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n‘‘n n

8, <x<1-8

where Fn(x) denotes the empirical distribution function of the variables
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1. INTRODUCTION. Let X

1° X2,... be a sequence of i.i.d. random
variables, each uniformly distributed on the interval (0,1). Denote
by Fn(x) the empirical distribution function of the variables

Xy X X Let Wn(x), 0 < x <1 be a weight function (which

'I, 23---
may depend on n) and consider the random variables

n°

(1.1) Z = 05221 |Fn(x) - xlwn(x).

The 1im sup behaviour of Zn has been studied intensively in the
Titerature, while much 1less is known about the Tim inf of Zn‘

Mogulskii [11] and Kuelbs [10] have shown that

(1.2) Tim inf (n loglog n)]/2 sup an(x) - x| =7//8  a.s.
N-»eo 0<x<1
and the author [3] has proved that _
. |F_(x)-x]
(1.3) Tim inf (n/loglog n)]/2 sup ———IL———ﬁEﬂf = /2 a.s.
N 0<x<1 (x(1-x))
In this note we investigate the variables
[F (x)-x]
(1.4) 2T (s) =012 sup n

1/2
§xx<1-8 - (x(1-x)) |
and show that

tog 178, 1,

(1.5) a. = (log (1 + TogTog 1

n



is a 1im inf sequence for (1.4), where 66 = max (Gn, 1/n). Note that

']/2, the

for §, =8> 0 (s is a constant), a, - (log 1/6)]/2(109109 n)
same norming factor (but with different constants) as in (1.2), while

for 8, = 0, we have a, - (1oglog n)]/2 as in (1.3). The norming factor

given by (1.5) is a continuous link between these two extremal cases.
This fact and the estimations given in Section 2 resemble those given
in [4] by Révész and the author. In many respects the proofs of the
present paper follow the same Tines as given in [4].

In [8] Jaeschke investigates the 1imiting distributien of Tn(sn)
suitably normalized and shows that it is the double exponential extreme
value distribution. This proof is based on the strong approximation of

Komlos, Major and Tusnady [9], on the equation

(1.6) P( sup —LKOMIL_uy = p( sup ()] < u),

5iXi'|-(S (nX(]-X))]/Z O<t<'|09 ‘]-—6
—— §

‘where K(x,n) is a Kiefer process, U(t) is an Ornstein-Uhlenbeck process,
and on the results of Darling and Erdos [6] concerning the limiting
distribution of sup |U(t)!, when T » «. In our proof we use also

0<t<T
these results.

Our aim is to prove the following result:

THEOREM. Let 8 >0, n=1, 2,... be a non-increasing sequence such

that n(log 1/5n)'] is non-decreasing. Then

o 1/2 -
(1.7) Tim inf n Tn(dn)/an = C a.s.



where Tn(an) js defined by (1.4), a is defined by (1.5) and ¢ is a finite

positive number. If, furthermore Tim(Toglog ]/an)/1oglog1og n= o, 0or

8, = 0, then ¢ = V2.

REMARK. We can not give the exact value of c in general. éAs mentioned
earlier, our proof will be based on the equation (1.6) and to determine the
exact value of ¢ we would need an asymptotic value for the probability
P( sup |u(t)| < u), when this is small. In Section 2 upper and lower

0<t<T
estimations will be given to the probability above, but the upper and

Tower bounds are not close enough to yield the exact value of ¢ in general.

2. UPPER AND LOWER BOUNDS FOR P( sup ]U(t)l g_u).
O<t<T

Let U(t) be an Ornstein-Uhlenbeck process, i.e. stationary Gaussian
-|t]

process with mean zero and covariance function E(U(0)U(t)) = e

LEMMA 1. There exist positive finite constants Cq and Cy such that

for all u >0 and T > 0 we have

(2.1) - — a Z ]% < Tog P(sup_ [U(t)] <u) < - Z(Tz' ;) -
2(exp(u /c2)-1 0<t<T exp(u /c])-1

The upper-bound in (2.1) is valid with ¢y = 72 (1-¢) for T > Ty(e) and

u > ug(e).

PROOF. First we prove the upper part of the inequality (2.1). Assume
that T » 1.



P( sup |U(t)] <u) =
O<t<T

[ pCsup [U(E)] < wU(T-1) = 2) wlz)dz =

-u O<t<T
= ? P( sup |U(t)|] < u/U(T-1) = z) P( sup [U(t)] < u/0(T-1) = z) ¢(z)dz
-u 0<t<T-1 T-1<t<T )

From stationarity, P( sup [U(t)] < u/U(T-1) = z) = P( sup |U(t)]<u/U(0) = z)
T-T<t<T O<t<] .

and this conditional probability has its maximum at z = 0 (see Anderson [1]).
Hence

P( sup |U(t)| <u) <
O<t<T
u
< P(sup JU(t)] <u/u(0) = 0) [ P{ sup {U(t)]<u/U(T-1) = z) ¢(z) dz
O<t<1 -u  O<t<T-1

= P( sup |U(t)] <u/U(0) = 0) P( sup |U(t)] < u).
O<t<l1 0<t<T-1

By repeating this procedure several times we obtain the inequality

P(sup_ [U(t)] <u) <

0<t<T
(2.2) < (PCsup |U(t)] < wu(o) = ot e sup U] < u)
0<t<l [Tl<t<T
(P( sup_ [U(t)] < u/u(0) = 0))""!
O<t<l
If W(:) is a Wiener process starting from 0, then U(t) = et w(eZt) is an

Ornstein-Uhlenbeck process, and we can obtain

P( sup |U(t)| < u/U(0) = 0) <
0<t<l

< P(IW(x)| <u %, 1T <x 5_e2/w(1) = 0) <

P( sup |W(s)| < uv2)
O<s<l
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From the distribution of sup |[W(s)| (see e.g. Feller [7]) the
0<s<] '

following estimations are straightforward:

(2.3) P(sup [W(s)| < u/?) < & exp(-n°/16u%))

0<s<] "
and =
(2.4) P( sup [W(s)| < u/2) < 26 (u/2) - 1.

0<s<1

both‘inequalities being valid for all u > 0. It is then easy to find a

constant c1 such that

4 o 2 ;
(2.5) log — - 5 < - 5% for u < 1
T 16u exp(u /c])—l
and
(2.6) log(20 (u/2) - 1) < - 2 foru > 1,

exp(u2/c$)-1

establishing the upper part of (2.1). (Note that cq = 1/3 works.)

i : 8 + 4e + 82
Now let € > 0 be small and put g = Tog - In [3] we have
de + ¢
shown that T
| ]
(2.7) P(sup_ [U(t)] < u) < (a(u(1 +£))) °
O<t<T
If T > 244, then Eg;] 3_%&%, thus
T-1 >
Tog P( sup |U(t)| < u) < 75— log o(u(l + §J)
O<t<T %0 -

Furthermore, if u - «, then



2
u EN\2
Tog s(u(1 +£)) - - (1 - o(u(l + £))) - - ——]——e—?_(H?)
2 2 u(1+5) /2
therefore for large enough u,
1 € 2 -
(2.8) 5= Tog o(u(l + £)) < - 5
aq ‘ u
exp( -2)-1
2(1-¢)
completing the upper part estimation of LEMMA 1.
Our next step is to obtain the lower estimation in (2.1).
P(.sup |U(t)| <u) >P( sup lu(t)| < u, max _ |U(i)] 5_%
0<t<T 0<t<[T]+1 1<i<[T]+
/2 y
= { P( sup lU(t)] < u, max lu(i)| < % /UT]) = z) o(z2)
-u/2  0<t<[T] 1<i<[T]
u
P(_ sup (t)| < u, JUITIHD)] < % /U(LT]) = z)dz.
[T1<t<[TI+

By stationarity,

P( sup [U(t)] < u, [U(LT] + 1)

[T1<t<[T]+1 7 /U([T]) =2) =

| A

- p(sup JU(E)] < us U] < 5 /0(0) = 2)
0<t<]

and using again the fact that U(t) = e'tw(eZt) is an Ornstein-Uhlenbeck

process if W(-) is a Wiener process,

P(sup [U(E)] < u, [U(T)] < 5 /U0) = 2) >
O<t<l

> P(sup  |W(s)| < u/M(1) = z) >
1§§§p2

> P( sup [W(s)| < u/2)
05;592-1

for -u/2 < z < u/2. .

)



By repeating this procedure several times, we finally get

(2.9) P(sup |U(t)] <u) > (P( sup  u(s)]| < w2

O<t<T 05§5p2—1

The following inequalities are valid for all u:

2,2 22
(2.10) P( sup  [H(s)] < u/2) > Hexp(- TLE ML Loup(- g“—;%ﬂ))
u

0§§§¢2-1 2u

(2.11) P( sup  [W(s)| < u/2) > 4e(——75) - 3.

2 (1727
0<s<e”-1 2(e"-1)

Using (2.10) for u < 5 and (2.11) for u > 5, and takfng (2.9) into
account, it is not difficult to find a constant c, that satisfies the
lower part of the inequality (2.1).

The proof of Lemma 1 is complete.

3. LOWER LIMITS FOR STANDARDIZED KIEFER PROCESS

A. Kiefer process K(x, y) (0 < x <1, 0 <y < =) is defined as a
two-parameter Gaussian process with mean zero and covariance
E(K(x], y1)K(x2, y2)) = (x] A Xy - x]xz) (y1 A yz). Note that for
integral n, K(x,n) is equal to the sum of n independent Brownian

bridges, hence n']/ZK(x,n) is a Brownjan bridge itself. Define

(3.1) W25y = sup  LKGxn)
dnfxgj-an (nx(1-x))

Let &, be a non-increasing sequence such that 1/n g_éh < 1/2 and n]/2 a

is non-decreasing, where a, is defined by (1.5). Assume furthermore

that n(log 1/6n)'] is non-decreasing.



LEMMA 2. Let Cy and Co be the same constants as in LEMMA 1.

If 1im §_ = 0, then
nse D
.. 1/2 -,
(3.2) ¢ < 1im inf n T (Gn)/an 2 C a.s.
N>
If lim 6 = 6 > 0, then -
w1 -26\1/2 oL 12 o,
(3.3) _75(109 1/6) f']1ﬂL;nf ntt T (6n)/an < ¢, a.s.

PROOF. We show first the lower estimation in (3.2), i.e.

(3.4) ¢;< Tim inf n'/2

n—«

Tﬁ (6n)/an a.s.

Let n = exp(k/(]ogvk)3) and-define the events Bk by

(3.5) B, = { min  (nT!(s ) < (cy - s)nl/z a3
Ne_13N<ny k-1 ' k

We show that = P(Bk) < » and hence by Borel-Cantelli lemma we have
k

P(B, T.0.) = 0 for all ¢ > 0, which in turn implies (3.4). We use

k
the following inequality of Mogulskii [11]: Let Sn’ n=1, 2,... be
partial sums of i.i.d. Banach space-valued random variables; v > 0,

y >0, vy = min P(llsr-nl[ <y). Then
m<n<r

(3.6) PCmin |]S |1 <v) <2 P(IIS | <v+y).
m<n<r Y
We apply this inequality with m = Meqe ¥ = Mo Sn = (x(1 - x))']/2 K(x,n),
1/2

[[S |[[=nT" (6 Yo v=1(c -em’'“a ,

n n g 1 -k Ny
y=2((n, - n,_;) loglog (1/s ))1/2

k = Mk-1/ 109 n :

k-1



Here
K(x,nk-n)
Y=Yy T min P( sup — 735l <
ne_1Sn<n, 6nk_]§X§J-5 (x(1-x))
k-1
12,
< 2((ny - m ) Toglog (1/5, ~ ))"°7) =
K(x, n -n, )
= P(6 sup 1os I((_ k) lZ'l] ))1/2I hS
<x<1- n_-n x(1-x
n == K"k-1
< 2(loglog (176, N'/?) = )
k-1
= P( sup 1'(Snk_] [U(t)] < 2(Toglog /8, )]/2),
0zt<log ——— k-1

k-1
where in the last step we used (1.6). If follows from Darling and Erdos [6]
that Y 1 as k - «» and hence there exists Yo > 0 such that for all k large

enough, Y 2 Yo It can be seen furthermore that for large k,

2((nk - nk_]) loglog 1/<$-nk_])]/2 < enl/z a

Tk
and. hence,
1 1/2
P(B,) < —P(n, T' (s ) <cqyn a_ )
k g k 'ne "ty g 1 7k Ny
= ;L-P( sup ]'snk_1 [U(t)] < ¢y a )
Yo 0<t<log 5 k

On applying LEMMA 1, we can see that
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1-8 ' T
Tog S———k'—]— -1
Ng-1
109(Y0 P(Bk)) <- 2 Toglog nk ( Tog 175 ) <
' n
k

(3.7) Tog(log nk)'?’/2

for large k, showing that © P (Bk) < «, Hence the lower estimétfon in (3.2)
k

follows. In the case when 1im S, = s > 0, then without Toss of generality
 and

we may assume that an =8, n=1,2,... and apply the same procedure as above.

In this case Y T Yg > 0 for k > 1, and we have the inequality

(3.8) P(B,) < o= P( sup ue)] < cj e )
Y0  0<t<log 1-8 k
8
where Cq in (3.5) should be replaced by ci = 5%1(7%32$7§J]/2' Instead of

‘LEMMA 1, use the estimation

P sup_ [U(t)] <u) = P(sup el < uy <

0<t<T 15§§p2T s
2,.2T
4 -
P( sup _ u(s)] < ue') < —exp(- u‘;—7T—]—)),
1_<_sie2T 8u-e
and the asymptotic relation
a, - (109 1/6)]/2 (1oglog n)'1/2, n > o,

This proves = P(Bk) < » in this case too, i.e. the lower estimation in
k
(3.3) is established.

k

To show the upper part of (3.2), let N = k™. We have the following

inequality:
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[K(x,n, ) | -
sup 72 =
S, fxfj—an (x(1-x))
k k
[K(x,nk-nk_1)| |K(x,nk_]|
< sup 77 + sup 77
§  <x<1-8 (x(1-x)) §  <x<1-§_  (x(1-x))

Define the events Ck by

, [K(x,n,-n,_ ;)|
(3.9) ¢, =1 s N n/Za 3.
§_ <x<1-8 (x(1-x)) k
k Nk
Then by (2.1), )
P(Ck) = P( sup - lu(t) | <G ank) >
n
O<t<log —5 k
Ik
]-Gnk
log- + 1
> exp(- %— k loglog nk)
' 1
log —
%
k
.

> exp(- loglog nk) = K Tog X °

i.e. x P(Ck) = o, Since the events Ck are independent, Borel-Cantelli
k

Temma implies that

(3.10) P(Ck i.o.) = 1.

On the other hand,
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[K(x,n, 1) ] 1/2
P(  sup -————Ji%7§-i € n2/ n
§  <x<1-8 (x(1-x))" k
T ™

nk 1/2
= P( sup tu(t)| z_e(n“ ) a ) < -
1-6n k-1 k
O<t<log k
Mk
2
n, a
y K nk

< (Tog(1/s_ ) + 1) ™€
Nk Mk-1 .

with some constant c¢'. This is a term of a convergent sum, because

- 2 -1 _
log 1/6nk < log ny = k lTog k, nk/nk_1.3 k and ankz_(Z Toglog nk) =
=(2 log(k log k))_] for large k. Hence

- - !K(Xan - )I
(3.11) Tim nkv2 an] sup ——————Ji;%TE = a.s
K-> k 8 gxfj—dn (x(1-x))

k k

which together with (3.10) yields the upper estimations in both (3.2)
and (3.3).

In certain cases we can give the exact value of the 1im inf.

LEMMA 3. Let 8, satisfy the conditions of LEMMA 2 and moreover

(3.12) Tim Togloglog n _ 0.
n+» loglog 1/6n

Then

L 1/2 1, _
Tim inf n Tn(sn)/an = /2 a.s.

N0
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PROOF. LEMMA 1 and LEMMA 2 imply
.. 1/2 —,
Tim inf n Tn(Gn)/an > V2 a.s.

To prove the < part, it follows from Darling and Erdos [6], that

sup  |U(t)]
0<t<T 1/2 "P> l/?, as T - ®
(log T)

where B means convergence in probability. This is equivalent to

n]/le'(a.)

n‘n’! -
(1oglog'1/6n)1/2

';g V2, as n - «,

provided that 1im sn = 0. The condition (3.12) implies that

N-—> .
a; - (Toglog 1/6]“)1/2 and also 1im §_ = 0, therefore
N0

1/2 +4
n T (5.)
n_n R /2, asn->o

%

which implies the < part in (3.13). The proof of LEMMA 3 is complete.

4. PROOF OF THE THEOREM

Qur theorem is in fact a consequence of LEMMA 2, LEMMA 3 and the
strong invariance theorem of Komlds, Major and Tusnady [9] (see also
Csorgd and Révész [5]). On a suitably rich probability space one can

construct a Kiefer process K(+,+) such that

(4.1) sup  |n(F_(x) - x) - K(x,n)]| = 0(1og2 n) a.s.

0<x<1 n
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This theorem implies also

F (x)-x 2 .
(4.2) sup ln1/2 77 - K(x,n) 77 O(lgg—g%ﬁg) a.s.
angxfj—sn (x(1-x)) (nx(1-x)) (nan)
If
2 =
(4.3) Tim JSELW{%?—— = 0,
N0 (nan) a,

Then the statement of our theorem follows from the zero-one law, LEMMA 2,

LEMMA 3 and (4.2). This is the case e.g. if & z_n'](log n)4 for n > ng.

In the case when there is a subsequence'{nk}, k=1, 2,... such that
§ < n'1(1og n )4, we use the inequality
Ny k k
(4.4) T (60 ) < T (5.) < 7.(0),
where 66'= max(an, n'] 1094 n). Then on one hand.
- 21 () /27 (sh)
(4.5) Tim inf < > 1im inf 3 > ¢ a.s.

N> n N~ n
On the other hand, (see Jaeschke [8])
1/2

Ny T (0)
- T p
(4.6) 7 V2 as k » o
(Toglog nk)
and hence
nl/z T, (0)
(4.7) lim inf k 77 < V2 a.s.
k==  (loglog nk) -

)]/2

Since a - (Toglog Ny , we have also

k
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(4.8) Tim inf < 1im inf
N0 n N->o n k

This completes the proof of the THEOREM.

REMARKS. 1. By comparing the present theorem with Theqréﬁ'3.1 in

[2], we have the following results: if

( ndn Toglog 1/5n ( )
4.9) 1im =———=o and 1im m—————=¢, (0 <c <1
-seo loglog n flovco Toglog n -
then . =
/27 (5,) 1/2
(4.10) Tim sup 1772 = (2(c + 1)) a.s
ns  (loglog n)
and
. n1/2 Tn(Sn) 1/2
(4.11) 1im inf 177 = (2¢) a.s.

n+  (loglog n)

2. It would be interesting to investigate further the 1im inf of

the more general quantities

(4.12) Z, = 05351 an(x) - x]¥(x)

and

(4.13) Z5 = sup (F (x) - x) ¥(x),
N pex<d n

where ¥(x) is a weight function (which perhaps may also depend on n).
It is an open problem to determine the lower limit of z: even in the

case ¥(x) =1, 0<x < 1.



(11

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

(1]

-16-

REFERENCES

Anderson, T.W. (1955). The integral of a symmetric unimodal
function over a symmetric convex set and some probability
inequalities. Proc. Amer. Math. Soc. 6, pp. 170-176.

Csaki, E. (1977). The law of the iterated logarithm for normalized
empirical distribution function. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 38, pp. 147-167. -

Csaki, E. (1982). On the standardized empirical distribution
function. Colloquia Math. Soc. J. Bolyai, to appear.

Csaki, E. and Révész, P. (1979). How big must be the increments
of a Wiener process? Acta Math. Acad. Sci. Hung. 33, pp. 37-49.

Csorgd, M. and Révész, P. (1981). Strong approximations in
probability and statistics. Publishing House of Hung. Acad.
Sci., Budapest. :

Darling, D.A. and Erdos, P. (1956). A 1imit theorem for the
maximum of normalized sums of indepent random var1ab1es
Duke Math. J. 23, pp. 143-155.

Feller, W. (1966). An introduction to probability theory and
its applications. Vol 2. Wiley, New York.

Jaeschke, D. (1979). The asymptotic distribution of the supremum
of the standardized empirical distribution function on sub-intervals.
Ann. Statist. 7, pp. 108-115.

Kom1os, J., Major, P. and Tusnady, G. (1975). An approximation of
partial sums of independent r.v.'s and the sample df. I. /
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32, pp. 111-131.

Kuelbs, J. (1979). Rates of growth for Banach space valued
independent increment processes. Lecture Notes in Mathematics
#709, pp. 151-169. Springer Verlag, New York.

Mogufskii, A.A. (1979). On the law of the iterated logarithm
in Chung's form for functional spaces. Theory Prob. Appl. 24,
pp. 405-413.



