Empirical Bayes Rules for Selecting Good Populations*

by

Shanti S. Gupta Purdue University

and

Ping Hsiao Wayne State University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #81-5

March, 1981

(Revised September 1982)

^{*}This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Empirical Bayes Rules for Selecting Good Populations*

by

Shanti S. Gupta Purdue University

and

Ping Hsiao Wayne State University

Abstract

A problem of selecting populations better than a control is considered. When the populations are uniformly distributed, empirical Bayes rules are derived for a linear loss function for both the known control parameter and the unknown control parameter cases. When the priors are assumed to have bounded supports, empirical Bayes rules for selecting good populations are derived for distributions with truncation parameters (i.e. the form of the pdf is $f(x|\theta) = p_i(x)c_i(\theta)I_{(0,\theta)}(x)$). Monte Carlo studies are carried out which determine the minimum sample sizes needed to make the relative errors less than ε for given ε -values.

AMS Subject Classification: Primary 62F07, Secondary 62C10.

Key Words: Empirical Bayes; Asymptotically Optimal; Selection and Ranking; Truncation Parameter; Better than a Control.

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Empirical Bayes Rules for Selecting Good Populations*

by

Shanti S. Gupta Purdue University

and

Ping Hsiao Wayne State University

1. Introduction

We assume that G is an unknown prior distribution on Θ , and denote the minimum Bayes risk in a decision problem by r(G). Robbins, in his pioneering papers (1955), (1964), proposed sequences of decision rules, based on data from n independent repetitions of the same decision problem, whose (n+1)st stage Bayes risk converges to r(G) as $n \to \infty$. Such sequences of rules are called empirical Bayes rules. Empirical Bayes rules have been derived for multiple decision problems by Deely (1965), Van Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977), and Singh (1977). However, the forms of densities of the populations that these authors considered are either $c(\theta)h(x)e^{\theta X}$, for continuous case or $c(\theta)h(x)\theta^{X}$, for discrete case, and the loss functions are either squared error or merely $\max_{1 \le j \le k} \theta_j - \theta_j$ type. Fox (1978) discussed some estimation problems under the squared error loss, in which empirical Bayes rules were derived for uniform distributions for the first time. Barr and Rizvi (1966), and McDonald (1974) also considered selection problems related to uniform distribution by subset selection approach.

^{*}This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

The problem considered in this paper is related to truncation parameters and can be illustrated by the following example. Suppose that there are k treatments for a certain disease, and the effect of the treatment i follows an unknown distribution G_i , $1 \le i \le k$. The effectiveness of the treatment i has been tested on n subjects (for different treatments, different groups of subjects are used. If the same subject has to be used for more than one test, let there be a wash-out period between tests, so the effects of different treatments are independent.). Let θ_{ij} be the parameter which represents the effectiveness of the treatment i on the subject j. The treatment i is good for the subject j if $\theta_{i,j} > \theta_0$ and hence is called a good treatment, otherwise it is called a bad treatment. θ_0 is called the control parameter. Let $Y_{i,j}$ be an observable result of the treatment i on the subject j and assume that $\theta_{\mathbf{i},\mathbf{j}}$ is underestimated by Y_{ij} . The pdf of Y_{ij} is $f(x|\theta_{ij}) = P_i(x)c_i(\theta_{ij})I_{(0,\theta_{ii})}(x)$. Our purpose is to find an empirical Bayes rule: which decides on the quality (better or worse than the control) of the treatment i based on $Y_{i,j}$ (1 \leq i \leq k, 1 \leq j \leq n) and X_i (1 \leq i \leq k), where X_i is the endpoint result of the treatment i on the present patient. In Section 2, a general formulation is given and empirical Bayes rules are derived for selecting populations better than a known control when the populations are uniformly distributed (i.e. $p_i(x) = 1$). In Section 3, the same problem is considered except that the control parameter is unknown. In Section 4, empirical Bayes rules are found for truncation parameters (that is the densities are of the form $p_i(x)c_i(\theta_i)I_{(0,\theta_i)}(x)$). Rate of convergence is also discussed. Monte Carlo studies are carried out for the priors $G(\theta) = \frac{\theta^2}{c^2} I_{(0,c)}(\theta)$. The smallest sample size N is determined to guarantee that the relative error is less than $\epsilon \mbox{.}$

2. θ_0 known

Assume that $\pi_1, \pi_2, \ldots, \pi_k$ are k populations and X_i is a random observation for a certain characteristic of π_i . Assume that $X_i \sim U(0, \theta_i)$, where θ_i is unknown for $1 \leq i \leq k$. Let θ_0 be a known control parameter, we define π_i

to be a good population according to the specified characteristic if $\theta_i > \theta_0$ and to be a bad population if $\theta_i \leq \theta_0$. Let $\Theta = \{\theta_i = (\theta_1, \dots, \theta_k) | \theta_i > 0 \text{ for all } 1 \leq i \leq k\}$. For any $\theta_i \in \Theta_i$, let $A(\theta_i) = \{i | \theta_i > \theta_0\}$ and $B(\theta_i) = \{i | \theta_i \leq \theta_0\}$, then $A(\theta_i)$ ($B(\theta_i)$) is the set of indices of good (bad) populations. Our goal is to select all the good populations and reject the bad ones. We formulate the problem in the empirical Bayes framework as follows:

- (1) Let $G = \{S | S \subseteq \{1,2,...,k\}\}$ be the action space. When we take action S, we say π_i is good if $i \in S$ and π_i is bad if $i \notin S$.
- (2) $L(\theta,S) = L_1 \sum_{i \in A(\theta) \setminus S} (\theta_i \theta_0) + L_2 \sum_{i \in B \cap S} (\theta_0 \theta_i)$ is the loss function. (2.1)
- (3) Let $dG(\theta) = \prod_{i=1}^{k} dG_i(\theta_i)$ be an unknown prior distribution on Θ , where G_i has a continuous pdf G_i with respect to the Lebesgue measure.
- (4) Let $(\theta_{i1}, Y_{i1}), \ldots, (\theta_{in}, Y_{in})$ be pairs of random variables from π_i and $Y_{ij}|\theta_{ij} \sim U(0,\theta_{ij})$ for $1 \le i \le k$, $1 \le j \le n$. Let $Y_j = (Y_{1j}, \ldots, Y_{kj})$, then Y_j denotes the previous j-th observations from π_1, \ldots, π_k .
- (5) Let $X = (X_1, ..., X_k)$ be the present observation and $f(x|\theta) = \frac{k}{\pi} \frac{1}{\theta_i}$ $I_{(0,\theta_i)}(x_i).$ Note that $X_i = Y_{i,n+1}$ and $\theta_i = \theta_{i,n+1}$. Since we are interested in Bayes rules, we can restrict our attention to the non-randomized rules.
- (6) Let D = $\{\delta \mid \delta: \mathcal{X} \to G \text{ is measurable}\}$, then $r(G) = \inf_{\delta \in D} r(G, \delta)$ is the minimum Bayes risk.

The decision rules $\{\delta_n(\underline{x}; \underline{Y}_1, \dots, \underline{Y}_n)\}_{n=1}^{\infty}$ are said to be asymptotically optimal (a.o.) or empirical Bayes (e.B.) relative to G if $r_n(\underline{G}, \delta_n) = \int_{\underline{X}} \underbrace{E} L(\underline{\theta}, \delta_n(\underline{x}; \underline{Y}_1, \dots, \underline{Y}_n)) f(\underline{x}|\underline{\theta}) d\underline{G}(\underline{\theta}) d\underline{x} \rightarrow r(\underline{G})$ as $n \rightarrow \infty$. For simplicity,

 $\delta_n(x, Y_1, \dots, Y_n)$ will be denoted by $\delta_n(x)$.

Let $m_i(x)$ be the marginal pdf of X_i and $M_i(x)$ be the marginal distribution of X_i . Then we have

$$m_i(x) = \int_{x}^{\infty} \frac{1}{\theta} dG_i(\theta)$$
 for all $x > 0$, (2.2)

and

$$M_{\mathbf{i}}(x) = \int_{0}^{x} \int_{t}^{\infty} \frac{1}{\theta} dG_{\mathbf{i}}(\theta) dt = \int_{x}^{\infty} \int_{0}^{x} \frac{1}{\theta} dt dG_{\mathbf{i}}(\theta) + \int_{0}^{x} \int_{0}^{\theta} \frac{1}{\theta} dt dG_{\mathbf{i}}(\theta)$$
$$= xm_{\mathbf{i}}(x) + G_{\mathbf{i}}(x).$$

Hence,
$$G_{i}(x) = M_{i}(x) - xm_{i}(x)$$
. (2.3)

Now, the loss function defined in (2.1) can be expressed as

$$L(\underset{i}{\theta},S) = \sum_{i \in S} [L_{2}(\theta_{0}-\theta_{i})I_{(0,\theta_{0}]}(\theta_{i})-L_{1}(\theta_{i}-\theta_{0})I_{(\theta_{0},\infty)}(\theta_{i})]$$

$$+ \sum_{i=1}^{k} L_{1}(\theta_{i}-\theta_{0})I_{(\theta_{0},\infty)}(\theta_{i}). \qquad (2.4)$$

Since the second sum in (2.4) does not depend on the action S, we can omit it and need only to consider the first sum as our loss for finding an empirical Bayes rules from now on. Therefore,

$$r(\tilde{g}, \delta) = \int_{\mathcal{X}} \sum_{i \in \delta(\tilde{x})} \left[\int_{\theta_{i} \leq \theta_{0}} L_{2}(\theta_{0} - \theta_{i}) f(\tilde{x} | \tilde{\theta}) d\tilde{g}(\tilde{\theta}) \right] d\tilde{g}(\tilde{\theta}) d\tilde$$

So, if $\delta_B(\underline{x}) = S^*$ is the Bayes rule wrt \underline{G} , one finds $i \in S^*$ if

$$(0,\theta_0] \cap (x_i,\infty)^{L_2(\theta_0-\theta_i)} \xrightarrow{\frac{1}{\theta_i}} dG_i(\theta_i)$$

$$\leq \int_{\theta_0 \lor x_i}^{\infty} L_1(\theta_i-\theta_0) \xrightarrow{\frac{1}{\theta_i}} dG_i(\theta_i). \text{ Hence,}$$

 $S^* = \{i | x_i \ge \theta_0\} \cup \{i | x_i < \theta_0 \text{ and } H_i(x_i) \le c_i(\theta_0)\}, \text{ where }$

$$H_{i}(x_{i}) = L_{2}\theta_{0} \int_{x_{i}}^{\theta_{0}} \frac{1}{\theta_{i}} dG_{i}(\theta_{i}) + L_{2}G_{i}(x_{i}) \quad and$$

$$c_{\mathbf{i}}(\theta_0) = L_2G_{\mathbf{i}}(\theta_0) + L_1(1-G_{\mathbf{i}}(\theta_0)) - L_1\theta_0 \int_{\theta_0}^{\infty} \frac{1}{\theta_{\mathbf{i}}} dG_{\mathbf{i}}(\theta_{\mathbf{i}}).$$

Since $H_i(x_i)$ is decreasing in x_i for $x_i < \theta_0$ and $H(\theta_0) \le c_i(\theta_0)$, so $S^* = \{i | x_i \ge \theta_0 - b_i\}$, where $b_i \ge 0$ satisfies $H(\theta_0 - b_i) = c_i(\theta_0)$. This shows for any G, the above type rules are Bayes rules [see Gupta and Sobel (1958) and Gupta (1963,1965)]. Now, G is unknown; the Bayes rules are not obtainable. We wish to find a sequence of rules $\{\delta_n(x_i)\}_{n=1}^\infty$ to be a.o. Let

$$\Delta_{G_i}(x_i) = H_i(x_i) - c_i(\theta_0)$$

and

$$S_B(\bar{x}) = \{i | x_i < \theta_0, \Delta_{G_i}(x_i) \leq 0\}.$$

Also, for any i $(1 \le i \le k)$, let $\Delta_{i,n}(x_i) = \Delta_i(x_i, Y_{i1}, ..., Y_{in})$ for all n = 1, 2, ..., be a sequence of real-valued measurable functions; we define

$$S_n(x) = \{i \mid x_i < \theta_0 \text{ and } \Delta_{i,n}(x_i) \le 0 \}$$
 (2.5)

and

$$\delta_{n}(x) = \{i | x_{i} \ge \theta_{0}\} \cup S_{n}(x).$$
 (2.6)

One can show that

Theorem 2.1. If $\int_0^\infty \theta \ dG_i(\theta) < \infty$, i = 1,2,...,k, and $\Delta_{i,n}(x_i) \rightarrow \Delta_{G_i}(x_i)$ in (p) for almost all $x_i < \theta_0$. Then $\{\delta_n(x_i)\}_{n=1}^\infty$ defined by (2.6) is empirical Bayes.

<u>Proof</u>: For all $S \in G$, let

$$x_S = \{x \mid x_i \ge \theta_0 \text{ if } i \in S \text{ and } x_i < \theta_0 \text{ if } i \notin S\}.$$

Now, for any $x \in x_S$, $\delta_B(x) = S \cup S_B(x)$. Therefore

$$\int_{\Theta} L(\underline{\theta}, \delta_{B}(\underline{x})) f(\underline{x} | \underline{\theta}) d\underline{G}(\underline{\theta})$$

$$= \sum_{\mathbf{i} \in \delta_{\mathsf{B}}(\underline{x})} \left[\int_{\{\theta_{\mathbf{i}} \leq \theta_{\mathbf{0}}\}^{2}} \mathsf{L}_{2}(\theta_{\mathbf{0}} - \theta_{\mathbf{i}}) f(\underline{x} | \underline{\theta}) d\underline{G}(\underline{\theta}) - \int_{\{\theta_{\mathbf{i}} > \theta_{\mathbf{0}}\}} \mathsf{L}_{1}(\theta_{\mathbf{i}} - \theta_{\mathbf{0}}) f(\underline{x} | \underline{\theta}) d\underline{G}(\underline{\theta}) \right]$$

$$= \sum_{i \in S} (-Q(x)) + \sum_{i \in S_B(x)} \Delta_{G_i}(x_i) \prod_{j \neq i} m_j(x_j),$$

where
$$Q(x) = \int_{\{\theta_i > \theta_0\}} L_1(\theta_i - \theta_0) f(x|\theta) dG(\theta)$$
.

Similarly, for $x \in \mathcal{X}_{S}$, we have

$$\int_{\Theta} L(\underline{\theta}, \delta_{\mathbf{n}}(\underline{x})) f(\underline{x}|\underline{\theta}) d\underline{G}(\underline{\theta})$$

$$= \sum_{\mathbf{i} \in S} (-Q(\underline{x})) + \sum_{\mathbf{i} \in S_{\mathbf{n}}(\underline{x})} \Delta_{\mathbf{G}_{\mathbf{i}}}(\mathbf{x}_{\mathbf{i}}) \prod_{\mathbf{j} \neq \mathbf{i}} m_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}).$$

Hence, if $\Delta_{i,n}(x_i) \rightarrow \Delta_{G_i}(x_i)$ in (p), then

 $\leq 2\varepsilon \sum_{j=1}^{\infty} \prod_{j\neq j} m_{j}(x_{j})$

$$0 \leq \int_{\Theta} \left[L(\underline{\theta}, \delta_{n}(\underline{x})) - L(\underline{\theta}, \delta_{B}(\underline{x})) \right] f(\underline{x}|\underline{\theta}) d\underline{G}(\underline{\theta})$$

$$\leq i \in S_{n}^{\sum}(\underline{x})^{|\Delta_{G}|} (x_{i})^{-\Delta_{i}}, n^{(x_{i})|} \prod_{j \neq i}^{\pi} m_{j}(x_{j})$$

$$+ (\sum_{i \in S_{n}(\underline{x})}^{\sum} - i \in S_{B}^{\sum}(\underline{x})^{|\Delta_{i}|}, n^{(x_{i})} \prod_{j \neq i}^{\pi} m_{j}(x_{j})$$

$$+ \sum_{i \in S_{B}(\underline{x})}^{\sum} |\Delta_{i}, n^{(x_{i})} - \Delta_{G_{i}}(x_{i})| \prod_{j \neq i}^{\pi} m_{j}(x_{j})$$

$$+ \sum_{i \in S_{B}(\underline{x})}^{\sum} |\Delta_{i}, n^{(x_{i})} - \Delta_{G_{i}}(x_{i})| \prod_{j \neq i}^{\pi} m_{j}(x_{j})$$

$$(2.7)$$

with probability near 1 for large n. Note that (2.7) is non-positive by the definition of $S_n(x)$. Thus, we have proved

$$\int\limits_{\Theta} L(\tilde{\theta}, \delta_{n}(\tilde{x})) f(\tilde{x}|\tilde{\theta}) d\tilde{g}(\tilde{\theta}) \rightarrow \int\limits_{\Theta} L(\tilde{\theta}, \delta_{B}(\tilde{x})) f(\tilde{x}|\tilde{\theta}) d\tilde{g}(\tilde{\theta})$$

in (p) for all most all x. By Corollary 1 of Robbins (1964), $\{\delta_n(x)\}_{n=1}^{\infty}$ is empirical Bayes. This completes the proof.

In view of (2.2) and (2.3), we have

$$\Delta_{\mathsf{G}_{\mathbf{i}}}(\mathsf{x}_{\mathbf{i}}) = \mathsf{L}_{2}\mathsf{m}_{\mathbf{i}}(\mathsf{x}_{\mathbf{i}})(\theta_{0} - \mathsf{x}_{\mathbf{i}}) + \mathsf{L}_{2}[\mathsf{M}_{\mathbf{i}}(\mathsf{x}_{\mathbf{i}}) - \mathsf{M}_{\mathbf{i}}(\theta_{0})] + \mathsf{L}_{1}[\mathsf{M}_{\mathbf{i}}(\theta_{0}) - 1].$$

Hence, if we define

$$\Delta_{i,n}^{*}(x_{i}) = L_{2}^{m_{i,n}}(x_{i})(\theta_{0}-x_{i}) + L_{2}[M_{i,n}(x_{i})-M_{i,n}(\theta_{0})] + L_{1}[M_{i,n}(\theta_{0})-1], \qquad (2.8)$$

where

$$M_{i,n}(x) = \frac{1}{n} \sum_{j=1}^{n} I_{(-\infty,x]}(Y_{ij})$$

and
$$m_{i,n}(x) = \frac{1}{h} [M_{i,n}(x+h) - M_{i,n}(x)], h > 0,$$
 (2.9)

then $\Delta_{i,n}^{*}(x_{i}) \rightarrow \Delta_{G_{i}}(x_{i})$ in (p) a.e. in x, if $h = h(n) \rightarrow 0$ and $nh \rightarrow \infty$ as $n \rightarrow \infty$.

So, by Theorem 1, $\delta_n^*(x) = \{i | x_i \ge \theta_0\} \cup \{i | x_i < \theta_0, \Delta_{i,n}^*(x_i) \le 0\}$ is empirical Bayes.

Remark: In (2.8), $M_{i,n}(x)$ and $m_{i,n}(x)$ can be defined as any functions such that $M_{i,n}(x) \rightarrow M_i(x)$ in (p) and $m_{i,n}(x) \rightarrow m_i(x)$ in (p) for almost all x.

For example, let $m_{i,n}^0(x) = \frac{1}{nh} \sum_{j=1}^n w(\frac{x-y_{ij}}{h})$ where $w(\cdot) \ge 0$ satisfies

(i)
$$\sup_{-\infty < X < \infty} w(x) \le K$$
 for some constant K,

(ii)
$$\int_{-\infty}^{\infty} w(x) dx = 1$$

(iii)
$$\lim_{X \to \infty} xw(x) = 0$$

and h = h(n) satisfies $h \to 0$, $nh \to \infty$ as $n \to \infty$ then $m_{i,n}^{0}(x)$ is a consistent estimator of $m_{i}(x)$ (see Parzen (1962)).

3. θ_0 unknown

Let π_0 be the control population and assume that X_0 , a certain observable characteristic of π_0 , follows $U(0,\theta_0)$. Let Y_{01},\dots,Y_{0n} be the past data collected from π_0 . Based on this further information, we will search for empirical Bayes rules for selecting populations better than the control. Note that now $\theta = (\theta_0,\theta_1,\dots,\theta_k)$, $x = (x_0,x_1,\dots,x_k)$ and $G(\theta) = \frac{k}{i=0} G_i(\theta_i)$. Under the loss function in (2.4), the Bayes rule δ_B is: $i \in \delta_B(x)$ if

$$L_{2} \int_{x_{0}}^{\infty} \frac{1}{\theta_{0}} \left(0, \theta_{0}\right) \cap \left(x_{i}, \infty\right)^{\frac{1}{\theta_{i}}} \left(\theta_{0} - \theta_{i}\right) dG_{i}\left(\theta_{i}\right) dG_{0}\left(\theta_{0}\right)$$

$$\leq L_1 \int_{x_0}^{\infty} \frac{1}{\theta_0} \int_{(\theta_0,\infty) \cap (x_i,\infty)} \frac{1}{\theta_i} (\theta_i - \theta_0) dG_i(\theta_i) dG_0(\theta_0).$$

Hence, $i \in \delta_B(x)$ if

(i)
$$x_i \ge x_0$$
 and $\Delta_{G_0,G_i}^1(x_0,x_i) \le 0$, where
$$\Delta_{G_0,G_i}^1(x_0,x_i) = (L_1-L_2) \left[\int_{x_i}^{\infty} m_i(\theta_0) dG_0(\theta_0) + \int_{x_i}^{\infty} m_0(\theta_i) dG_i(\theta_i) \right]$$
$$- L_1[1-G_i(x_i)]m_0(x_0)+m_i(x_i)[L_2+(L_1-L_2)G_0(x_i)-L_1G_0(x_0)] \qquad (3.1)$$

or

(ii)
$$x_i < x_0$$
 and $\Delta_{G_0,G_i}^2(x_0,x_i) \le 0$, where
$$\Delta_{G_0,G_i}^2(x_0,x_i) = (L_1-L_2) \left[\int_{x_0}^{\infty} m_i(\theta_0) dG_0(\theta_0) + \int_{x_0}^{\infty} m_0(\theta_i) dG_i(\theta_i) \right] - m_0(x_0) \left[L_1 + (L_2-L_1)G_i(x_0) - L_2G_i(x_i) \right] + L_2m_i(x_i) (1-G_0(x_0)). \tag{3.2}$$

When L $_1$ = L $_2$ = L, the Bayes rule is greatly simplified. We find $i \in \delta_B(\underline{x}) \text{ if }$

$$\Delta_{G_0,G_i}(x_0,x_i) = m_0(x_0)[1-G_i(x_i)]-m_i(x_i)[1-G_0(x_0)] \ge 0.$$

Let $\delta_{\mathbf{n}}(\mathbf{x}) = \{i | \Delta_{i,\mathbf{n}}(\mathbf{x}_{i},\mathbf{x}_{0}) \geq 0\}$, where

$$\Delta_{i,n}(x_i,x_0) = m_{0,n}(x_0)[1-G_{i,n}(x_i)] - m_{i,n}(x_i)[1-G_{0,n}(x_0)],$$

 $M_{i,n}(x_i)$ and $m_{i,n}(x_i)$ are defined in (2.9), and $G_{i,n}(x_i) = M_{i,n}(x_i)$

 $\begin{array}{l} -\text{ x}_{i}\text{m}_{i,n}(\text{x}_{i}). \quad \text{Then, } \left\{\delta_{n}(\text{x})\right\}_{n=1}^{\infty} \text{ is e.B. by Theorem 3.2.} \quad \text{When } \text{L}_{1} \neq \text{L}_{2}, \\ \text{one needs to find consistent estimators of } \int\limits_{a}^{\infty} \text{m}_{i}(\theta_{0}) \text{dG}_{0}(\theta_{0}) \text{ and } \int\limits_{a}^{\infty} \text{m}_{0}(\theta_{i}) \text{dG}_{i}(\theta_{i}). \\ \end{array}$

Theorem 3.1. Let $M_{i,n}(x)$ and $m_{i,n}(x)$ be defined by (2.9) with h = h(n) satisfying $h \to 0$, $nh^2 \to \infty$ as $n \to \infty$. If $\int_0^\infty dG_i(\theta) < \infty$ for all $i = 0,1,\ldots,k$, then $-\int_a^\infty xm_{i,n}(x)dm_{0,n}(x) \to \int_a^\infty m_i(x)dG_0(x)$ in (p) for any a > 0.

Proof: See Appendix A.

Theorem 3.2. Assume that $\int\limits_0^\infty \theta \ dG_i(\theta) < \infty$ for all $0 \le i \le k$. If for all $1 \le i \le k$, $\Delta_i^1, n(x_0, x_i) \rightarrow \Delta_{G_i, G_0}^1(x_0, x_i)$ in (p) for $x_i \ge x_0$, and $\Delta_{i,n}^2(x_0, x_i) \rightarrow \Delta_{G_i, G_0}^2(x_0, x_i)$ in (p) for $x_i < x_0$. Then

$$\delta_{n}^{*}(x) = S_{n}^{1}(x) \cup S_{n}^{2}(x)$$

$$= \{i \mid x_{i} \geq x_{0} \text{ and } \Delta_{i,n}^{1}(x_{0},x_{i}) \leq 0\} \cup \{i \mid x_{i} < x_{0} \text{ and } \Delta_{i,n}^{2}(x_{0},x_{i}) \leq 0\}$$
(3.3)

defines an empirical Bayes rule.

$$\underline{\text{Proof:}} \quad \int_{\Theta} L(\underline{\theta}, \delta_{B}(\underline{x})) f(\underline{x} | \underline{\theta}) d\underline{G}(\underline{\theta})$$

$$= \sum_{i \in S_{1}^{+}(x_{i})} \Delta_{G_{i},G_{0}}^{1}(x_{0},x_{i}) \prod_{j \neq i} m_{j}(x_{j}) + \sum_{i \in S_{2}^{+}(x_{i})} \Delta_{G_{i},G_{0}}^{2}(x_{0},x_{i}) \prod_{j \neq i} m_{j}(x_{j}),$$

where
$$S_1^*(x) = \{i \mid x_i \ge x_0 \text{ and } \Delta_{G_i,G_0}^1(x_0,x_i) \le 0\}$$

$$S_2^*(x) = \{i | x_i < x_0 \text{ and } \Delta_{G_i,G_0}^2(x_0,x_i) \le 0\},$$

and
$$\int_{\Theta} L(\underline{\theta}, \delta_{n}^{*}(\underline{x})) f(\underline{x}|\underline{\theta}) d\underline{G}(\underline{\theta})$$

$$= \sum_{\mathbf{i} \in S_{\mathbf{n}}^{1}(x)} \Delta_{\mathbf{G}_{\mathbf{i}},\mathbf{G}_{\mathbf{0}}}^{1} (x_{0},x_{\mathbf{i}}) \prod_{\mathbf{j} \neq \mathbf{i}}^{\pi} M_{\mathbf{j}}(x_{\mathbf{j}}) + \sum_{\mathbf{i} \in S_{\mathbf{n}}^{2}(x)} \Delta_{\mathbf{G}_{\mathbf{i}},\mathbf{G}_{\mathbf{0}}}^{2} (x_{0},x_{\mathbf{i}}) \prod_{\mathbf{j} \neq \mathbf{i}}^{\pi} M_{\mathbf{j}}(x_{\mathbf{j}}).$$

Now, following the same method as in the proof of Theorem 2.1, we can show

$$\sum_{\mathbf{i} \in S_{\mathbf{n}}^{\ell}(\underline{x})}^{\Delta_{\mathbf{G}_{\mathbf{i}},\mathbf{G}_{\mathbf{0}}}^{\ell}(\mathbf{x}_{\mathbf{0}},\mathbf{x}_{\mathbf{i}}) \prod_{\mathbf{j} \neq \mathbf{i}}^{\mathbf{m}_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}})} \rightarrow \sum_{\mathbf{i} \in S_{\ell}^{\star}(\underline{x}_{\mathbf{0}})}^{\sum_{\mathbf{G}_{\mathbf{G}_{\mathbf{i}},\mathbf{G}_{\mathbf{0}}}^{\ell}(\mathbf{x}_{\mathbf{0}},\mathbf{x}_{\mathbf{i}}) \prod_{\mathbf{j} \neq \mathbf{i}}^{\mathbf{m}_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}})} \prod_{\mathbf{j} \neq \mathbf{i}}^{\mathbf{m}_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}})}$$

in (p) for $\ell=1,2$. Hence $\left\{\delta_n^*(x)\right\}_{n=1}^{\infty}$ is empirical Bayes. This completes the proof.

Now, let

$$\Delta_{i,n}^{1}(x_{0},x_{i}) = (L_{2}-L_{1})\{\int_{x_{i}}^{\infty} xm_{i,n}(x)dm_{0,n}(x) + \int_{x_{i}}^{\infty} xm_{0,n}(x)dm_{i,n}(x)\}$$

$$- L_{1}[1-G_{i,n}(x_{i})]m_{0,n}(x_{0})+m_{i,n}(x_{i})[L_{2}+(L_{1}-L_{2})]$$

$$G_{0,n}(x_{i})-L_{1}G_{0,n}(x_{0})], \qquad (3.4)$$

and

$$\Delta_{i,n}^{2}(x_{0},x_{i}) = (L_{2}-L_{1})\{\int_{x_{0}}^{\infty}xm_{i,n}(x)dm_{0,n}(x) + \int_{x_{0}}^{\infty}xm_{0,n}(x)dm_{i,n}(x)\}$$

$$+ L_{2}[1-G_{0,n}(x_{0})]m_{i,n}(x_{i})-m_{0,n}(x_{0})[L_{1}+(L_{2}-L_{1})G_{i,n}(x_{0}),$$

$$- L_{2}G_{i,n}(x_{i})],$$

where
$$G_{i,n}(x) = M_{i,n}(x) - xm_{i,n}(x)$$
. (3.5)

Then, by Theorem 3.1 and Theorem 3.2, (3.3), (3.4), and (3.5) define an empirical Bayes rule.

4. Generalization and Simulation

Let $p_i(x)$ be a positive continuously differentiable function which is defined over $(0,\infty)$ for $1 \le i \le k$. Let $c_i(\theta)^{-1} = \int\limits_0^\theta p_i(x) dx$ for $\theta > 0$, then $f_i(x|\theta) = p_i(x)c_i(\theta)I_{(0,\theta)}(x)$ is a density function and θ is a truncation parameter. In this section, we assume that π_i is $f_i(x|\theta_i)$ for $1 \le i \le k$. Under the formulation of Section 2, we wish to find empirical Bayes rules for these more general density functions. For simplicity, we assume that $L_1 = L_2 = L$ and that θ_0 is known. Also we assume $G_i(\theta)$ has a continuous density $g_i(\theta)$ with a bounded support $[0,\alpha_i]$ with a known α_i for all $1 \le i \le k$. We find

$$m_{\mathbf{i}}(x) = \int_{0}^{\alpha_{\mathbf{i}}} f_{\mathbf{i}}(x|\theta) dG_{\mathbf{i}}(\theta) = p_{\mathbf{i}}(x) \int_{x}^{\alpha_{\mathbf{i}}} c_{\mathbf{i}}(\theta) dG_{\mathbf{i}}(\theta).$$

If we follow the same discussion as in Section 2, we can show that the Bayes rule δ_B is $i \in \delta_B(x)$ iff

(i)
$$x_i \ge \theta_0$$
, or
 (ii) $x_i < \theta_0$ and $\theta_0 \int_{x_i}^{\alpha_i} c_i(x) dG_i(x) \le \int_{x_i}^{\alpha_i} xc_i(x) dG_i(x)$.

Hence, $\delta_B(x) = \{i \mid x_i \geq \theta_0 - d_i\}$, where $d_i \geq 0$ satisfies $\int_{d_i}^{\alpha_i} (\theta_0 - x) c_i(x) dG_i(x) = 0$. Let $d_{i,n} = d_{i,n}(Y_{i1}, \dots, Y_{in})$ be a consistent estimation of d_i , then $\delta_n^0(x) = \{i \mid x_i \geq \theta_0 - d_{i,n}\}$ is e.B. and they are (weak) admissible in the sense that $\delta_n^0(\cdot, y_1, \dots, y_n)$ is an admissible rule for the non-empirical problem for all y_1, \dots, y_n and n (see Houwelingen (1976). Meeden (1972)). However,

to find such a sequence $\{d_{i,n}\}_{n=1}^{\infty}$ is very difficult. In view of Theorem 2.1, a more practical way to find empirical Bayes rules is to estimate

$$\int_{X_{i}}^{\alpha_{i}} xc_{i}(x)dG_{i}(x).$$

Theorem 4.1. Let $p_i(x)$ and $G_i(x)$ be defined as above. If $m_{i,n}(x)$ is defined by (2.9) with $h \to 0$, $nh \to \infty$,

then

$$\int_{x_{i}}^{\alpha_{i}} \frac{xp_{i}'(x)}{p_{i}^{2}(x)} m_{i,n}(x) dx - \int_{x_{i}}^{\alpha_{i}} \frac{x}{p_{i}(x)} dm_{i,n}(x) dx + \int_{x_{i}}^{\alpha_{i}} xc_{i}(x) dG_{i}(x) in (p).$$

Proof: See Appendix B.

Now, let

$$\Delta_{i,n}^{*}(x_{i}) = \frac{\theta_{0}^{m_{i,n}(x_{i})}}{p_{i}(x_{i})} + \int_{x_{i}}^{\alpha_{i}} \frac{x}{p_{i}(x)} dm_{i,n}(x) - \int_{x_{i}}^{\alpha_{i}} \frac{xp_{i}(x)}{p_{i}^{2}(x)} m_{i,n}(x)dx, \quad (4.1)$$

then
$$\delta_n^*(x) = \{i \mid x_i \ge \theta_0\} \cup \{i \mid x_i < \theta_0 \text{ and } \Delta_{i,n}^*(x_i) \le 0\}$$
 (4.2) defines an empirical Bayes rule.

The following lemma is a direct result of Lemma 3 of Van Ryzin and Susarla (1977).

Lemma 4.2. Let
$$\Delta_{G_{\hat{i}}}(x) = \int_{x}^{\alpha_{\hat{i}}} (\theta_{0}-t)c_{\hat{i}}(t)dG_{\hat{i}}(t) I_{(0,\alpha_{\hat{i}})}(x),$$

then $0 \le r_{n}(G, \delta_{n}^{*}) - r(G) = \sum_{i=1}^{k} \{\int_{H_{\hat{i}}^{3}} |\Delta_{G_{\hat{i}}}(x)| p_{\hat{i}}(x) |P[\Delta_{\hat{i},n}^{*}(x) < 0]dx + \int_{H_{\hat{i}}^{2}} |\Delta_{G_{\hat{i}}}(x)| p_{\hat{i}}(x) P[\Delta_{\hat{i},n}^{*}(x) \ge 0]dx\},$

where $\Delta_{i,n}^*(x)$ and δ_{n}^* are defined by (4.1) and (4.2) respectively, and $H_{i}^{j} = \{x \mid x \leq \theta_0 \text{ and } \Delta_{G_i}(x) > 0\}$ and $H_{i}^{j} = \{x \mid x \leq \theta_0 \text{ and } \Delta_{G_i}(x) < 0\}$.

Now, let $0(\alpha_n)$ denote a quantity such that $0 \leq \lim_{n \to \infty} \frac{0(\alpha_n)}{\alpha_n} < \infty$. Then since $|\Delta_{G_i}(x)| p_i(x) \leq M_i$ for all $x \leq \theta_0$ for some constant M_i , so

$$r_{n}(\underline{G}, \delta_{n}^{*}) - r(\underline{G}) \leq \sum_{i=1}^{k} M_{i}\{\int_{H_{i}^{i}} P[\Delta_{i,n}^{*}(x) < 0] dx + \int_{H_{i}^{2}} P[\Delta_{i,n}^{*}(x) \geq 0] dx\}.$$

Therefore, if for all $x \leq \theta_0$

$$P[|\Delta_{i,n}^{*}(x)-\Delta_{G_{i}}(x)| > |\Delta_{G_{i}}(x)|] = O(\alpha_{n}) \text{ as } n \rightarrow \infty$$

then

$$r_n(\tilde{g}, \delta_n^*) - r(\tilde{g}) = O(\alpha_n).$$

Now, by the inequality

$$P[|\Delta_{i,n}^{*}(x)-\Delta_{G_{i}}(x)| > |\Delta_{G_{i}}(x)|] \leq \frac{Var[\Delta_{i,n}^{*}(x)]}{[|\Delta_{G_{i}}(x)|-|\Delta_{G_{i}}(x)-E\Delta_{i,n}^{*}(x)|]^{2}},$$

we conclude that if $Var[\Delta_{i,n}^*(x)] = O(\alpha_n)$ for all $x \leq \theta_0$ then $r_n(\underline{G}, \delta_n^*) - r(\underline{G}) = O(\alpha_n)$. Note that if $\alpha_n \to 0$, then δ_n^* is empirical Bayes.

In the following, we have carried out some Monte Carlo study to see how fast the derived empirical Bayes rules converge. We let $X_i \sim U(0,\theta_i)$ for i=0,1. θ_0 is treated as unknown. Assume that $g_i(\theta)=\frac{2\theta}{c^2}\,I_{(0,c)}(\theta)$ for i=0,1 and $L_1=L_2=1$. The smallest sample size N such that

Relative error:
$$\frac{|r_{m}(\tilde{g}, \delta_{m}^{*}) - r(\tilde{g})|}{r(\tilde{g})} \leq \epsilon$$

for N-4 \leq m \leq N is determined. Here $r(G) = P_G[(\theta_1 > \theta_0, X_1 < X_0) \cup (\theta_1 < \theta_0, X_1 > X_0)] = \frac{c}{15}$. The Monte Carlo studies are repeated for 55 times and the values of N and the associated standard deviations corresponding to selected ε and c are shown in the next table for h = $n^{-1/4}$, for h = $n^{-1/5}$ and for h = $n^{-1/6}$, where h is used to define (2.9).

Table 1

Upper entries are the Lists of values of the smallest N such that $\frac{|r_m(\tilde{g},\delta_m^\star)-r(\tilde{g})|}{r(\tilde{g})}$

 $N-4 \le m \le N$, lower entries are the list of associated standard deviations for each corresponding case where the density of the priors is $g_i(\theta)=\frac{2\theta}{c^2}\,I_{(0,c)}(\theta)$ for i=0,1.

	.05	48	71	29 .0488	146 .0884	352 .1325
$h = n^{-1/6}$.10	11.0143	11 .0216	22 .0477	84 .1031	123 .1532
	.15	10 .0133	10 .0225	14 .0571	29 .1066	104 .1637
	.20	8 .0137	9.0318	8 .0495	26 .1199	70 1. 7071. 6
	. 25	7.0132	8 .0198	7	25 .0895	61
	ω	1/3	1/2		2	က
h = n ^{-1/5}	.05	23 .0128	33 .0258	26 .0490	I	I
	. 10	14 .0136	16 .0204	15 .0378	159 .1035	154 .1569
	.15	11 .0142	10 .0210	11 .0458	22 .1366	125 .1991
ב	. 20	10 .0156	8 .0192	10.0531	21 .1196	124 .1622
	.25	8 .0133	7.0210	8 .0537	19 .1230	58 .1657
	ω/	1/3	1/2	_	2	m
	.05	15 .0126	30 .0204	38 .0483	270 .1072	1
$h = n^{-1/4}$.10	14 .0153	14 .0233	23 .0465	224 .1144	1
	.15	11 .0133	11.0178	14 .0568	117	322 .1596
	. 20	10 .0136	8 10 11 .0210 .0120	11.0470	46 .1262	183 .1988
	.25	8 10 11 14 .0129 .0136 .0133 .0153	8 .0210	10 .0496	42 .1015	104 .1642
	ω/υ	1/3	1/2	- -	2	က

Note: "-" means that N > 400 (Monte Carlo study was curtailed because of limited resources)

Appendix A

For i fixed,
$$\int_{0}^{\infty} x m_{i,n}(x) dm_{0,n}(x)$$

$$= \frac{1}{n^{2}} \frac{1}{h^{2}} \int_{j=1}^{n} \sum_{\ell=1}^{n} \int_{a}^{\infty} x I_{(x,x+h)}(Y_{ij}) dI_{[Y_{0\ell}-h,Y_{0\ell})}(x)$$

$$= \frac{1}{n^{2}} \frac{1}{h^{2}} \sum_{j=1}^{n} \sum_{\ell=1}^{n} (U_{j\ell} - V_{j\ell}), \text{ where}$$

$$U_{j\ell} = (Y_{0\ell}-h)I_{(a,\infty)}(Y_{0\ell}-h)I_{(Y_{0\ell}-h,Y_{0\ell})}(Y_{ij})$$

$$V_{j\ell} = Y_{0\ell}I_{(a,\infty)}(Y_{0\ell})I_{(Y_{0\ell},Y_{0\ell}+h)}(Y_{ij}).$$
Since $Y_{0\ell} \sim M_{0}(x)$ and $Y_{ij} \sim M_{i}(x)$ for $1 \leq j$, $\ell \leq n$, so
$$E \int_{a}^{\infty} x m_{i,n}(x) dm_{0,n}(x) = \frac{1}{h^{2}} E[U_{11} - V_{11}]$$

$$= \int_{0}^{\infty} x \frac{1}{h} \int_{0}^{x+h} dM_{i}(y) \frac{1}{h} [m_{0}(x+h) - m_{0}(x)] dx.$$

Now, by (2.2) $m_{i}(x)$ is decreasing in x, hence

$$\frac{1}{h} \int_{X}^{x+h} dM_{i}(y) \le m_{i}(x) \le \frac{1}{x} [1-G_{i}(x)]. \tag{A.1}$$

Then

$$\left[x \cdot \frac{1}{h} \int_{x}^{x+h} dM_{i}(y) \frac{1}{h} \left[m_{0}(x+h) - m_{0}(x)\right]\right]$$

$$\leq [1-G_1(x)] \frac{1}{h} \int_{x}^{x+h} \frac{1}{\theta} dG_0(\theta) \leq \frac{1}{x} g_0(x+\delta h), \text{ for some } \delta \in [0,1].$$

The last term is integrable over (a,∞) , then by Lebesgue Dominated Convergence Theorem (LDCT),

$$E_{a}^{\infty} \times m_{i,n}(x) dm_{0,n}(x) \rightarrow \int_{a}^{\infty} \times m_{i}(x) m_{0}'(x) dx$$

$$= -\int_{a}^{\infty} m_{i}(x) dG_{0}(x) \text{ in (p) if } h \rightarrow 0 \text{ as } n \rightarrow \infty. \tag{A.2}$$

Now,
$$\operatorname{Var} \int_{a}^{\infty} x m_{1,n}(x) dm_{0,n}(x) = \operatorname{Var} \frac{1}{n^2} \frac{1}{h^2} \sum_{j,\ell} (U_{j\ell} - V_{j\ell})$$

$$= \frac{1}{n^2 h^4} \cdot \operatorname{Var}(U_{11} - V_{11}) + \frac{2(n-1)}{n^2 h^4} \operatorname{Cov}(U_{11} - V_{11}, U_{12} - V_{12}). \tag{A.3}$$

But $Var(U_{11}-V_{11}) \le E[(U_{11}-V_{11})^2] = E(U_{11}^2) + E(V_{11}^2)$ [because $U_{11}V_{11} = 0$], and $\frac{1}{h} E(U_{11}^2)$

$$= \int_{a}^{\infty} x^{2} \cdot \frac{1}{h} \int_{x}^{x+h} dM_{1}(y) dM_{0}(x+h)$$

$$\leq \int_{a}^{\infty} x^{2} \cdot \frac{1}{x} (1-G_{1}(x)) dM_{0}(x+h) \leq \int_{a}^{\infty} x dM_{0}(x+h)$$

$$\leq E^{M_{0}}[X] = E^{G_{0}}[E[X|\Theta_{0}]] = \frac{1}{2} E^{G_{0}}[\Theta_{0}] < \infty,$$

$$\text{hence } \frac{1}{h} Var(U_{11}-V_{11}) \leq E^{G_{0}}[\Theta_{0}] \text{ for all } h > 0.$$

$$(A.4)$$

Meanwhile, $Cov(U_{11}-V_{11}, U_{12}-V_{12}) = Cov(U_{11}, U_{12}) + Cov(V_{11}, V_{12}) - Cov(U_{11}, V_{12}) - Cov(V_{11}, U_{12}),$ and $\left|\frac{1}{h^2}Cov(U_{11}, U_{12})\right| \le \frac{1}{h^2}\left[E(U_{11}U_{12}) + E(U_{11})E(U_{12})\right]$ because $U_{j,\ell} > 0$ for all $1 \le j$, $\ell \le n$.

Now,
$$\frac{1}{h^2} E(U_{11}U_{12}) = \frac{1}{h^2} \int_0^{\infty} \left[\int_{(a,\infty) \cap [x-h,x)} y dM_0(y+h) \right]^2 dM_i(x)$$

$$= \frac{1}{h^2} \int_{a+h}^{\infty} \left[\int_{x-h}^{x} y dM_0(y+h) \right]^2 dM_i(x) + \frac{1}{h^2} \int_a^{a+h} \left[\int_a^{x} y dM_0(y+h) \right]^2 dM_i(x).$$

$$\int_{a}^{x} y dM_{0}(y+h) \leq \int_{a}^{a+h} y dM_{0}(y+h) \leq h \quad \text{for } a < x < a+h,$$

we get
$$\frac{1}{h^2} E(U_{11}U_{12}) \le 1-M_i(a+h) + M_i(a+h) - M_i(a) = 1-M_i(a)$$
. The same argument shows that $\frac{1}{h} E(U_{11}) \le 1-M_i(a)$

$$\frac{1}{h} E(V_{11}) \leq 1-M_{1}(a),$$

hence $\left|\frac{1}{h^2}\operatorname{Cov}(U_{11},U_{12})\right| \leq 2[1-M_1(a)]$. This implies that

$$\frac{1}{h^2} |Cov(U_{11}-V_{11},U_{12}-V_{12})| \le 8 [1-M_1(a)] \text{ for any } h > 0.$$
 (A.5)

By (A.3), (A.4) and (A.5)

Var
$$\int_{a} xm_{i,n}(x)dm_{0,n}(x) \to 0$$
 if $nh^2 \to 0$ and $h \to 0$. (A.6)

Now, (A.2) and (A.6) implies that

$$\int_{a}^{\infty} xm_{i,n}(x)dm_{0,n}(x) \rightarrow -\int_{a}^{\infty} m_{i}(x)dG_{0}(x) \text{ in (p)}.$$

This finishes the proof.

Appendix B

Proof of Theorem 4.1.

First,
$$E \int_{X_{1}}^{\alpha_{1}} \frac{x}{p_{1}(x)} dm_{1,n}(x) = \int_{X_{1}}^{\alpha_{1}} \frac{x}{p_{1}(x)} \frac{1}{h} [m_{1}(x+h)-m_{1}(x)] dx$$

$$\rightarrow \int_{X_{1}}^{\alpha_{1}} \frac{x}{p_{1}(x)} dm_{1,n}(x) \text{ by LDCT.}$$

Now, $Var \int_{X_{1}}^{\alpha_{1}} \frac{x}{p_{1}(x)} dm_{1,n}(x) = Var[\frac{1}{nh} \int_{j=1}^{n} (U_{j}-V_{j})],$

where $U_{j} = \frac{Y_{1,j}-h}{p_{1}(Y_{1,j}-h)} I_{[X_{1},\alpha_{1}]}(Y_{1,j}-h), \text{ and}$

$$V_{j} = \frac{Y_{1,j}-h}{p_{1}(Y_{1,j})} I_{[X_{1},\alpha_{1}]}(Y_{1,j}).$$

Hence, $Var \int_{X_{1}}^{\alpha_{1}} \frac{x}{p_{1}(x)} dm_{1,n}(x) = \frac{1}{nh^{2}} Var(U_{1}-V_{1})$

$$\leq \frac{1}{nh^{2}} E[(U_{1}-V_{1})^{2}] = \frac{1}{n} \int_{X_{1}+h}^{\alpha_{1}} [\frac{1}{h} (\frac{x}{p_{1}(x)} - \frac{x-h}{p_{1}(x-h)})]^{2} dM_{1}(x)$$

$$+ \frac{1}{nh} \int_{\alpha_{1}}^{\alpha_{1}+h} \frac{1}{h} [\frac{x-h}{p_{1}(x-h)}]^{2} dM_{1}(x) + \frac{1}{nh} \int_{X_{1}}^{x} \frac{1}{h} \frac{x^{2}}{p_{1}^{2}(x)} dM_{1}(x)$$

$$\leq \frac{1}{n} \sum_{x \in [X_{1},\alpha_{1}]}^{max} [\frac{d}{dx} \frac{x}{p_{1}(x)}]^{2} + \frac{2}{nh} \sum_{x \in [X_{1},\alpha_{1}]}^{max} [\frac{x}{p_{1}(x)}]^{2}$$

$$\Rightarrow 0 \quad \text{if } nh \rightarrow \infty.$$

We see that

$$\int\limits_{X_{\mathbf{i}}}^{\alpha_{\mathbf{i}}} \frac{x}{p_{\mathbf{i}}(x)} dm_{\mathbf{i},n}(x) \rightarrow \int\limits_{X_{\mathbf{i}}}^{\alpha_{\mathbf{i}}} \frac{x}{p_{\mathbf{i}}(x)} dm_{\mathbf{i}}(x) \quad \text{in (p).}$$

Similarly
$$\int_{x_{i}}^{\alpha_{i}} \frac{xp_{i}^{!}(x)}{p_{i}^{2}(x)} m_{i,n}(x) dx \rightarrow \int_{x_{i}}^{\alpha_{i}} \frac{xp_{i}^{!}(x)}{p_{i}^{2}(x)} m_{i}(x) dx \quad \text{in (p)}.$$
Since
$$\int_{x_{i}}^{\alpha_{i}} xc_{i}(x) dG_{i}(x) = \int_{x_{i}}^{\alpha_{i}} -x \frac{d}{dx} \left[\frac{m_{i}(x)}{p_{i}(x)} \right]$$

$$= \int_{x_{i}}^{\alpha_{i}} \frac{xp_{i}^{!}(x)}{p_{i}^{2}(x)} m_{i}(x) dx - \int_{x_{i}}^{\alpha_{i}} \frac{x}{p_{i}(x)} dm_{i}(x),$$

the proof is completed.

Acknowledgement

We would like to thank the referee for some helpful suggestions.

Bibliography

- Barr, D. R., and Rizvi, M. H. (1966). Ranking and selection problems of uniform distributions. Trabajos Estadist., 17, 15-31.
- Deely, J. J. (1965). Multiple Decision Procedures from an Empirical Bayes Approach. Ph.D. Thesis (Mimeo. Ser. No. 45), Dept. of Statist., Purdue Univ., West Lafayette, Indiana 47907.
- Fox, R. J. (1978). Solution to empirical Bayes squared error loss estimation problems. Ann. Statist., 6, 846-854.
- Gupta, S. S., and Sobel, M. (1958). On selecting a subset which contains all populations better than a control, Ann. Math. Statist., 29, 235-244.
- Gupta, S. S. (1963). On a selection and ranking procedure for gamma populations. Ann. Inst. Statist. Math., 14, 199-216.
- Gupta, S. S. (1965). On some multiple decision (selecting and ranking) rules. Technometrics, 7, 225-245.
- Van Houwelingen, J. C. (1976). Montone empirical Bayes tests. Ann. Statist., 4, 981-989.
- Hwang, W. T. (1975). Bayes approach to a problem of partitioning k normal populations. Bull. Inst. Math. Acad. Sinica, 3, 87-97.
- McDonald, G. C. (1974). The distribution of a variate based on independent ranges from a uniform population. Tech. Report GMR-1775, General Motors Research Laboratories, Warren, Michigan.
- Meeden, G. (1972). Some admissible empirical Bayes procedures. <u>Ann. Math.</u> Statist., 43, 96-101.
- Parzen, E. (1962). On estimation of a probability density function and model. Ann. Math. Statist., 33, 1065-1076.
- Robbins, H. (1955). An empirical Bayes approach to statistics. Proc. 3rd Berkeley Symp. Math. Prob. University of California Press, 155-163.
- Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist., 35, 1-19.
- Van Ryzin, J. (1970). Empirical Bayes procedures for multiple decision problems. Tech. Report No. 249, Dept. of Statist., Univ. of Wisconsin, Madison.
- Van Ryzin, J., and Susarla, V. (1977). On the empirical Bayes approach to multiple decision problems. Ann. Statist., 5, 172-181.
- Singh, A. K. (1977). On slippage tests and multiple decision (selection and ranking) procedures. Ph.D. Thesis. Dept. of Statist., Purdue Univ., West Lafayette, Indiana 47907.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

2. GOVT ACCESSION NO	A RECIPIENT'S CATALOG NUMBER				
Mimeograph Series #81-5					
4. TITLE (and Subsisse) Empirical Bayes Rules for Selecting Good	5. TYPE OF REPORT & PERIOD COVERED Technical				
Populations					
	6. PERFORMING ORG. REPORT NUMBER Mimeo. Series #81-5				
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)				
Shanti S. Gupta and Ping Hsiao	ONR N00014-75-C-0455				
9. PERFORMING ORGANIZATION NAME AND ADDRESS Purdue University	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Department of Statistics	ANEX & WORK BALL NUMBERS				
West Lafayette, IN 47907					
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
Office of Naval Research	March 1981				
Washington, DC	13. NUMBER OF PAGES				
	21				
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)				
	Unclassified				
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)	L				
17. DISTRIBUTION ST. 4ENT (of the abstract entered in Block 20, if different fro.	m Report)				
•					
18. SUPPLEMENTARY A TES					
	•				
10 VEV 110 DD2 (2					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
Asymptotically optimal, empirical Bayes, truncation properties, Monte Carlo study.	parameter, rate of				
20 ABSTRACT (C					
A problem of selecting populations better than a When the populations are uniformly distributed, empir for a linear loss function for both the known control control parameter cases. When the priors are assumed empirical Bayes rules for selecting good populations with truncation parameters (i.e. the form of the pdf $p_i(x)c_i^{(\theta)}I_{(0,\theta)}(x)$). Monte Carlo studies are carried	rical Bayes rules are derived parameter and the unknown to have bounded supports, are derived for distributions is f(x 0) =				
(0,0)	and the same of th				

READ INSTRUCTIONS BEFORE COMPLETING FORM

			-							
minimum sa given ε-va	mple sizes lues.	needed	to	make	the	relative	errors	less	than	ε for
-										
								-		
									-	
	`					•				
					,					
							•			
		٠								
										•
			•				٠.			
	4									
										•
										•