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ABSTRACT

The processes X and Y are said to interact, if the laws governing
the changes of either of them at time t depend on the values of the other
process at times up to t. For bivariate interacting Markov processes,
their limiting behavior is analysed by means of approximation suggested
by Fuhrmann, consisting of discretizing time, and assuming that in each
resulting time interval the processes develop independently, according
to the laws obtained by fixing the value of the other process at its
level attained at the beginning of the interval.

In this way the conditions for,a;s. extinction, escape to infinity
with positive probabi]ity, etc., are obtained (by using martingale con-
vergence theorem) for state-dependent branching processes studied by
Roi, and for bivariate processes with one cpmponent pjecewise determin-

istic . : -
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1. INTRODUCTION
QAR VAV AV VU VAV AV Vol
The aim of this paper is to study certain properties of two classes

of interacting stochastic procésses inspired by some modeling of the develop-

ment of cancer tumor in presence of an immune response.

As regards interacting processes in general, the situation is as fol-
Tows. Consider, for simplicity, a bivariate stochastic process
{X(t),¥(t), t>0}. We say that the processes X and Y interact, if the 1éws
governing the chahges of the process X(-) at time t depend (among others)
on the-values assumed by the process Y(-) at times t < t, and conversely,
the laws for'changes of Y(-) at t depend on the values assumed by the'pro—
cess X(.) at times preceding t.

The real situations which are describable in terms of such interact-
ing processes arise in a natural way, e.qg. prey—éredator interactions in
bio]odica] sciences. The resulting processes are well-known for the dif-
ficulties involved in their analysis, even in the deterministic case of

‘Volterra and Lotka type models.
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of these departments is gratefully acknowledged.

**These investigations were supported in part by the U.S.National Science
Foundation Grant No. MCS-8102733.
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There are numerous results concerning the case where only ohé of the
processes influences the other, but not conversely. In this category,
one should mention the papers of Puri [9], [10], [11], as well as the cur-
rently fashionable studies of various processes in random environments
(see e.g. Athreya and Ney [3], Athreya and Karlin (11, 21, B;rtoszyﬁski
[5], Bartoszynski and Biihler [6], and Smith and Wilkinson [14]). However,
there are very few results concerning "genuine" interaction, i.e. influ-
ence going in both directions.

In this papef.we shall assume that {X(t),Y(t)} is an interacting
‘Markov process, and explore the following idea of appfqéjmating its two-way
interaction. We choose a T > 0, and study the process {X*(t),Y*(t)} defin-
ed, roughly speéking, as follows.

Given fhe values X: = X*(kT+), YQ = Y*(kT+), in the interval
(kT,(k+1)T] the process X*(t) develops according to the laws of {X(t),Y(t)}
with Y(t) fixed at Y#, and similarly, Y*(t) develops according to the laws
obtained by keeping X(t) fixed at X |
| ‘ This idea was applied for studying‘some epidemic models, and also
other Markov processes by Fuhrmann [7], where it is shown that (as the in-
“tuition Wou]d suggest) as T becomes sﬁa]], one obtain§>ah approximation to
the original-process under study.

In case of cancer modeling, we interpret X(t) as the number of tumor
cells at t, and Y(t) as the number of antibodies at t. Generally speaking,
the influence of X on Y represents the "boost" of antjbody production by
the presence and size of the tumor. On the other hand, the influence of Y
on X is exhibited through the elimination of tumor cells by antibodies, by
making the death rate of cancer cells dependent on Y. A reasonable defer-

ministic version (pretending that X and Y are continuous) for this situation



may for example be given by
(1.1) X' = aX - bXYy,
(1.2) Y' = o+ gX - yY - &XY,
where the coefficients are some positive constants.
A possible stochastic version of this model would presup;oée the fol-
lowing transition probabilities during (t,t+h):
P{(X,Y) > (X+1,Y)} =aXh + o(h),

PL{(X,Y) - (X-1,Y-1)} = bXYh + o(h),
(1.3) '

PL(X,Y) » (X,Y+1)} = (a+gX)h + o(h),

PU(X,Y) » (X,¥Y-1)} = yYh + o(h):

For analysis of tumor growth by means of the approximation involved in
discretizing time, it appears reasonable to treat the process X(t), of
tumor growth, to be a pure death (or birth and death) process in each of
the intervals (kT,(k+1)T], with the rate(s) depending on Y(kT+). Also, at
the moment (k+1)T the cancer cells multiply according to a Galton-Watson |
branching process scheme, where each of the cells is replaced, independent-
ly, by a random number of its descendants. The number of descendants might
have the probability generating function pO(T) + p](T)s + p2(T)52, where
for small T, the term p](T) dominates. -

One o%‘our aims will be to analyse the probability of a newly originat-
ed tumor to become extinct (or alternatively, to become "established",.
which may be interpreted as the event [X(t) + «]), and thereforé perhaps X
should be treated as a discrete random variable. However, the nﬁméer of
antibodies may be reasonably assumed to be large enough to al}ow treating
it as a continuous variable.

Thus, we shall analyse two classes of processes: one in which Y(t) is

discrete, and another one, in which Y(t) is a continuous variable, the
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development of which is deterministic in (kT,(k+1)T], and dependgjﬁn the
initial values of X and Y for this interval. For lack of better name, we
$hall call such processes semi-stochastic.

"We shall begin in Section 2 with the analysis of a class of semi-
stochastic processes. Special cases are considered in some détai] in Sec-
tions 3 and 4. The main problem will be to study conditions under which

the "stochastic component" {Xk} satisfies the property
P(1im Xk=0 or ]1m'Xk=§) =1,
and also conditions implying P(lim Xk=0) = 1.
In Section 5 we present some results on intefactinﬁ“processeé, where

both components are stochastic. This analysis leads to state dependent

branching processes of the type studied by Roi [12].

We start from the analysis of a bivariate stochastic process defined
as follows.
Let
(2.1) ¢: nx R =R,
be an arbitrary deterministic function, where n-= 10;1;2,.t.} and R+ = [0,=).
Let {(Xk,Yk),k=0,1,2,...} be a Markov process on some probability
space, taking values in 9 x R+, and defined as follows.

(a) Given (Xk,Yk), the value of Yk+} equals

-

(2.2) ' Yo = @ (Xk,Yk), a.s.; o

(b) Given (Xk,Yk), the random variable Xk+] has the ﬁ}obability gen-

eréting function (pgf)

(2.3) E(X"”IXY)=(-X Y.),  Jul <1
. u k2! T IR, U <,



with

(2.4) g(O;O,Yk) =1, a.s.;

(c) X0 and Y0 are constants, a.s.

Let -

Toglg' (15x,y)/x], if x>0
O’ if X=O,

(2.5) p(x,y) =

where g' denotes (here and in the sequel) the derivative of g with respect
to the first argument. -
let 6 = {nk,k=0,1,...} be a sequence of positive intggers with N > o,

For any Yoo let

(2.6) | n(o)(e,yo) = ¥,

and for k=0,1,2,...

(2.7) M 0,y0) = ¢ nn e,y )).
Define next for k=0,1,2,...
(2.8) r(k+])(e,yo) = w(nk,w(k)(e,yo))-

We impose on ¢ the following condition.

HXPOTHESIS 1. For any ¢ and Yoo the sequence {r(k)(e,yo)} converges

to a limit r* > 0, independent of s and Yo-

The intuitive meaning of Hypothesis 1 is as follows. As Xk + o , the
process {Yk} behaves in a manner determined by {Xk}, and Hypothesis 1 states
that in this case the average number of "offspring" per Qgreﬁt (in the popu-
lation whose size is represented by Xk) tends to exp(r*).

We have the following



THEOREM 1.  Let

(2.9) k+]]X w,  a.s.

Then the sequence

X
(2.10) W, = . k=1,2,7 ..

expl JZ] v(X5Y501

converges a.s. to a random variable W.

Proof. Observe that wk is a martingale with respect to the usual

o-fields generated by (XO,YO, . Xk,Yk) Indeed,
. k+1 o
(2.11)  E(W X YpoennsXgsYg) = expl- jZ] b5 15 Y5 ) JE Xy XY
k+1
exp[- jZ] V(X570 Y5299 (13X, Y, )

k+1 :
exp[- jZ] v(X;_q5Y5_ 0 X explv (X, Y, )14, .

Since wk is a nonnegative martingale, it converges a.s. to a limit,

say W. By Fatou lemma
(2.12) E(W) < 1im inf E(W ) = E(WI) <

k>

so that-W < = , a.s. | 0

THEQREM 2. On the set where

k
(2.13) Tim ¥ oy(X; q5Y. 1) = - X
k=1 _J 1773-1

we have Xk + 0 a.s.

~ For the proof, observe that condition (2.13) implies that the denomina-
tor in (2.10) converges to 0. Thus, for wﬁ to converge, we must have

Xk—>0. . &



We have also

THEOREM 3. If for every j > 0 there exists "j such that

(2.14) lim inf P(X =0|X,=j) > 0,

Ko oo k+nj k )
then
(2.15) P(1im Xk=0 or lim Xk=«0 = 1.

Proof. We present the proof which, under somewhat more restrictive

conditions, is given in Bartoszyrski [4].

let j > 0 be fixed, and let for M > N -
M

(2.16) B = (X =j for some k with N<k<M} .
v T X ks
Then
M
(2.17) By = U B}

M
is the event "at least one visit to j after time N". The assertion (2.15)

will follow if we show that for every j > O we have P(N BN) = 0, or equi-
N

valently, lim P(BN) = 0. The latter condition will in turn follow if we
show that P(Bm) can be made arbitrarily small for a{l-M > N by choosing
sufficiently large N.

Now, we may wrfte

M-1

M: =3 =5 3 '—v
(2.18) By = {Xy=3} U G LR ELIT S FEETE o L
so that - ' -0
N Lo M : .
(2.19) P(By) = P(Xy=3) + oy P(X, =3 s Xy 7735+ -0 5 Xy #d)

M-1 M \c
= P(XM=J) + kZN P((Bk+]) |Xk=j)P(Xk=J)-



For the case when § P(Xk=j) < o , we obtain
k

M 00
M . .
2.20 P(B,) < P(X, =j) < P(X, =
( ) N _kzN k‘] _kZN k‘])

which tends to 0 as N » o .
Suppose now that

(2.21) , ) P(Xk=j) = w,
k
From (2.19), after letting M + = in the summands, it follows that

M-1
(2.22) 1> P(BY) > P(X,=3) + L P I IP(X ).

Consequently, as M - » , we have
(2.23) kZN P(Byyq X =3)P(X,=i) < = .

In view of (2.21) and (2.23) we must therefore have

L c iy o
(2.24) 112 inf P(Bk+]|Xk—J) = 0,
. > 0
which contradicts the assumption (2.14). ' 0O
Define now
ok R
(2.25) Zk = F Z q)(Xj_]’Yj_T)o

1

We-fhen have

J

THEOREM 4.  Assume that condition (2.14) holds. Then under Hypothe-.

1
sis 1, X » = 1iff Z > r*, a.s., in which case on the set [W> 0] we have

* -
- ueX™, a.s.  Furthermore, X, » 0 iff 7, + 0, a.s.

Proof. By (2.14), we have P(Xke-O or Xk-+ w) =1. If Xk + o , then
by Hypothesis 1, we have ¢(Xk,Yk) - r* > 0, a.s. for any initial YO‘ It

follows that Zk + r*, a.s.



On the other hand, if Xk + 0, then Xn = 0, and hence w(Xn,Yn) =0,

ivyn >N for some N. It follows that exp(ka) is finite, hence Zk ~0. 0O

Remark 1. A condition which implies (2.14) is

(2.26) i;f P(X, > 0] X5=3,Yy=y) > O,

or equivalently (since 0 is an absorbing state for the process Xk)

(2.27) i;f P(an=0|X0=j,Y0=y) >0

for some "j > 0. This follows from the fact that
(2..28) P(xk+nj=o|xk=j) =fP(Xk+nj=0|Xk=j,Yk=)7)'dP(Ykiy|Xk=j)
=JP(XnJ_=0|XO=j,Y0=y)dP(Ykiy|Xk=j)

> inf P(X =0|X,=3,Y,=y).
y nj 0 0

Here the second equality follows from the Markovian character of the

process {(Xk,Yk)} .

Remark 2. We now comment briefly on the limiting behavior of the
process {Yk}. In the case when Xk - 0, the-]imiting behavior of {Yk} de-
pends on thg function ¢ (0,-): rRY & R On the 6thér hand, if Xk + », the
behav{br of {Yk} is determined by the properties of the sequence
) (6.y,)) defined by (2.6) and (2.7). |

In particular, let conditions (C]) and (Cz) given below hold.

(C]) As k ~ » , the sequence {n(k)(e,yo)} has a limit =* independent
_(_)i-e myo'
(CZ) As k ~ = , the sequence {q(k)(yo)} defined by



(2.29) 1 (y) = vgr a*Diyg) = 6 0.8y, k0,1,

has a 1imit gq* independent of Yo-

Then, under (2.15), if «* # gq*, we have X = iff Yk + 7%, a.s., and

Xk + 0 iff Yk + g%, a.s.

3 ALSTATE RERENDENT, BRANCHING SCHEME FOR (X, )
We shall now consider a special case of the process from the preced-
ing section. The process {Yk} will be defined as before, through a func-

s + + . _ . .
tion ¢: xR > R, so that Yk+1 =@ (Xk,Yk), while for given (Xk,Yk), the

pgf. of Xk+] will be of the form
X X
(3.1) E(u KXY ) = To(us¥ )T K, Jul <1
: k’'k k o=
where for each y > 0
(3.2) g(usy) = J p, (y)u"
n

is a pgf.

We start from the subcritical case.

THEOREM 5.  Assume that the function ¢ satisfies the condition (C]),

- and let g'(1;y) be continuous at the point »*. If _
(3.3) ' g'(13m*) < 1,

then Xk -0, a.s.

Proof; We have now y(x,y) = Tog g'(1;y) for x > 0, and hence the
martingale (2.10) becomes -

. . _ _
n

(3.4) W, =

n
exp{ )} Tlog g'(1;Y; )}
39 -1



Suppose that Xn + « . Then Yn + 7%, and consequently,

I e~—-1x

(3.5) L

log g' (1Y, ]) + log g'(1;7*) < 0.
i -

1
Applying Theorem 2, this yields Xn + 0, which gives a céﬁtradiction. )
Let ﬁr(N) be the class of all sequences 6 = {no,n],...} of integers

such that g # 0, e > = and

- (3.6) ' nH]32%,ka,“.MJ,nrinNﬁwaH r > N.

Let n(k)(e,yo) be defined by (2.6) and (2.7), and satisfy condition

(C]), so that n(k)(e,yo) ~ n*, independent of 6 and yo:t-Wé now impose

ASSUMPTION 1. For any ¢ > 0 and K > 0, there exists an N such_that

for all Y0 < K and all o e.&(N) we have

(3.7) n(k)(e,YO) <w*+ e

for all k > N.

ASSUMPTION 2. For every y > 0 we have po(y) + p1(y) < 1.

ASSUMPTION 3. For n = 0,1,... the sum

(o]

3.8) - T - (y) = )
(3.8) - q,(y kzn Py (Y

is a nonincreasing function of y.

Remark 3. Before proceeding further, et us observe that monotonicity -

in (3.8) is preserved if we take sums of the form -

(3.9) ) pém)(y), m=1,2,...
k=n



= 12

S

where pﬁm)(y) is the coefficient of uk in fg(u;y)]m.' This assertion simply
amounts to stating that a convolution of elements of a stochastically decreas-
ing family is again stochastica]]y decreasing.

Observe also that if g(0;0) > 0, then (2.15) holds. Indeed, from Assump-

tion 1 we get
(3.10) Poly) =1 - kZ] P (y) =1 - -kZ] P (0) = g(050) > 0,

so that condition (2.27) holds.
We shall now state the following lemma due to Van Bahr and Esseen [15],

which will be needed later.

LEMMA. LEE.H]’--"ﬂn be a finite sequence of random variables. Denote

S. = np e tongs and assume that E(nilsi_])'= 0, E|n1|]+k < w,’i=],{._,n

for some A with 0 < » < 1. Then there exists a constant c(x) such that

: n

+
(3.11) Els, | <) T Eln T
' i=1 _
In fact, as shown by Rubin [13], we have
1+

1+ ~T-(1+x

(3.12) c(2) = sup [L x leni )X__]_,

with 1 < c(x) <2, for 0 <A < 1.

We shall now prove

THEOREM 6. Let Condition (C]) and Assumptions 1, 2 and 3 hold. More-

over, assume that for some X with 0 < 1 <1 and v > 0, the random variables

with pgf g(u;y) have finite moment of the order 1 + A for all y € [a*,a*+y].

In addition, let g'(1;y) be continuous at y = «*. Then the condition

(3.13) g'(13m%) > 1

implies P(Xk-+ ») > 0, provided XO # 0.
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Proof. Assuming that (3.13) holds, choose g > 0 such that g < v

and p = g'(];n*+e0) > 1. We shall show first that there exists a begin-

ning of a sample path (XO’YO)’(Xl’Y1)""’(XN’YN)’ having positive

probability, such that X > 2X,, k=0,1,...,N-1 and YN j_ﬂ*,+—€0.

k+1 k?
Indeed, let N be determined from Assumption 1 for e = ebEand K= YO’

By Assumption 2, there exists ny = n1(Y0) > 2 such that with probability

X
at least [pn (YO)] 0, 0, we have X; = n1X0. Put Y1 = @ (XO,YO) and choose
1

X]
(Y;)1 " > 0 we have

n n,{Y,) > 2 such that with probability at least [p

X X Proceeding in this way for N - 1 steps we <infer that with prob-

2 =M%y

ability at least

(3.14) [p (Y 10 01 e (Y TN g
' Pn b0’ ot e P UN-2 ;

we have Xk+] 3_2Xk for k=0,1,...,N-1, and hence YN < oeg.

Without loss.of generality, we may now assume that the process starts

from values X6 Z-KO = 2NX0 and Y6 < * + €g- To complete the proof, we

shall show that there exists a sequence {K,} such that KO Ko

and

(3.15) P(X > K for all n|Xs.Y§) > 0.

We may write, for any KO,K],...,Km:

(3.16) Pm = P(ij_Kj,j=],...,m|X6,Y6)

- Z)K oue Z>K P(X-I=Y‘-| [X6‘,Y6)_
m=1="m=1 "1z

- POEr, X =ry Yy 6 (X5YE)) -
’ P(Xm—1=r‘m-1|Xm—2=r‘m—2’Ym-2=q:(xm-3’ym-3))

’ P(sz-K |Xm—1=rm—]’Ym-1=(P(Xm—2’Ym-2))‘
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=

low by
(3417) P(sz-Kmlxm—lz‘r‘m-l’Ym:""ureo)'

Denoting by EysEpse-- the indepehdent random variables with pgf
g(u;n*+eo), we may further bound the probability in (3.17) aS“fpllows:

(3-]8) P(Xm>_ Krnlxm_]=rm_-l ’Ym_-I:TT*+€O)

= Pleqt...4g,  HE
1 Ko oK
> P(g1+...+gK > K )

= P(Xm_>_ Km| Xm-1=Km—] ’Ym—1="*+€0_)__'

Proceeding by induction, we obtain fpr the probability Pm the bound
: m
(3.19) P j

|v

m J=] P(XJ-Z_KmIXj_']=Kj_'I,Yj_'|=1]'*+€0)

it

m
- < Ko X, =Ks 5,Y. o=uvt .

. j]=I'| {1 P(XJ< JlXJ_] KJ_] j-1°T eo)}

It now reamins to show that one can choose the constants Kn such that

Tim Pm > 0, or equivalently,

Mo
(3.20) _ B Z Plg +...+¢ <K-) < o ..
: | n=1 ! Kp1 - 1 -
Assume “that
| (3.21) 11m(Kn/Kn_]) = 1.

Since u = Eg; > 1, we have u - K /K., > d > 0 for all n > ng. Coni

sequently, we have for n > Nys using Markov inequality

Kn—]
.Z] (Ei'U) K
(3.22) P(gq*...4g, ~ <K ) =p] 2 < N oy

! Kn-1 n- _ n-1 Kn-1
Kn-1 Kn-1 1)
1 (ggw) el 1 (gw

<P 1'—]K 2df < = T+a, T+1
d' "k

n-1



By the lemma, the last term may be bounded by

1+A
C(X)Kn_]EIE-u] C(A)E|£~ul]+x

(3.23) JTA T - AR X
n-1 n-1

It now suffices to put Kn = [n(]+6)/x] for some & > 0. f%hé condition
(3.21) holds, and the series (3.20) converges. N
A partial solution for the critical case is given by the following

theorem, which may be easily established.

THEOREM 7.  Assume that condition (C]) and Assumption 3 hold. Suppose

in addition that Y0 is such that sup Yk < ¥ regard]e;;>of,the behavior of
k

k

{X,}. Then the condition

(3.24). g'(1;7%) =1

implies P(Xk%-O) = 1.

Let now g, be the smallest root of the equation x = g(x;n*). We have

then

THEOREM 8.  Under Assumption 3, if Y, is such that sup Y, < m* regard-
k

less of the behavior of {Xk}, then

. - X0
(3.25) P(X>0) < (ag) "
Proof. We may write
1- ; N
(3.26) %86 =) qn(Y)un -

n -
where qn(y) is given by (3.8). It follows from Assumption 3 that g(usy) is
nondecreasing in y for every u. Consequently, the probability of extinc-
tion of a process {Xk} starting from a single element may be bounded above

by ag> which yields (3.25). O



4. A SPECIAL CAS

Motivated by-the idea of modeling cancer.gfowth in the presence of
antibodies, we may further specialize the model, by making the following
assumptions. | -

The function ¢, .governing the development of the process TYk} (anti-
bodies) will be assumed to be the solution of the differential equation
(1.2), for initial values Xk = X(kT+), Yk = Y(kT+), evaluated at time T, so
that |

-(Y+6Xk)T atgX, -(y+6Xk)T
(4.1) Yk+] = @ (Xk,Yk) = Yke + Y+6Xk (1-e - )

As regards to the process {Xk},'we assume that it develops as follows:
given (Xk’Yk)’ representing the value at kT+, in the interva]’(kT,(k+1)T]
the process {X(t)} is a pure death process; with death intensity a+ bYk.
At time (k+1)T, the existing elements of this process multiply according
to a'Galton—Watson branching scheme, with pgf of tﬁe number of offspring
h(u). Thus, |

)T X

X -(a+bYk)T+ - (atby ] K

(4.2) E(u T X ,Y,) = [h(u)e l-e K

We denote ' L

(4.3) _ . | o = h'(1).

We have the folTowing

THEOREM 9. . If either a > 0 or h(0) > 0, then condition (2.15) holds.
i A

Id

Proof.  Observe that : o =

—(a+bYk)T+ -(a+bYk)T]Xk

(4:4) P(x =0X,Y,) = [h(0)e T-e

k+1

-(a*b¥, )T X

X
= [1-(1-h(0))e 1% > 01-(1-h(0))e™TT % > o,



so that condition (2.27) is met. _ . 0
As a corollary to theorems 5 and 6 we obtain
COROLLARY 10. If

(4.5) logp <aT+b T,

then Xk + 0, a.s. On_the other hand, if h(u) is not linear, the random vari-

able n with pgf h(u) satisfies E|n|]+x < = for some A > 0, and

(4.6) ' loge > aT + b %—T,
then P(1im Xk=«9 > 0, whenever X0 # 0. T
Proof.  For the subcritical case (4.5) observe that the function ¢

given by (4.1) is continuous, and Yk >~ B/6 as Xy > = .

For the supercritical case, observe that

o B
(4.7) igg Y 5_maX[Yn, i 1,
which follows from the facts that
(4.8) min(a/vy,8/8) < atpX < max(a/y,B/6)

yHex
for all x=0,1,..., and that ¢ (x,y) is é convex gom@ihation of y and
(atgx)/{(y+sx). Consequently, Assumption 1 is satisfied.
Assumption 2 holds trivially, while for Assumption 3 we may proceed

+ in the

as follows. The quantity qn(y) in (3.8) is the coefficient of u"
“expansion of (1-g(u;y))/(1-u), which may be written as /

1-[h(u)e” (@HDY)T,_o-(atby)Ty B
1-u

(4.9)
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' -(a+by)T is a decreasing function

where 9 = P, + Pn+1 + ..., so that q.e
of y. The proof follows now from Theorem 6. _ O

As a corollary to Theorem 9 we obtain also the following.

COROLLARY 11.  If log p = aT + b %T, and in addition a/y < 8/s,

Yo < B/8, then P(Xk+-0) = 1.

. The above'resu1ts are of some potential significance as regards tb the
knowledge of tumor growth. Assume namely that the immune response {Y(t)}
is governed by the differential equation Y' = a + gX - yY - &XY where

X = X(t) is the tumor size. If T is chosen reasonably small, our process
(Xk,Yk) may be regarded as an approximation to‘(X(t),Y(f7),—provided that
that pgf. h(u) is properly chosen. Suppose that

(4.10) " h(u) = (1-p(T))u + p(T)u,

so that at each time kT, 6n fhe average, the fraction p(T) of tumor cells

undergo mitosis. We have then .
(4.11) p =1+ p(T).
The condition of subcriticality, i.e. when the tumor becomes a.s.

extinct, is

(4.12) . LA T S

Assume that a. =~ 0. This amount§ to neg]ectihg the possibility of
death of a tumor cell for reasons other than e]iminatidn by antibodies.
Then the relation (4.12) may be approximately written as b > d/H where
d ~ p(T)/T is the averagé number of tumor cells undergoing mitosis'ﬁer unit
tfme, and H = g/§ is the asymptotic level of immune response (ife. level
which would be approached in the presehce of large tumors). Here b, the

crucial parameter, is the rate of elimination of tumor cells by antibodies.
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On the other hand, a may be regarded as an effect of some therapy aimed
at destroying the tumor cells. Then the subcriticality condition becomes
a >d - bH. |

It is Worth observing that the conditions under which the:tumor process
is sub or supercritical do not involve the parameters a and ;:1thch charac-
terize respectively the rates‘of antibody formation and destruction in ab-
sence of the tumor. However, they determine the 1likely initial number of

antibodies, equél o/y, and in this way influence the probability of the

tumor becoming extinct in the supercritical case.

5. INTERACTING PROCESSES
N ANV NNV
In this section we shall assume that {(Xk,Yk),k=0,],...} forms a Markov

éhain with Xk,Yk taking nonnegative integer values, and such that

(i) XO’YO are constants, a.s.;
(ii) given Xk’Yk(k=0’T’i")’ the random variables (Xk+1’Yk+1) have-

Joint pgf.

| | LS Yk
XYy ) = L[99 (usXe,Y, )1 "Ly (vsX, .Y, 01 %,

X Y
(5.1) E(u Kty K+

where for all integers x,y, ' -

(5.2) _ g, (us0,y) =1, g,(v;x,0) = 1
. 1 2
and
(5.3) - g;(ssxsy) = S"péi)(x,y), i=1,2
n:O ) ) .
are pgf's. _
We denote

(5.4) uy(%y) = gi(lsx,y),  i=1,2.



Assume that for all XsYs

(5.5) | 95 (ssx,y) #s, i=1,2.

 Then (see Harris [8]), all states except (0,0) are transient, and we

have

(5.6) | P(Xka-O or « and Yk+-0 or «) = 1,

In_this section we shall study the joint 1imit behavior of the process
{Xk,Yk}, and also.the conditions, expressed in terms of»moments, which imply
that one of the processes has a positive probability of escaping to «, given
that the other process behaves in a certain way. The results complement,
in a sense, those of Roi [12], who studied conditions iﬁB]y%ng a.s. absorp-
tion to the origin for multivariate state dependént braching processes.

For reasons of symmetry, it is enough to concentrate on one of the
processes only, say {Xk}.

It will be convenient to start from a theorem concerning a univariate

‘state dependent branching process {Zk}, with

VA Z
(5.7) B ) = [e(usz)T N k0,12,

where for every integer z > 0 the pgf g(u;z)-is assumed to satisfy g(us;z) #Z u

and g(u;0) = 1.
We denote
(5.8) u(z) = g'(1;2).

Let g(r),g](r),... be a sequence of I.I.D. nonnegative integer va]ue? ran-

7

dom variables with common pgf g(u;r).

We now have

THEQOREM 11. Assume there exists a sequence {Kn,n=0,],...}, with

1 2

0 < K0 < Ky <K, < ..., such that for j=1,2,...



(5.9) ru(r) > Kj’

for all r 3-Kj-1’ and that for some sequence A = x.3s with 0 < AL

r = KO’ KO +1,...,
(5.10) Y D(i,A) <=,
371 |
where
£
(5.11) D(j,A) = sup c(r,.) rEIE(r)'”(F)4+A
2Ks-1 (ru(r)-k;) "

with c(A) being the constant appearing in the lemma from Section 3. Then

(5.12) ' P{Z, ~=|Zq=Ky} > O.

Proof. Let {Kn} be a sequence satisfying the assumptions of the

theorem. For m=1,2,..., let

(5.13) Po = PLZy2 Kyad=T,eenam|Zg=K)

We may then write

I
W= 3

(5.14) p P{Zj_>_Kj|Zj_]in__],...,Z]

> Ky »Zy=Ko )
=1 - 0

1°70

1\
=3

j ] [-I—P{Zj < Kjlzj"] in_'l 3 e !Z] iK'I ’ZO=K0} ..
To brove the assertion (5.12) it suffices to show that Tim Pm >-0, which is
Moo .

equivalent to

(5.15) J-Z1 PAZ; < Ki|Z5 12 K5 paeeaZy 2 KppZgKg) < =

Using Markov property, we may estimate the terms of the series in (5.19)"

as fo]]ow%



(5.16) PAZy < Ky|Zs 12 Ko qseniny 2 KpaZoKo)

j-1 1
P{ZJ- < Kj,ZJ-_] iKJ'_] 5o e ,Z] iK] IZO=K0}

P{ZJ._] ZKJ-_] see sy 2K ]ZO=K0}

1 .
=5— V  P{Z.<K.|Z, ;=r}
Pj_'l r.in-] J J J—]

~P{Zj_]=r|ZJ._23 Kj-2" cealy 2 Ky Zp=Ky)
)
>

r'_KJ._]

]
Fj__] P{'c:.l (r)+...+gr(r)< KJ}

"PUZ; =125 5> K5 g sy 2 Ky ZgoKy)

Using the fact that ru(r) > Kj by (5.9), Markov 1'nequa11'ty, and the lemma
from Section 3, the first t_er‘m of the product ih the last sum may be bound-
ed from abdve as follows: '

(5.14) Pleq (t)+. ..+ (r) <Kj)

r
P{ Z (Fa.i(r)'U(r))<Kj'rU(r)}
i=1

r T+ T+
P{| _Z] (€5 (r)-u(r))] "> [rulr)ks1 73
i= »

| A

r ]+>\r'
- E| .X] (g;(r)-u(r))|

1:

| A

1+
Lru(r)-K] r

: - 1+Ar B
cr,) TELEO] _ ,

[ru(r)-K,] r | -

| A

< D(j,A),
where D(j,A) is defined by (5.11).



Consequently, the terms (5.16) are bounded from above by

. L _ I
(5.18) D(j,A)5— ) P{zj_]-rlzj_zikj_z,.._.,zlikl,zo—KO} = D(3,n)

P.
j-1 rsz_]

and the assertion follows from the condition (5.10). _;;: O
Let us now return to the bivariate process {Xk,Yk}, as defined at

the beginning of this section. We start from formulating several condi-

tions implying various assertions about the limiting behavior of the joint ‘

process {Xk’Yk}’ and also its components separately.

- In the conditions below, {xn} and {yn} are sequences of nonnegative

integers.

(A]) Let x, + =, y, + . Then

. N
(5.19) hﬁiuP jg] [u](xj,yj)uz(xj ,yj‘)] <o,

(Az) Let x, >,y »0o0re=. Then

. : N
(5.20) Timsup T uq(x ,y ) <.
Nowo  j=1 1*"n*7n
(A;) Lety -« . Then
N T
(5.21) = Timsup T u,(0,y. ) <.
2 n
Nro  j=1

We have then

THEOREM 12.  Assume (5.5). Then (A]) implies P{Xn-+w and XnF>w} =0,

while (Az) implies P{Xn—*m} = 0. Fina]lxlf(Az) and (A3)=imgfy
P{Xn+-0 and Yn+-0} = 1.

Proof. Differentiating_(S.]) with respect u and v we easily find

that eaéh of the sequences



X
_ n
(5.22) . | U, = = T :
nop (X.,Y.
Y
_ n
(5.23) ‘ Vn - n_-l ) E) L
I u (X',Y- —:v )
j=1 273773 :
: Xy
o = nn
(5.24) W= —

(n=1,2,...) is a martingale. As in the proof of Theorem 1, we can show
that each of the above martingales converges, a.s. to an a.s. finite limit.

Thus, on the set [Xn-+w,Yn—¥w], the denominator iﬁ (5.24) must tend to
», which contradicts (A1), and thus proves the first assertion.

The proof of the second assertion is analogous. To prove the last
asseftion observe that if (Az) holds, then Xn + 0, a.s. and we can define
M= infin: X =0}, with M < =, a.s.

We have then, for n > M

'

(5.25) Y=

n
T ouy(X:,Y.) T u,(0,Y,)
g1 23T g 2

and (A3) implies that the denominator in'Vn remains bounded on the set

[Yn—+m]; consequently P{Yn->w} = 0. O
Denoting by &(r,%2) and n{r,2) the random variables with pgf's respec-

tively g](u;r,z) and gz(u;r,L) we have also the fo]]owing bivariate analogue o

of Theorem 11. _ , -

THEOREM 13.  Assume that there exist strictly increasing sequences

K.} and {L .} of positive integers such that for j=1,2,...




(5.26) ru](r,t) > Kj’ luz(r,z) > Lj

for all r Z.Kj_]’ L 3-Lj-]' Moreover, assume that there exist sequences

A= {x.} and A" = {d" } with 0 < Ap 21, 0 < A'r < 1, such that

(5.27) Y OD*(3,AA') < @
j=1
where
(5.28) D*(j,A,A") =
1+Ar
rElE(r:R)'U](raz)l

SUE C(Ar) T2

2851 [nqhuﬂ-ﬁ]

giLj_]

: T,
. 2E[n(rs2)-u,y(r,e)|
+ C(A 2 1+A'2

[RUZ(r’Q)"Lj]

Then P{Xk-+m,ka-w[XO=KO,YO=LO} > 0.
We omit the proof, as it follows closely the lines of the proof of

.Theorem 11.
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