < E [GO] for all h > 0. (A.4)
Meanwhile, Cov(U11-V1], U12'V12) = Cov(U 11’U12) + Cov(V]],V]Z)—Cov(U]1,V]2)—

Cov(V]],U]z), and |%§-COV(U]],U]2)| l?-[E( ]] ]2) + E(U1])E(U]2)] because

sz >0 for all 1 < J, 2 <n.

1 15 2
Now, — E(U =— [ [ f ydM, (y+h)1dM. (x)

] ath X

t = [f ydMg (y+h)1? dM. (x).
h™ a

1 9 )f(
= = ydM (y+h)] dM (x)
h2 {h X=h 0

X
Because [ ydM.(y+h) =
x-h 0



X a+h
/ ydMO(y+h) < | ydMO(y+h) <h for a < x < ath,
a a

we get L E(U1jUp,) < T-Mi(ath) + M (a+h) - M,(a) = T-M,
h
The same argument shows that %—E(U]]) 5_1—M1(a)
1

h E(VH) < 1-M1.(a),

hence |ﬁ§-cOv(u1],u12)| < 2[1-M(a)]. This implies that

1

By (A.3), (A.4) and (A.5)

Var | xm, n(x)dm0 a(x) >0 if nh% > 0 and h - 0.
a -] 9

Now, (A.2) and (A.6) implies that
f xmi’n(x)dmo’n(x) > - £ mi(x)dGO(x) in (p).

This finishes the proof.

(a).

18
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Appendix B
Proof of Theorem 4.1.
First 5?1 X v dm (x)=?1 X__ L fm. (x+h)-m. (x)1d
) x1"5§T§7 i.n . E;T§7'h m; (x+h)-m. (x) Jdx

O s
i
X
-> £ B;z;j‘dmi(X) by LDCT.
i

&g n
1
Now, Var f X_ dm. (x) = Var[ ) (U.-V.)],
Xi piixi i,n nh =1 J '

1]

where Uj = B;(V—fq;y I[Xi,aij(Yij-h), and

Y..-h
N

Y. .
V. =~y 1 (Ys:).
3PV Dxgeay 1S

o

;

Hence, Var { X~ dm, (x) =
X: piixi i,n

1 20 1 4 X xeh 2
inh_zE[(U-l-v])]_ﬁi [F( - = _))] dM. (x)

A
A
m
=
3
- n-,
Q x
L
o
%l
©
—u
<

max [——1—7-
XE[Xi’“i] PjiX

-0 if nh » =,

We see that

ai a1
X X .
£. B;r;y‘dmi,n(X) > £. E;Yij.dmi(x) in (p).
1 1



o i xp} (x) % xp%(x)
Similarly f 5 m x)dx - 5 m;(x)dx in (p)
Xj pi(x) > Xi pi(x)
N 5 % 4 mi(x)
ince £. xci(x)dGi(x) =_£ -X a;—[ﬁgziji
i 1]
O [o )
i xpl(x) i
= f L " m, (x)dx - [ -(TX dm. (x),
X; p?(x) 1 Xs Pjix !

the proof is completed.
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