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1. Introduction

For a completely randomized block design with one observatiofi per
cell, we express the observable random variables Xia (i =1,...,k;

o =1,...,n) as

(1.1) Xia =ute, + Tyt Es s

]T_i=0,

HI121%

;

where u is the mean-effect, B]""’Bn are the block effects (nuisance

parameters for the fixed effects model), Tys--.sT) are the treatment effects,

and Eia are the error components. We assume that the errors within each

block are jointly normally distributed.

We assume that the quality of a-treatment is judged by the largeness of

tﬁe ri's. A 'population' s is called the best if T is the largest. In generé],
it may be cbmp]icated to derive suitable tests for appropriate hypotheses, in
which the experimenter may really be interested. We apply the subset selection
apprbach (using certain basic hypotheses) and thus obtain more appropriate infor-
mation regarding the treatments. A subset selection procedure is designed to
select a subset so as to include the best population. Selection of any

subset that contains the best is called a correct selection (CS).
Roughly speaking, any two populations that are in the same selected subset,

will be considered aé "equivalently good". If all populations are selected,
we claim that all treatments are homogeneous. In general, for achieving the
objective of the experimenter, one should establish a suitable set of basic

hypotheses. Depending on the objective one should proceed to consider different
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ways of formulating the basic hypotheses. In this paper, we discuss a
method based on subset selection rules for the purpose of making a claim
of the type: Ty = ™ > T3 + A for all i € I and j € J, where I and J form
a partition of {1,2,...,k}. The process of making such a claim will be

called hypothesis identification. This is achieved by setting up certain

basic hypotheses regarding the TiIS and using a subset selection procedure
to test these basic hypotheses. It should be pointed out that in identifying
an. appropriate hypothesis, we assume that the constant A in the c]aimris

specified by the experimenter, say, based on past experience. Associated with

the tests of the basic hypotheses using a selection rule, there are ervor
probabilities and the infimum of the probability of a correct selection for
the rule employed. These are related to the power functfon of these tests.
The sum. of the average (over the basic hypotheses tested) of the error
probabilities and one minus the infimum of the probability of a correct

selection is called the identification risk. The main theorem of the

paper discusses the derivation of an optimal selection rule in the sense of
minimizing the identification risk. For a more general theory of

multiple decisions from ranking and selection approach, one can refer to a

recent mohograph by Gupta and Huang (1981). A general survey of the entire
field is provided in Gupta and Panchapakesan (1979).

Let Y be a random observable vector with probability distribution depending
upon a parameter t'= (T],...,Tk) € 9. Consider a family of hypotheses testing

problems as follows:

(1.2) Hpt T€ 9y vs Hi:t T € Q.

k: TR o 1 <1<k,

where 9y = {t|ty =...= 1.} and @; = {e|vy; > ?;? ik, 1= 1,2,...,k. A test
of the hypotheses (1.2) will be defined to be a vector (61(¥),...,6k(¥)),

where the elements of the vector are ordinary test functions; when y is observed



we reject Hy in favor of H; with probability Gi(y), 1 <i < k. The power
function of a test (6],...,6k) is defined to be the vector (61(3),...,Bk(r)),

where 8,(z) = E 6;(Y), 1 <1 <k. Forze Q;5 B;(z) is the probability of
a correct selection P(CS) and 51(¥) is the individual selection probability of
selecting the best population - Let SY be the set of all the tests

(GT""’Gk) such that

where v is the upper bound on the error probabilities associated with the
treatment effects.

For each i, (1 < i < k), we would 1ike to have B;(z) large when 1 € 0
subject to (1.3). For t € ;5 1f we make Bi(I) large, then Bj(g) should be
small for j #i.

It should be pointed out that in the formulation and proof of the optimal

selection procedure, results from Neyman-Pearson theory are used.

2. Formulation of an Optimal Selection Procedure

Assume that

X = (X

—q o

e ty)

o =1,...,n, are independently and identically distributed random vectors

with the following distribution:

(2.1) (2002 FKN |y Fexp[- 51§-<§ - o) (x - 0)l,
g

where x' = (Xy1s..oaXpq3e.es Xps+ =+ Xgp) and 8" = (8795058, 95+ 3 PPN I E

. o= u+pg -+
0 u BOL T

io i=1,...,k; o =1,2,...,n and A is a known positive definite

-i’

kn x kn correlation matrix defined as follows:



A= (Aij)knxkn
Ay 0
0 Aq
= . : . : , where
0 0 Aq

[1 )\]
Ay = T, .
1 YT d ek

We rewrite the original model as: the general linear model as follows:

X=9+¢, €~ N0, o

Since we are interested in the difference between all pairs of Ti's, we

transform the linear model to the following: For any i, let

WhEY‘e 'E_i=(T_i-l,--.,T_ik), T--=T0-T°’J#1’

Y3 = OappoeessYaasees Yane Vi ix(k-1)n

Y1J£ - Xiz - XJg’ T#3s 1,3 =1,.005ks 2= 1,...0,
15 = A_| )_(, n = A'i g
Ady
A = Ao |
o - |

.Ail (k-1)nxkn



AipMAi
Li = Ai A A% = 0 . 0 o
'Ai]A]A%]. (k=1)nx(k=1)n,
i
| PR 0 1 Oeeveennneennn 0
0 -1 0..... 0 1 Oeeevennnnennn 0
Ao | e
il Ocerennnnn O =1 1 Oeeveverenennn 0 i-1
Oenvrennnnennn 0 1 =1 0eeinennes 0 i+
= O Y 00T T kT )xK

where each of the identity matrix in C' is (k-1)x(k-1).
The maximum Tikelihood estimator of r. is as follows:

o e R P
T = (C L c) 'C I Y

Since,

2 -
.
A, A, = (1- .



C'zi = [I...1]

"
[y
=<
=3
—_

n
= 1 [1,...,1]
Hence,
~ - 1 _] _] 1 -]
gi (C Z; c) 'c oy Xi
- n — r - [—_ _ -
221 Vi1, Yi1 =X
= l e = ¢ =
n . _ _ ?
fg / Yik K = %
| g5 Tk ! ) _ ]
- 1’ .
where X = ﬁ-j=1 Xij’ 1 <i<k.

The joint density of Yi]]""’Yik];"';Yiln""’Yikn is the following:

(vi) = (2162) %5, |F expl- -4 (y.- Ce. )57 ¢ )]
Pr N4/ = Lemo L PLo o2 Wam Crg) 72y yym Oy

where

"J (k=-1)nx(k-1)n

[«
1]



Now, we specify the 91'5 as follows (Note that this is a different
specification from that given earlier):
9 = {r|t; > max . + a0}, 1< <Kk,
J#i
and

Assume that ¢ is known. Let

4% = (Ao,...,AG)]X(k_]), i=1,...,k, A >0.
Thus
P, 1) 1, -1 -1
Py - &P 7 Ty - Cay)ny (yimCay) + ey vy
= explly 41037y - 7 4107 'C o)
o 20
- nA ] 1 ) _]
T EPITRe et et Vi) - 7 41008 Oy
Hence, we can rewrite
pA.(Zi)
=i
dl
Ry
= i

Yi1 oot Vi > d"o.

=

8

Let a selection rule § ?,...,63) be defined by

1 if p, (y5) > dpyly;)s
_'I -

0 otherwise y

such that
0 -
(2.2) ETG (Yi) =y, 1€ 20+ Then

60 maximizes



(2.3) inf P(CS|s)
Q

among all selection rules § € S(y).
Note that 6?(Z1) is also based on the maximum ]ike]ihoOd‘estfmators -

Ei of ;. Since for any ¢ € S(y),

oF implies T € 2, for some i, thus
1

19
m
91
|
nc =

i

P(CS|s) = [ 6;(y;)p (y;)dv(y,)

> min inf [ 6. (ys)p_(y;)dv(ys).
lick geg,” LT

We have

inf P(CS|s) = min inf [ &.(y;)p_(y;)dv(y.).
€ I<ick zeq, © I

For any 6 € S(y), it follows that

[ (85-69)(p, = dpg) <0

-1 -

which implies
0
[sip, >/ 6.p, .
Tgy Tay
Since Gg(xi) is nondecreasing in Y;» hence

inf P(cs[s%) = min J 6?(¥1)PA (y;)av(y;)
€8 l<i<k 2

> min [ &.(y.)p, (y:)dv(y.)
z ]i'|_<_k f i‘Lg é'l =] =1

min inf [ s.(y.)p (y:)dv(y:)
= Tei<k 5691f i IP N IOV

= inf P(CS]|s).
o€

0

We rewrite §° as follows:

1 if oy ety > dlo,

0 otherwise



. Thus, the optimal subset selection rule is as follows:

0 otherwise s
_ ) dll
where d = =T

Now, we wish to determine d and n. We make the following transformation:

Yi1
Zig = []"‘]]1x(k-1) : , and

T = Ii1+i..+11k = (k_])Ti - j;i Ty

Since the distribution of

il
~ . _peramley-To, -1
= | = (C ; c) 'C 2 Yy
Vi
is (2n02) 2K 5, | Fexpl- s (21 - t2)'23)(22-t2) ], where 1., = 12X g
14 PL= 5,2 i T Ei Rt 1T Y
Then the distribution of Z,, is
1
[2r0”(1-3)k(k-1) 1] exp[- —5—" (z,,-0)°1.
267 (1-2)k(k-1)
Hence
O _ n
Eg8;(¥4) = P(Zyy > d"0)
(2.4) s o[- 4.,
/{T-2)K(k-T)
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inf P_(cs|s%)
€0 z

w0
" 1cick Foilydey (ypdevlyy)

= min P, (Z,, > d"o)
1<i<k a7k =

=i b (kKD ey
l<i<k 4 AT-0k(K=1) — /I=-0)K(K-1)

(d"~(k=1)8)/0 7 _ px.
Y(T-A)k(k-T)

For given r, P*, k, A, -and A, we can find d" and the smallest number of

(2.5) = o[-

blocks, n, to satisfy equations (2.4) and (2.5). Note that - this n is
also the minimum sample size for the case of one observation per cell in
the completely randomized block design.

We rewrite (2.4) and (2.5) as

of- Wnlk=T) 1 _
Y{T-1)k

and

Q[- (d-A)VﬂZk-]j ] = p*,
/(T-2)k

Let Zpx and zY represent the upper percentage points corresponding to

P* and vy, respectively of the standard normal distribution. Then we have

and
(1-A)k(zp* -z,
PRIV >

where <a> is the smallest integer greater than or equal to a.

n =&
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Summarizing- the previous results, we obtain the.foltowing theorem.

Theorem: Under model (1.1) with the stated assumption on gd, an optimal

procedure for selecting a subset of the "best" or "worthwhile" treatments

based on the observed data x and satisfying the conditions (2.2)
and (2.3) 1is: Select the population wivwith.probabiTity 62(5)'

given by

0 otherwise R

where the smallest values of d and n are given by

and
2
(1-2)k(zps - ZY)

n =< (k-1)a%

Furthermore, we have established the following connection between the

selection procedure and the hypothesis identification problem as follows:
If _(J < k) are selected, we say that these populations are
J
homogeneous and make the hypothesis identification

'ﬂ'_i], 'ﬂ'_iz,-..,TT_i

Hi: ©. =...=1; > max T, + Ac.
J - 1<ac<k

%{1]",--.,1\]-}
Note that the overall identification risk connected with this problem i§
<y + (1-P¥).

Remark: It should be pointed out that for some pairs (y,P*), s0 may not select

any population. This is to be interpreted as not identifying any one of the
appropriate hypotheses.
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We consider some special cases to provide an idea as to the appropriate

identification of one of the hypotheses. For y = 0.05,1 = 0.5 and P*

0.80; then

(1) 2,

HO: T = Tos

Hi: T

>

Ty * Ao, Hé: Tp > 17 * Ao,

0.95,0.90,

In this case, for specified A-values, the smallest d and n needed for the

optimal selection rule are given in the following table.

A 0.1 0.5 1.0 2.0
d(0.95,0.90,0.80) | 0.05,0.06,0.07 | 0.25,0.32,0.33 | 0.50,0.64,0.66 |1.00,1.29,1.33
n(0.95,0.90,0.80) | 1089,858,620 44,35,25 11,9,7 3,3,2
(i1) k = 3,

Ho: T9 = 19 = 13> Hi: Ty 2 max(zyst3) + Ao,
Hé: Ty 3_max(r],T3) + Ao, H3t oty Z_max(r1,T2) + Ao,
HA: Ty = Tp 2 T3 + Ao, Hg: 112 13 > 75 * Ao,
Hé: Ty = T3> 19 * Ao.

For optimal selection rule, the minimum value of d and n are computed (for specified

values of A) and given in the following table.

A 0.1 0.5 1.0 2.0
d(0.95,0.90,0.80) { 0.05,0.06,0.07 {0.25,0.32,0.33 {0.50,0.64,0.66 |1.00,1.29,1.33
n(0.95,0.90,0.80) 817,644,465 33,26,19 9.7,5 3,2,2

(iii) k = 4,
HO: & = T, T3 = Tg» HH: T z_maX(Tz,T3,T4) + Ao,
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Hé: Ty z_maX(T],T3,T4) + Ag, Hé: T3 z_maX(T],TZ,T4) + Ao,
HA: Ty Z_maX(T],TZ,T3) + Ao, Hé: T T T 3_max(T3,T4) + Ao,
Hl —_

6: T’I - T3 i maX(Tz,T4) + AG, Hl7: T~I = T4 z_maX(Tz,T3) + AO,

é: Ty = T3 z_max(r],r4) + Ao, Hé: Tyg = Ty 3_max(T],T3) + Ao,

10° T3 T 1y 3_maX(T1,T2) + Ao, Hi1; T T Tp T T32 Ty + Ao,

Hipt 1y =1 =1y 3-T3,f.40?jﬁ Higt 19 = 13 = 14 2 79 * dos

Hi4: Tp = T3 = 1y > 77 + Ac.

For the optimal selection rule, the minimum value of d and n are computed

(for specified values of A) and given in the following table.

A 0.1 0.5 1.0 2.0
d(0.95,0.90,0.80) | 0.05,0.06,0.07 |0.25, 0.32, 0.33 0.50,0.64,0.66{1.00,1.29,1.33

n(0.95,0.90,0.80) | 726,572,413 30,23,17 8,6,5 2,2,2

Note that P* is the probability of correct selection for the associated subset
selection rule,-while theverrqr probability ¥y 1s,contrq1]ed at.5 percent level. The
identificatian risk is 0,05 + (1AP*);_le:Caﬁfe§p1afn”the cases described above as
follows: for k = 2, if the selected subset contains T only, we identify
H%, i=1,2; if it contains G and Tys W identify HO' For k = 3, if the
selected subset contains s only, we identify H%, i=1,2,3; if it contains

m and Tys Ty and T3s OF 7y and 3 only, we identify Hh, Hé or Hé, respectively.

Similar discussion applies to the case k = 4.
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. 2 . . .
Now, we discuss the case where o~ is unknown. For any i, the maximum.

likelihood - estimators of T4 and o° are:

Vi1
1 ‘] -1 "'] "] - .
g = (020 0 Yy :
Yik
and
52 - 1 ! -1 -1 e P P
6% = ooy s [E5 - Ego(etzyie) e ] Y.

ala»

We know that &% and Ei are independent and the distribution f(s) of s =

is ng(s) with p= (k-1)(n-1).

As before, we define the selection rule as follows:

T Af oy bty 3_d]3,

;{145 0) =
0 otherwise ,
or
d
- 1 - 1 =~
1 if Xi i—E:T-.Z. Xj + =1 °
0, -~ J#
@1(53 o) =

0 otherwise

Conditionally, for an observed value of 6, we can discuss the optimality
as before. However, the constant d and n can be determined without any

difficulty by (2.8) and (2.9). Since.

0

E,£ 9 (z5> 0) = v, T € 9

we get



15

d]s/ﬁ
(2.6) o[- 1 f(s)ds = v,
Y1-)k(k-T)
and
. 0
inf P(CS|p")
9!
| (dys-(k-1)a)v/n
(2.7) = [ o[- 1° (k-1)8) 1f(s)ds = P*,
V(T-2)k(k-T)
This gives
d]/ﬁTﬁ:TY
(2'8) t[" —_— (k-])(n"‘]),O] =Y
/{(T-21)k
and
d,/n(n-T)
2.9 - I ey nen), OAETY g o e
YT-2)k Y{T-1)k

where t(a; b, c) is the percentage point of the noncentral t with b degrees

of freedom and the noncentrality parameter C.
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