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1. Indroduction. Let Tyoeeesmy be independent populations represent-
ing k experimental treatments and let T be the control treatment. Let
f(x,ei) denote the density of T i=0,1,...,k. Any population L is said
to be éugerior to the control if ;> 85> and inferioéjgzhérwise. While
60 is not known, we have, based on past experience, a fair idea of it SO as
to assume that 60 5_66, a known quantity. Following the earlier setup of
Gupta, Huang and Nagel [1] and Huang and Panchapakesan [3], who have stud-
ied Tocally optimal rules based on ranks for selecting the best population,
we assume that the functional form of f(x,6) is known but for the value of
the parameter. We seek a procedure based on ranks in view of the usual
considerations of robustness against possible deviations from the model.

We are interested in selecting a subset (possibly empty) of the k experi-
mental treatments consisting of those that are superior to the control.

Let Xij’ J=1,...,n, be independent observations from i i=0,1,...,k.
Let Rij denote the rank of Xij in the pooled sample of N = (k+1)n obser-

vations. The smallest observation has rank 1 and the largest rangfw. Let

X| S Xo < e < Xy denote the ordered observations. A rank configuration

is an N-tuple A = (A]""’AN)’ 8; €{1,2,...,k}, where Ay =] meané'that the
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ith smallest observation in the pooled sampie comes from Ty Let ¢ = {a}
denote the set of all rank configurations for fixed k and n. For fixed a,

let x, = {x€x|a =4}, where 2 = {x: x=(xq,...,%y)} and By denotes the

rank configuration of x = (Xl""’XN)' A decision rule & based on the ob-
served rank configuration A is a k-tuple defined by § = 6(aA) J

= {6](A),...,dk(A)}, where Gi(A) is the (conditional) probability that ms
is selected as a superior population.

Let 8 = (84,0,,...,0,) and @ = {8|e,<6*}. Define

<0%,i=1,...,k} and o, = 8]0 =ox<6.,5F1}, i=1,....k.

= {0]6,=6,< 03 ;

&) 0 i

We are interested in the class of rules ¢ satisfying

(1.1) Pe{ﬂ.

; is selected|g EQO} < vy for i=1,...,k.

In this class, we seek a locally optimal rule in the sense that it maximizes

(1.2)

ne~1x

3 : x
T Pg{"i is selected|g ea¥y}

. =%

i 0,=6

Let Pe(A).denote the probability of realizing the rank configuration a.
Then (1.1) can be written as

(1.3) %Gi(A)PQO(A) < y for 1‘=1,.7.,k,

where 8y = (eo,...,eo) €Q, and the expression (1.2) is equal to

k . ;
3 - (i) ’

(1.4) Z P ) Bi(A)P (1)(A) where 8 denotes.
—] 9 0 =e*

i 0
a point in ¥g- The condition (1.3) corresponds to éontro]]ing error prob-
abilities and the optimality condition in (1.4) reflects the sensitivity of
the rule when all but one population are not distinctly superior (ej=66,j#i)
and the remaining one is in a neighborhood of the others but distfnctly

] *
superior (ei> 90).
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2. Derivation of a locally optimal rule. We assume that the density

f(x,0) satisfies the following set of regularity conditions: (i) f(x,8) is
absolutely continuous in ¢ for almost every x, (ii) f(x,6) is continuously
differentiable with respect to o for almost every x, and (iii) f(x,8)
= :—e f(x,06) is integrable.
Now, the probability Pe(A) of realizing the rank configuration A under
8 €qQ is by )
o Xy Xo

(2.1) P8y =[ [ ... f

-00 -0 -0 1

o= =

f(xi,eA_)dx];:.de .

1 i =

We note that P6 (A) is independent of the common value 90 of the parameters
%0 .
and is equal to 1/N!. Thus, the condition (1.3) becomes

(2.2) a1 6i(a) <y for i=l,... k.
TC

For 9(1) €a,, it can be easily seen that

3

(2.3) E Pe(i)(A)
- =%
0,=6%
PP ] 1 )
= .es n f(x_ ,o* g dx,...dx
-0 -0 -00 e: e 0 g;. f xj’ea ] N
Aj—1
o XN X2 . N ,
= g * .
§ J; [m e {m f(xj,ea) igl f(xi,eo)dx]...de
Aj=i i#j

Ai(A,ea), say.
Thus we want to derive a rule & which satisfies (2.2) and which, among all

rules that satisfy (2.2), maximizes
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(2.4) ) Gi(A)Ai(A,ea).

i=1 ¢

The following theorem provides such a rule..
Theorem 2.1. Under all the assumptions stated previously, a rule

GO(A) which satisfies (1.1) [or equivalently (2.2)] and which, among all

rules satisfying (1.1), maximizes (1.2) [or equivalently (2.4)] is given by

1 >
0 _ _
(2.5) Gi(A) ={ p Ai(A,ea) = ci/N!
0 < i

where 0 < p < 1 and c; are determined such that

(2.6) 15 6%0) = .
: NT é i Y

Proof. Let &(a)-be any rule other than 60(A) satisfying (2.2). Then

1

lg] é{di(A)-é?(A)}{Ai(A,ea)- ;—3}: 0.

Now, using (2.2) and (2.6), we get

I~
—t

k
iZ] % 8;(8)A;(2,8%) < % 5?(A)A1(A’66)'

i
This proves the theorem.

We note that this locally optimal rule is based on weighted rank sums

using the scores

1 . .
N! i-1 N-1i :
(2.7) B'i = m)l—(NT])-r éu (1-u) ¢(u,f,66‘)du,
where
F(F 1 (u,08),08)
(2.8) ¢(u,f,0%) =

£ (u,0%),0%)
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which in general depends on 96. However, it is independent of 66 if it

is a location or scale parameter.

3. A special case. One can specialize the rule 8 given by (2.5)

to specific densities f(x,6). An important special case ariseé when f(x,0)
is the logistic density f(x,8) = e—(x-e)/[]+e—(x-e)]2’ o <X < @,
- < 9§ <o . In this case, ¢(u,f,0) = 2u - 1 which leads to equally spac-
ed scores and Bi is of the form Bi = a + ib, where b > 0. Consequently,

the rule 8o is given by

T

1 >
n
(3.1) s3(8) = { o 1 Ry = o/
J:
0 <

where 0 < p < 1 and c are determined by

n n
(3.2) p {Z R,s> /NI Y + oP {Z K-=UM}=y.
A E RN } o5 Ly 1

The values of p and c can be obtained from tables for Wilcoxon two-sample

rank-sum statistic.

4. Some remarks. Nagel [4] defined just rules for selecting the best

population. This concept can be applied also to the problem of selecting
populations that are better than control. In our setup, it means that the
probability of selecting LF is nondecreasing if all the observatidns.from

w, are increased and the observations from all other populations are decreas-

ed. The rule 60

defined by (2.5) is just if B, is nondecreasing in i. In
the case of location parameters, this monotonicity of Bi is equivalent to
saying that f(x) is strongly unimodel, i.e., - log f(x) is convex (see [2],
p.20). In the special case of logistic densities, the rule 60 given by

(3.1) is just.
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e

Though % is not known, we have assumed that an upper bound 66 is

If eO is known, then in stating the optimality requirement, 96

is replaced by 8-

[1]

(2]

(3]
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