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ABSTRACT

The optimal selection of a maximum of a sequence with the possibility
of ties is considered. The object is to examine each observation in the
sequence of known length n and, based only on the relative rank among
predecessors, to either stop and select it as a maximum or continue with-
out recall. Rules which maximize the probability of correctly selecting
a maximum from a sequence with ties are investigated. These include rules
which randomly break tiesyrules which discard tied observations, and minimax
rules based on the atoms of a discrete distribution function. If the sequence
is random from F, a random distribution function from a Dirichlet process
prior with nonatomic parameter, optimal rules are developed. The limiting
behavior of these rules is studied and compared with other rules. The

selection of the parameter of the Dirichlet process regulates the ties.

KEY WORDS: Best choice problem; Dirichlet process prior; Optimal stopping;

Relative ranks; Secretary problem.
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1. Intreduction.

Let X], XZ""’Xn denote a sequence of independent, identically
distributed random variables from distribution function F. The optimal
stopping problem of interest is to observe the X's one at a time and to
stop at the maximum value,with no recall permitted. In this paper it is
assumed that F is not continuous, so the maximum is not necessarily unique
and the optimal strategy allows for ties.

If F is continuous but unknown, and the loss function is 0-1 (0 if
maximum selected, 1 if not), the optiha] rule depends only on the relative
ranks of the observations. This problem has been called the (best choice)
"secretary problem"; see Gilbert and Mosteller (1966) for its history and
solution. It will be referred to hereinafter as the continuous problem,
referring to the continuous distribution function. Yang (1975),
Govindarajulu (1975), and Lorenzen (1979) have discussed realistic
generalizations of this problem. Numerous researchers have generalized
the Toss function to a function of the relative rank selected. Prior
information in the form of relative ranks in a previous sample has been
treated by Campbell and Samuels (1981). If the X's are observable (not
just the relative ranks), prior information has been incorporated by

Stewart (1978), Samuels (1981), and Campbell (1977), among others.

*Research supported by National Science Foundation Grant MCS78-02895.



The realistic generalization considered here is to allow ties; in
particular, assume F is not continuous or, alternately, the original
observations have been grouped into ordered categories. The loss function
is 0-1 (best choice problem).

Section 2 treats several approaches to ties in this problem. One
strategy is to randomly break ties and employ the optimal rule for the
continuous problem. Another intuitive strategy is to discard all previous
ties. If at Xr there are m distinct values among X],...,Xr, reduce n to
n-(r-m) and reduce r to m and employ the optimal rule for the continuous
problem. This will be referred to as the reduced rule. A third approach
assumes that an upper bound k on the number of atoms of the discrete
distribution function F is known. Minimax rules are obtained and the
behavior of the rules as k tends to infinity is investigated.

In Section 3 F is assumed to be randomly selected by a Dirichlet
process prior on the space of discrete distribution functions. The
parameter of this prior due to Ferguson (1973) is assumed nonatomic; the
resulting strategy depends on the parameter only through the mass C of
the measure and depends also on the number of X]""’Xr tied at the

relative maximum and the number of distinct values of X ’Xr' Rules

100
are displayed for various n and C and the probability of correctly
selecting a maximum computed.

The 1imiting behavior of the rules developed in Section 3 is
investigated in Section 4. As C approaches infinity it is proved that
the rules approach the reduced rules of Section 2. The usefulness of

the 1imit as C tends to 0 is also discussed; the resultant rule is to

continue if all are tied and to stop at a relative maximum otherwise.



The application of these rules based on the Dirichlet process to a random
sample from an arbitrary unknown discrete distribution function is discussed.
The estimation of C if it is unknown is considered. Simplified rules
utilizing the Dirichlet process and reduced rules are also investigated

and the Timiting behavior of these rules studied.

In the event of ties among the X's, a simple mechanism to break them
is to employ a random device to order the X's tied at the relative maximum.
Having resolved the ties, the optimal strategy for the continuous problem
is then employed. Intuitively, ties with such a strategy improve the
probability of selecting the maximum without ties in that one can select
the maximum by either stopping or continuing at a tied relative maximum
value.

A second strategy is to discard all previous ties at each stage. For
Xr’ let m denote the number of distinct values of X]""’Xr' Then the
number of tied X's is r-m (all ties are included, not just ties at the
relative maximum value). The reduced strategy is then to reduce n to
n' =n-(r-m) and r to r' = r-(r-m) = m and use the optimal strategy for
the continuous problem.

The final approach of this section requires the additional information
that the underlying distribution function F is discrete with a known upper
bound k on the number of atoms. If a prior were placed on the atoms one
could obtain the Bayes rules. However, the approach here is to develop

minimax strategies.



This additional information can have a dramatic influence on the
optimal rule, especially for k < n. For example, suppose k = 2. Then
if X] < X2, the optimal procedure is to stop at X2' It is straightforward
in this example to calculate the probability of failing to select the
maximum value with the strategy of continuing if all are tied and of
stopping at the first X larger than some previous X. If x and y denote
the atoms with x < y, the value y is not selected if all y's precedes all

x's., If Py is the probability for atom x and Py = 1-p] for atom y, the

probability of not correctly selecting y is:

n-1 2 n-2 -1
pzp] + pzp] +...+ pg p].

The symmetry of this function 1in Py and Py implies here that it is maximized
for Py = %n Thus the probability of selecting the maximum value y is
bounded below by 1-(n-1)27",

Contrast this strategy for k = 2 with the randomized strategy in the
case n = 3. The strategy above has probability of incorrect selection of

2 2 2

PoP1 * PpPq- If one stops at X2 if X1 = X2 the probability is 2p1p2. The

randomized rule is with probability q to stop at X2 if X] = X2. For
qg-= %-this has probability of incorrect selection of %p?pz + %p]pg. The
least favorable configurations which maximize these three probabilities
are py = .5, Py = %3 and Py = .608 with maxima %3 %%3 and .2641, respectively.
The minimax rule is non-randomized and continues at X2 if X] = X2.

For k > 2, suppose n = 3. For simplicity initially consider k = 3,

with probabilities P1> P and Ps for the ordered atoms. Let r denote

the subscript of the current relative maximum X, % the number of



X ""’Xr tied at the value of Xr’ and m the number of distinct values in

1

X ’Xr' Use (&, m, r) to denote this configuration. It becomes clear

-I,-oo
for n = 3, k = 3 to continue at (1, 1, 1) and stop at a relative maximum
at (1, 2, 2). The strategy question is whether to continue or not at

(2, my r)=(2,1, 2); i.e., if Xy = Xy Continuing at (2, 1, 2) results

in probability of incorrect selection of

2 2 -2 2 2 2
P1P; * PyP3 * PoP3 + PPy T PyP3 * PyPy *+ 3PyPoP3-

This function is symmetric in Py = Py = P3 and has maximum-% at -
Py =Py = P3 = %n Stopping at (2, 1, 2) yields probability of incorrect
selection of

2 2
2p1p2 + Zp]

Py + 205p3 * 301PpP3.

Since this is not symmetric, Py = Py = P3 = %-is not a maximum; hence
the maximum exceeds %n Thus, the minimax strategy is to continue at (2, 1, 2).
This argument extends easily to k > 4. The probability of maximal selection
can be easily shown to be %—+ (2k)']. The probability of maximal selection
for the continuous problem (no ties) is %u Thus, the probability improvement
shrinks for an upper limit of k is realized, yet shrinks to 0 as k tends to
infinity.

For n > 4 the rules quickly become complex. The optimal strategy at Xr
depends on the configuration of ties of the X's, but not on the order of
arrangement of X]""’Xr' In particular, it is not sufficient to record
only ties at the relative maximum value.

Fix n and let k increase. It is clear that the probability of correct
selection based on the minimax strategy with k or fewer atoms decreases as

k increases. This is so because a least favorable (p],...,pk) for k atoms

is included with an additional atom with probability 0 in the (k+1) atoms



case. As noted in the discussion of randomization to break ties, ties
increase the probability of correct selection. Hence the least favorable
distribution will tend to minimize the probability of ties. For k(> m)
atoms, the upper bound on the probability of no ties in n observations is
k(k-1)...(k-n+1)/K" (at p; = 1), which tends to 1 as k tends to infinity.
In the case of no ties, the rule reverts to the optimal strategy for the
classical continuous "secretary problem". In addition, as the probability
of ties tends to zero, the strategy for such ties becomes irrelevant. A
conjecture based on the simple examples of this section as well as additional
investigation is thaf, for k > n, the minimax rules based on k or fewer
atoms are reduced rules.

As a last case, if the number k of atoms is fixed and known and n tends
to infinity, the probability of correct selection tends to 1. A more
interesting unexplored problem is to introduce an interview cost 1in this

situation, as Govindarajulu (1975) does in the continuous case.

3. iRt ARt IS BILSRLER RARESSR

In this section it is assumed F is randomly selected from the set of
discrete distributions by a Dirichlet process prior of Ferguson (1973). It
is assumed in this section that the measure is nonatomic with known mass C.
The optimal strategy and probability of correct selection are then calculated.

The Dirichlet process was introduced by Ferguson (1973) and was employed
1mmedfate1y as a means of incorporating prior information into nonparametric
problems (see Ferguson (1973) for a definition of the process and numerous
applications). Some Bayesians have found difficulty with this approach in
that the prior has frequently been inappropriate due to its concentration on

the discrete distributions (see Berk and Savage (1979) for an elementary



proof of this discreteness for the Dirichlet process). Unfortunately, the
resulting procedures had few (in any) competitors which incorporated such
general prior information. The naturally occurring ties in the Dirichlet
samples have been exploited only rarely (see Campbell and Hollander (1978)
for an exampie). Most nonparametric applications are complicated by a

dual role for the mass C of the measure o of the Dirichlet process. First,
Ferguson (1973) suggests that it is the "degree of belief" or "confidence"
in the shape of the probability measure o/C which regulates a single
observation, with the Timiting case as C tends to infinity corresponding

to "complete confidence". The second role of C is to regulate the ties;
for example, E%T-is the probability two observations from a Dirichlet process
with nonatomic measure are equal. Previous applications have utilized the
first but generally ignored the second.

In this optimal stopping problem, the ties are of primary interest. The
concentration of the Dirichlet process prior on the discrete distributions
is quite appropriate. If the measure of the process is nonatomic, C can be
used to regulate the ties. If‘the measure is otherwise unspecified the
first role of C is unfulfilled and C exclusively regulates the ties. The
optimal strategy is now developed for this situation.

Let X]""’Xr denote the observed X's at the rth stage, of which m are
distinct. Let zy <...<zp denote the ordered values of these X's and ki

the number of the rX's tied at Zis for i = 1,...,m., Define zg = - and

Zogl = - The next theorem calculates the probability distribution for
Xr+1'
Theorem 3.1. If X]""’Xr’ Xr+] is a sample from a Dirichlet process with

nonatomic measure with mass C then for the above notation based on X],...,Xr



a) P{Xr+1 = Zi} = ki/(C+r). i=1,...,m
b) P{Xr+]'€ (Zi’ Zi+1)} = C/[(m+1)(C+r)]. i=0,1,...,m.

Proof. The proof of a) proceeds directly from application of the theorem
of Ferguson (1973) that a Dirichlet process with parameter o conditional on
a sample X],...,Xr is again a Dirichlet process with updated measure
r
a + 1216X1 where 62 denotes the measure concentrating unit mass at the
point z.
For b) assume without loss of generality that the measure o is concentrated
uniformly on the interval [0, C], such that « ([0, y]) = y for y €[0, C].

Then the distribution of (Zl""’zm) is uniform over the region

<52z < Z = C. Therefore,
P{X +] E-(ZO: Z'I) !XY"I'-I 7é 2z for-i =1 ye .oyl

-1
m+l *

But by a) P{X.pq # 2; fori=1,....,m C/(C+r). Thus

1
P{X,pq €0, 27)} = C/[(m+)(C+r)]. For #=1,...,m

P{IXy 6(21, 21+])IXr+] #z, fori=1,....m

= ... (Zi+1 - Zi) m! dz]...dzm/Cm+].
Zy eee 2o

A straightforward change of variables gives E}T—asrfor i = 0 and-the theorem

is proved. [J



Application of this theorem to the optimal stopping problem at the

rth stage, with Xr a relative maximum, gives

P{X 41 2 XJ = [k + C)/(m+1)]/(Cor).

r+l = r

It is important to note that this probability depends on C, r, m, and km,
but not explicitly on k],...,km_]. For convenience denote the number km
of ties at the relative maximum by &. The probability Ps of correct
selection by stopping at Xr and the probability Pe of correct selection

by continuing at Xr with the optimal strategy are now derived iteratively.

Theorem 3.2. If X]""’Xn is from a Dirichlet process with nonatomic
parameter with mass C the probability of correctly selecting the maximum

value for X]""’Xn by stopping at a relative maximum Xr is given by:

i = -2 .oy o+ X 2
Pg (s my 13 C) = mpr P2y my 1415 C) + o5 pg (241, my r415-C)
mC/ (] (3.1)
$ MC/MET) o o me, el C).
Ct+r S
Proof. It is necessary to calculate P{XH],...,Xn f_zm}. It Xr+1 5-2m
then either Xr+1 =z Xr+1 =z, i <mor Xr*J E(zi, Zi+]) for i <m-1.

Since & denotes the number of ties at the relative maximum, the probability

X =z fori=1,...,m -1 1is (r-2)/(C+r). If Xr+1 is tied with a

r+]
previous X that is not a relative maximum, the probability Xr is a relative

maximum is the probability Xf+2""’xn are also <z which 1is ps(z, m, r+1; C).

If Xr+1 = Zpo which occurs with probability &/(C+r), the probability

Xr+2"°"xn are < z_ is ps(z+1, m, r+1; C). If Xr+]€5(zi, Zi+1) for some

i=0,...,m1, which occurs with probability mC/[(m+1) (C+r)], the conditional
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probability X, s a maximum is ps(z, mtl, r+1; C). O

It is possible to calculate Ps at stage r by backward iteration
from stage n-1 together with the initial condition

Pg(2s m, n-15 €) = [(n-1) + mC/(m+1)1/(C + n - 1).

In that the initial condition does not depend on £, neither does Pg for
the rth stage. Thus, for convenience the notation ps(m,r;C) will be used
for this probability.

The function ps(m, r; C) is increasing in m. This is proved by backward
induction on r. It is trivial for r = n - 1. Further, if it is true for

r =s + 1 then

p(m+1, 55 C)-p (m,s:C) = m5z [P (M1, s+15 C) - p (m, s+15 C)]
C +
+ ﬂ—é—%i)— [pg(mt2, s+15 C) - p (m+1, s+15 C)]

+ C/L(C+s) (m1) (m2) ] p (m+2; s+15 C).

Applying the induction hypothesis for r = s + 1 proves monotonicity of
ps(m, s; C) inm for r = s. Similar arguments prove ps(m, r; C) is

increasing in C and ps(m+1, r+i; C) is increasing in i for i <n - r.

Theorem 3.3. If X ’Xn is from a Dirichlet process with nonatomic

100
parameter with mass C the probability of correctly selecting the maximum

value for X]""’Xn by continuing at Xr with the optimal strategy is

given by:
-1 C/(m+]
P2, m, vy C) = g;;-pc(z, m, r+l; C) + m7§$£——l (2, mH, r+1; C)
(3.2)
+ 5%;‘PM(2+1, m, r+i; C) + %{+T+1) py(ts m+l, r+1; C)
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where

py(%s m, rs C) = max(ps(m, v; C), p.(2, m, v5 C)).

Proof. There are four cases for Xr+1' If X = Zi for some i < m,

r+i
which occurs with probability (r-2)/(C+r), one must continue with correct
selection probability pc(g, m, r+1; C). If X i1 E(zi, Zi+1) for some
i < m, which has probability mC/[(m+1)(C+r)], again one must continue
with probability pc(z, m+l, r+1; C). If Xr+1 =Zos with probability
2/(C+r), it is unclear whether to stop or continue so use the better
strategy of the two with probability pM(2+1, m, r+1; C). Lastly if
Xpr1 > Zp with probability C/[(m+1)(C+r)], the maximum conditional
probability is pM(1, m+l, r+1; C). O

The initial condition for the backward iteration on r is obtained

from Theorem 3.1:

p(%s m, n-15 C) = [eH{C/(m+1))]/(C+r).

For any C and n one can calculate Pg and Pe for any (2, m, r) configuration
and hence determine whether to stop or continue for any Xr'

The expression pc(z, m, r; C) is increasing in 2. Again a backward
induction argument is used. For r =n - 1, it is trivially true. If it

is true for r = s + 1 then
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r-2-1 ) _
p (241, m, 53 C) - p (2, m, 55 C) = Cir tPc(#¥Ts ms s¥15 O)

mC/ (m+1)

P (25 my s+15 C)] + =637

[ (441, m1, s+15 C) -
P (2, mtl, s+15 C)] + (241) pu(e+1, m, s+1; C) - ¢

pM('Q's m, S+]; C) - pc(za m, S+]; C)-

By the induction hypothesis the first two terms on the right are positive.
Further, since pc(z, m, s+1; C) E_pM(z, m, s+1; C) the remaining terms on
the right are 3(2+1)[pM(2+], m, s+1; C) - pM(z, m, s+1; C)] which by
induction_is positive. Thus pc(2+1, m, s; C) z_pc(z, m, s; C); the
induction is complete.

The ramification of this result is as follows. Since Pg does not
depend on 2 and Pe increases in ¢, if there is a configuration (¢, m, r)
for which Pe * P then the optimal strategy is to continue for all
(¢', m, r) configuration, where ¢ < 2' <r -m+ 1.

The value of C can influence the decision to stop or to continue.

For example, for n = 5,

ps(1. 2, 23 €)= (24 + 3£ ¢ + 3 ¢ + £ )/ (cx2) (0+3) (C+A)]s -
pc(1, 2, 2; €) = (18 + 16C + %-cz + %%—c3)/[(c+2)(c+3)(c+4)].

Therefore at X2(>X]) the optimal rule is to stop if C < C0 and to continue
if C > CO where CO ~ 7.93. The complete rule for n = 5 is to continue
also at (1, 1, 1), (2, 1, 2), (3, 1, 3) and to stop otherwise. At (4, 1, 4)

it doesn't matter whether one stops or continues.
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Optimal rules are presented for n < 8 and for various C in Table 3.1.
In particular, the (&, m, r) configurations at which one continues are
listed. The configuration (r, 1, r) appears in all cases, in that the
optimal strategy is always to continue at (r, 1, r) if r < n - 2, with
indifference at r = n - 1. It is interesting to note that the strategies
for C = 100 are just the reduced rules of Section 2.

Table 3.2 contains the probabilities of correct selection for the
optimal strategies; it is just a table of pc(l, 1, 1; C) for various values
of n and C. For comparison the optimal probability for the continuous case

-as in Gilbert and Mosteller (1966) is presented in the last column of the

table.
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TABLE 3.1

(2,m,r) CONFIGURATIONS AT WHICH THE
OPTIMAL STRATEGY FOR DIRICHLET SAMPLES IS

TO CONTINUE (1<r<n-2)
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continuous
n\\ C 0.1 1.0 10 100 1000 ease
.9545 .7500 .5455 .50495 .5005 .5000
. 9545 .7500 .5455 .50495 .5005 .5000
.9615 .7691 .5241 .4657 .4591 .4583
. 9682 .7802 .5004 L4411 L4341 .4333
.9733 . 7825 .5050 L4371 L4287 L4279
.9769 .7805 .5048 L4254 .4154 L4143
.9793 . 7897 .5007 L4213 L4110 .4098
.9809 .7948 .5066 L4191 .4073 .4060
.9819 .7982 .5097 .4135 .4002 .3987
.9835 .8047 .5156 4124 .3973 . 3955
.9849 .8132 .5260 .4100 .3916 . 3894
.9858 .8242 .5435 .4102 . 3870 .3842
TABLE 3.2

OPTIMAL PROBABILITIES OF CORRECT SELECTION

FOR DIRICHLET PROCESS SAMPLES
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4. Asimetetisules.and Alseussion-

The 1imiting behavior of the strategies of Section 3 are examined.

First, consider the 1imit as C tends to infinity. Then equation (3.1)
becomes :

1im ps(m, r; C) = =1 1im ps(z, m+1, r+1; C).
~>00

Cooo e
Repeated application and the known 1imit for the initial stage r = n - 1
yields:

_m_
mt+1

m+] mn-r-1 _  m
ey = (4.1)

i m : = .
1im ps< > 13 C) m+n-r mtn-r

Cow
Note that this is merely the probability of correct selection by stopping
for the continuous version of the problem where ties are completely ignored.
This is the appropriate probability for the reduced strategy of Section 2;
namely, discard the r-m tied values, reducing n to n' = n - (r-m) and
reducing r to m, and obtain the analogous probability for the classic untied
strategy.

Similarly, equation (3.2) becomes:

(2, M1, r+l; C) + — Tim py(Ts ™1, r+15 C).
Cooo

Tim pc(z, m, r; C) = = 14 =

im b
Cosco m+1 Coo ©

For 2=1, lim pc(l, m+i, r+i; C) is decreasing in i for 0 <i <n - r - 1.
Coo
This is so because

Timp (1, my v; C) - 1imp_(1, m1, r+1; C) =
c c

C-oo Coo

—l—-11m pM(1, m+l, v+l C) - . 11

imp (1, m1, r+1; ¢) > 0.
m+1 Coroo m+1 oo © -

On the other hand ps(m+i, r+i; C) is increasing in i for 0 < i <n-r -1,

Thus there exists a unique s depending on n and r such that the optimal rule
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is to stop at (1, s, r) and hence also for (1, s+i, r+i) for 1 <i <n - r - 1.

Therefore for m > s the repeated application of (4.1) and (4.2) yields

. . _ 1 mtl m m*2
l1m pc(z, m, r; C) = m+1 n=-(r-m) = m+1 m+2 n-{r-m)
~>00
m mtl mtn-r-2 1 mn-r
m1 m+2 °°° mtn-r-1 mkn-r n-(r-m)

= ﬁ:%?:ﬁﬁ'[%'+ a%—.+,,,+ ﬁi%:F:T]’
But this is just equation (2a-2) of Gilbert and Mosteller (p. 39) for the
optimal probability of continuing in the continuous case for a sample of
size n' = n-(r-m) at stage r' = m; i.e., it is the probability for the
reduced strategy.

This then proves that as C tends to infinity the rules from the Dirichlet
process approach of the reduced rules of Section 2. Further, the optimal
probability of selecting a maximum therefore converges as C tends to infinity
to the optimal probability for the continuous distribution function case.

The convergence rate can be observed in Table 3.2.

The behavior as C tends to 0 is also quite interesting. Sethuraman
and Tiwari (1981) point out in general that the 1imit as C tends to zero in
the Dirichlet process does not correspond to the non-informative prior. As
C tends to zero, all observations are tied at X], a random value. In this
optimal stopping application, the only role of C is to regulate ties, so
this 1imit should be interpretable in this application.

Taking the Timit as C tends to 0, (3.1) becomes

Tim ps(m, r; C) = %—1im ps(m, r+1; C).
C-+0 C-0

Repeated application of this along with the Timiting initial condition implies
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1im P (m, ry C) = 1.

C-0
Equation (3.2) becomes
Tim pc(z, m, r;y C) = EF& Tim P. (2, my r41; C) + —-]1m pM(z+1 m, r+1; C)
C-+0 " 0
r-4

=2 1imopa(a, m, 415 C) + &
r 50 C r

Since lim p.(%2, m, n-135 C) = &2/(n-1), this becomes
0 ©

r-2 . (r-2)(r-241)

-2)...(n-2-2
w1 F () (r42) oy vt SR

(r+1)... (n-1)

lim p_ (2, my vy C) = %—[1 +
-0

+...+
Note that Tim P (2, my r; C) < 1 unless 1im Pe (¢, m, r+i; C) = 1 for all
C-+0 C-+0

1 <i<n-r-1. But lim pc(z, m, n-1; C) = H%T-which is < 1 unless m =1,

The conclusion is that the limiting strategy as C ~ 0 is to stop at a
relative maximum at Xr with configuration (2, m, r) if 2 <r. If2=1ra

more detailed analysis is necessary:

]1m [p( r, sY‘; C)_ps(]3 r; C)]'_'
C-+0

11m

60 o To (e, 1, r415 €)= p (1, ro1; O)1+ &2 [p_(r, 2, r+15 €)

C+r

C/2 .
- pS(Z’ r+l; )] + C+r pM(]s r+1, r+l; C)}

Since pM(l, r+1, r+1; C) 3_ps(2, r+1; C) because ps(m, r) is increasing in m,

it follows that 1im pC( 1, r; C) > Tim ps(r, 1, r; C); i.e., the optimal
Cc-+0 C-+0

strategy for r < n - 2 is to continue at (r, 1, r).
An inspection of Table 3.1 reveals that for n < 8 these limiting rules

are achieved at C = 0.1.



-19-

In that the optimal strategy based on the Dirichlet process is admittedly
complex, depending at the rth stage on £ and m, a simplified strategy is
proposed. Let D denote the number of distinct values in the sequence of
fixed length n from a Dirichlet process with nonatomic parameter with mass
C. If ties are completely ignored, the search for the optimal rule is then
similar to the approach of Gianinni-Pettitt (1979), who found an optimal
rule for a sequence of random length N, where N has a discrete uniform
distribution. For simplicity here, the reduced rules of Section 2 are
utilized if the number of distinct observations were known. The strategy

is to continue at Xr with a relative maximum of m distinct observations if
P{D 3_dC|m,r} > P{D < d_|[m,r}

where the reduced rule continues at Xr with m distinct observations if

D z_dc, stops if D f-ds’ is indifferent if possibly ds <D <'dc; the
strategy stops otherwise. This strategy does not depend on &, the number
tied at the relative maximum.

Consider the simplified rule for n = 8, C = 10. To easily obtain the
reduced rules, the optimal strategy for the continuous problem for n < 8
is displayed; for a sequence of length d, this rule stops at the first
relative maximum at stage s or later (from Gilbert and Mosteller (1966):

d 1 2 3 4 5 6 7 8

s 1 1,2 2 2 3 3 3 4.
Note indifference in stopping or continuing for d = 2. For a relative
maximum at (m,r) = (1,6), if D = 3 the reduced rule, discarding the first

five observations, continues; if D = 2 the reduced rule is indifferent;
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if D =1 the reduced rule stops. Now P{D = 3](1,6)}

' Ly Ly .
P[X6, X7 ¢{X], X2, X3, X4, X5}, X6 # X7]"(C+6)(C+7) = 0.3676 and

PID = 11(1,6)} = (c3g) (k) = 0.1544. Since 0.3674 > .1544, the simplified
rule continues at (1,6). At (m,r) = (2,4), dC = 5 and

108
P{D > 5|(2,4)} = T-75.76.77 L10#4+5+6+7] = 0.5602, so the rule continues

at (2,4). At (2,3), dc =5 and P{D > 5 (2,3)} = 0.6114, so again the rule
continues. For (m,r) = (2,5), ds = 4 and P{D < 4 (2,5)} = 0.7549; the rule
is to stop. The complete simplified rule is to continue if r < 3, and also
at (2,3) (2,4) and (1,r) (for r < 6) and to stop otherwise. The optimal
Dirichlet rule for n = 8, C = 10 from Table 3.1 continues when the simplified
rule does and also for (2,m,r) = (3,2,5) and (4,2,5). The optimal rule is
approximated by the simplified rule.
The Timiting behavior of these simplified rules are easily obtained.
As C tends to infinity, P{D = n-r+m|(m,r)} tends to 1. The rule is then
just the reduced rule at the mth stage for a sample of size n-r+m. As C
tends to zero, P{D = m|(m,r)} tends to 1 in which case one stops. These
Timiting cases are as in the limiting cases for the optimal Dirichlet rules.
If the parameter C is unknown for the Dirichlet process, it can be
estimated based on a previous sample. If n' denotes the size of the previous
sample and D' = d' is the observed number of distinct observations out of n',
then the maximum tikelihood approach of Ewens (1972) can be employed: the
estimate is the unique solution for C of the implicit equation:

P~ o) 1 1
= et et o)

For large n' the consistent estimator D'/log n' of Korwar and Hollander (1973)

is more easily computed.



-21-

An important question concerns the use of the Dirichlet process to
generate rules for the maximal selection from a sequence with ties if the
sequence is not from a Dirichlet process. If the sequence arises as a
random sample from a discrete distribution, the use of Dirichlet process
is particularly appropriate in that the prior from the Dirichlet process
concentrates its mass on discrete distributions. The selection of a
nonatomic measure as the parameter for the Dirichlet process is necessitated
by the fact that only relative ranks of the sequence are observable. In
addition, the resulting rules from the nonatomic measure depend only on the
mass C of this measure. The Timiting behavior of the Dirichlet rules as C
tends to 0 and tends to infinity strongly reinforces the use of C as a
mechanism to model the ties in the sequence. Therefore, prior information
concerning the incidence of ties would be incorporated into the procedure
by the choice of C. In particular, the distribution of D for the Dirichlet

model is given by Antoniak (1974):

P{D = d} = sﬁd) ¢dsctnl g,

where Cl:n:I = C(C+1)...(C+n-1) and Séd) is the absolute value of the Stirling
number of the first kind. Since the distribution of D for the random sample
from the discrete distribution depends on the probabilities at the atoms, C

could be chosen to approximate the prior belief of one's distribution of D.
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le Introduction

Let Xj2Xpse0e2X, denote a sequence of independent, identically

distributed random variables from distribution function F. The optimal
stopping problem of interest is to observe the X”s one at a time and
to stop at the maximum value, with no recall permitted. In this paper
it is assumed that F is not continuous, S0 the maximum is not neces—

sarily unique and the optimal sStrategy allows for ties.

If F is continuous but unknown, and the loess function is 0-1 (0
if maximum selected, 1 if not), the optimal rule depends only on the
relative ranks of the observations. This problem has been called the
{best choice) "secretary problem™; see Gilbert and Mosteller (1966)
for its history and solution. It will be referred to hereinafter as
the continuous problem, referring to the continuous distribution
function F, Yang (1974), Govindarajulu {(1975), Lorenzen {1979),
Petrucelli (1981), Rasmussen (1975), Smith (1975) and Smith and Deely
{1975) have discussed realistic generalizations of this problem. The
assumption of n fixed and known has been relaxed by Presman and Sonin

(1972), Rasmussen and Robbins (1975), Gianini—Pettitt (1979), and

irie (1980). Prior information in the form of relative ranks in a
previous sample has been treated by Campbell and Samuels {1981). It
the X’s are observable (not just the relative ranks), prior

information has been incorporated by Stewart (1978), Samuels {1981),

and Campbell {1983), among others,

The realistic generalization considered here is to allow ties; in
particular, assume F is not continuous or, alternately, the original
observations have been grouped into ordered categories. The loss

function is 0—1 {best choice problem).

Section 2 treats several approaches to ties in this problem. One
strategy is to randomly break ties and employ the optimal rule for the
continuous problem, Another intuitive strategy 4is to discard all

previous ties, If at Xr there are m distinct wvalues among

xl,...,xr, reduce n to n—(r—m) and reduce r to m and employ the

optimal rule for the continuocus problem. This will be referred to as

the reduced rule. A third approach assumes that an upper bound Kk on
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the number of atoms of the discretite distribution function F is known.
Minimax rules are obtained and the behavior of the rules as k tends to

infinity is investigated.

In Section 3 F is assumed to be randomly selected by a Dirichlet
process prior on the space of discrete distribution functions. The
parameter of this prior due to Ferguson (1973) is assumed nonatomicj;
the resulting strategy depends on the parameter only through the mass

C of the measure and depends also on the number of xl,...,xr tied

at the relative maximaum and the number of distinct wvalues of

Xl""‘xr' Rules are displayed for wvarious n and € and the

probability of correctly selecting a maximum is computed.

The limiting behavior of the rules developed in Section 3 |is
investigated in Section 4, As C approaches infinity it is proved that
the rules approach the reduced rules of Section 2. The usefulness of
the 1limit as C tends to 0 is also discussed; the resultant rule is to
continue if all are tied and to stop at a relative maximum otherwise.
The application of these rules based on the Dirichlet process to a
random sample from an arbitrary unknown discrete distribution function
is discussed, The estimation of C if it is unknown is considered,
Simplified rules utilizing the Dirichlet process and reduced rules are

also investigated and the limiting behavior of these rules studiede.

2. Randomized rules, reduced rules and minimax sirategies

In the event of ties among the X“s, a simple mechanism to break
them is to employ a random device to order the X°s tied at the
relative maximum, Having resolved the ties, the optimal strategy for
the continuous problem is then employed. Intuitively, ties with such
a strategy improve the probability of selecting the maximum without
ties in that one can select the maximum Hy either stopping or

continuing at a tied maximum value.

A second strategy is to discard all previous ties at each stage.
At stage r, let m denote the number of distinct wvalues of

X sevesaX, o« Then the number of tied X’s is —m (all ties are included,
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not just ties at the relative maximum value)., The reduced sStrategy is
then to reduce n to n“*n—(r-m) and r to r"=r—(r—m)=m and use the

optimal strategy for the continuous problem.

The final approach of this section requires the additional
information that the underlying distribution function F is discrete
with a known upper bound k on the number of atoms. It a prior were
placed on the atoms one could cbtain the Bayes rules., However, the

approach here is to develop minimax strategies.

This additional information can have a dramatic influence on the
optimal rule, especially for k<n, For example, suppose k=2. Then if

X1<X2, the optimal procedure is to stop at Xz. It is straightforward

in this example fto calculate the probability of failing to select the
maximum value with the strategy of continuing if all are tied and of
stopping at the first X larger than some previous X. If x and y denote
the atoms with x<y, the value y is not selected if all y”s precede any

of the x’s, It P, is the probability for atom x and p2=1—p1 for atom
v. the probability of not correctly selecting y is:

n—i

—1*92 n—z"ooo*pz plo

n
PoPy 2P,
The symmetry of this function in Py and pp implies here that it is

maximized for p1=112. Thus the probability of selecting the maximum
value y is bounded below by 1—(n—-1)2 B,

Contrast this strategy for k*2 with the randomized strategy in
the case n=3, The strategy of stopping at X2 if XI‘XZ and continuing
otherwise has probability of incorrect selection of papf*pgpl. If one

stops at X2 if x1:x2 the probability is 2p§p2. These are maximized

at p=1/2 and p=2/3 with probabilities of incorrect selection of 1/4

and 8/27, respectively. The randomized rule is to stop at XZ with

probability q if X1=X2. The probability of incorrect selection is

pfpa'qpfpa+(1—q)plp§ = p%p,*pp3%ap;p,(2p,—1).
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For 9111/2 and any qe[0,1]. this incorrect selection probability is

:pfpz*plpg and hence has maximum >1/4. Therefore, the minimax rule

is non—-randomized and continues at X2 it Xl=X2.

For k>2, suppose n=3, For simplicity initially consider k=3,

with probabilities P;s P, and pg for ordered atoms. At stage r,
with Xr a relative maximum, let 1 denote the number of Xl”“’xr tied

at the value of X.» and m the number of distinct values in X{s00e5X

r
Let (1l,m,r) denote this configuration, The optimal strategy for n=3,
k=3 is to continue at (1,1,1) and to stop at a relative maximum at
{1,2,2). The gquestion is whether to continue or not at (l,m,r)=(2,1,2);

ic.e., if X1=X2. The strategy which continues at (2,1,2) results in

an overall probability of incorrect selection of
plpg*n1p§'png*pfpz’pfps'p§p3*3p19293.

This function is symmetric in P1®Ppo=pPz3 and has maximum 1/3 at
pl=p2=93=313. Stopping at (2,1.2) yields an overall probability

of incorrect selection of

29%92*29§93*29593*3p1p293.
Since this is not symmetric, pl=pz=p3=1/3 is not a maximums; hence
the maximum exceeds 1/3., Thus, the minimax strategy is to continue at

{2,1,2)a This argument extends easily to k24, The probability of

maximal selection can be easily shown to be 1/2 +* (Zk)_l. The
probability of maximal selection for the continuous problem (no
ties) is 1/2,. Thus, the probability improvement for a small number

of atoms is substantial, yet shrinks to 0 as k tends to infinity.

For n24 the rules guickly become complex. The optimal strategy at
Xr depends on the configuration of ties of the X’“s, but not on the
order of arrangement of Xl,...,Xr provided Xr is still a relative

maximumi. In particular, it is not sufficient to record only ties at

the relative maximum value.



Fix n and iLet k increase, It is clear that the probability of
correct selection based on the minimax strategy with kX or fewer atoms
decrecases as k increases, This is so because a Lleast favorable

(pl,....Pk) for Kk atoms is included with an additional atom with

probability 0 in the (k*1) atoms case., As noted in the discussion of
randomization 1o break ties, ties increase the probability of correct
selection, Hence the 1least favorable distribution will tend +to

minimize the owprobability of ties., For k{>n) atoms, the upper
bound on the probability of no ties in n observations is
K{k—1)eos.{k—n*1)/k" (at p;=1/k), which tends to 1 as k tends to

infdinity. in the case of no ties, the rule reverts to the optimal
strategy for the classical continuous "secretary problem”. In
addition, as the probability of ties tends to zZero, the strategy for
such ties becomes idirrelevant, A conjecture based on the simple
examples of this section as well as additional investigation is that,

for k2n, the minimax rules based on k or fewer atoms are reduced rules.

As a last case, if the number kX of atoms is fixed and known and n
tends to infinity, the probability of correct selection tends to 1. A
more interesting unexplored problem is to introduce an interview cost
in this situation, as Govindarajulu (1975) does in the continuous

case.,

2. Ties and the Dirichlet process

In this section prior distribution function information in +the
form of a Dirichlet process on the real line is used to model the
ties, The Dirichlet process of Ferguson (1973) induces a prior
distribution on the set of all distribution functjonsj in fact, with
probability 1 it concentrates on the set of all discrete distribution
functions (see Berk and Savage (1979) for an elementary proof of this
discreteness)., This promotes ties and suggests that the Dirichlet pro—
cess may prove guite useful in treating the above selection problem
with ties, The single parameter of the Dirichlet process is a measure
a on the real line. If C denotes the mass ¢f the measure a, the shape

al +)/C corresponds to the prior distribution and the mass C to the
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"degree of belief" (Ferguson) in this shape. If the measure is atomic
at a point x (so ol {x})> 0), then with probability 1, the discrete dis—
tribution function randomly selected by the Dirichiet process jumps at
X In the above selection model, it is assumed in this section that

Xl,Xz....Xn are independent ididentically distributed from a

distribution function randomly selected by the process. Ties can
arise in two ways: first, at the atoms {(if any) of the measure and
secondly, at nonatomic points if not all the mass of the measure is
concentrated at atoms, This second source of ties is due to contagion
which arises from the discreteness of the selected distribution
function even if the measure is non—atomic, The purpose of
investigating the Dirichlet process in selection problems is not
because this contagion exhibited by Dirichlet processes arises so
frequently in nature but primarily as a device to incorporate prior
information into the problem. The Dirichlet process is particularly
suited to a selection problem with ties in that ties occur naturally

in such a model.

Consider the best choice selection problem in which the actual

values xl....xn from the Dirichlet process are observable (not.

just the relative ranks) and the measure & is known and non—atomic.
This has been treated by Campbell (1983); optimal rates have been
obtained and the probability of correct selection calculated, i1f a

is known and not non—atomic and the X’s observable the same
backward iterative approach of Campbell can be easily adapted to find
for the particular measure the optimal strategy and probability of
correct selection, In both cases (non—atomic or not), as C tends to
infinity for constant shape, one approaches the optimal strategy for
the «ase of independent, identically distributed observations from a
known distribution functionj; in the non—atomic case this is _just the
strategy of the "full information game” of Gilbert and Mosteller
{1566), For small values of C, the rule allows for the ties which can

occur even in the non—atomic case.

The purpose of this section is to use the Dirichlet process for
the selection problem in which only the relative ranks of the X’“s are
observable. If atoms occur in the measure of the process, the number’
and location of the atoms {although unknown) play a major role in the

optimal strategy. Hence only non—atomic measures are considered



below, Since only relative ranks are observable the shape of the
non—atomic measure will be shown to not be important and hence can be -
assumed to be unknown, The mass C of the measure will be required
since in the absence of atoms, it alone controls the probability of
ties. Rarely have the naturally occurring ties in the Dirichlet
process been fully exploited; see Camppell and Hollander (1978) for
one exampile. Furthermore, in applications of the Dirichlet process
usually € is required to play dual roles of reflecting the confidence
or “degree. of beliet®™ in the shape of the measure as well as
regulating the ties, The role of confidence is generally stressed in
applications and the aspect of tie regulation usually ignorede. Here,
since the shape of the measure is unknown, it is only the latter which
is importanti. Large values of C reduce the probability of tiess small
values inflate it; for example, for a Dirichlet process with non—atomic
measure of mass C, the probability that two observations from the pro—
cess are tied is 1/(C+*1). This suggests the use of the rules developed
belogw for the selection problem from an unknown distribution function
{not from a Dirichlet process), where C is used to reflect the prior

belief in the probability of ties; this is discussed in the next sectione.

Let Xl,....Xn denote a sample of size n from a Dirichlet pro—
cess with non—atomic measure of known mass C. For r»“m, let Xl”“xr
denote the observed X“s at the rth stage, ©of which m are distinct. Let
zl‘...<zm denote the ordered values of these X’s and k; the number of

the r X’s tied at z;» for i=l,...,m. Define z,=-= and z_,,*=. The

next theorem calculates the probability distribution for Xr*l'

Thegrem 3,1, I1If xl""’xr’xr*l is a sample from a Dirichlet process

with non—atomic measure with mass C then for the above notation,

conditional on Xl""’xr
a) P{Xr,l"zi} = ki/(C’r). i=1,...,m

b) P{xr,IE( ZiQZiﬁl’} = C/[(m’l)(C’r)]. i“'O_,l,...,m.

Proof. The proof of a) proceeds directly Ffrom application of the
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theorem of Ferguson (1973) that a Dirichlet process with parameter a,

conditional on a sample Xl,...,Xr, is again a Dirichlet process, with

r
updated measure g+ L sx

where 62 denotes the measure concentrating
i=1

i

unit mass at the point =z.

For b) assume without loss of generality that the measure is
concentrated uniformly on the interval [0,C] such that a([0,y]) = ¥

for ye[0,C]. Then the distribution of (zl,...,zm) is uniform over the

3 = < < < - < =
region O 20—21—22—"‘—zm—zm*1 Ce Therefore,

2 tor 1 = 1"..’m}

P{Xr,lf(zo,ZIQIXr.l ¢ z;

= aee [ 2, m! dz,eeo.dz _/C™*! = 1/me+1,
z. < <z 1 1 m
1 L2 N 3 m

But by a) P{X,.,; # z; for i=1,...,m} = C/(C*r)., Thus P{Xr,le(zo,zl)}

= C/[{m*1 )(C*r)]e For i®1l,.e.,m

P{Xrgle(zi,z‘igl )ixr*]’ f Zj. for 1’1,...,1!1}

= f P .r (Zi,l—zi) m! dzl...dzm/Cm"l.

zl.‘. Zm

A straightforward change of variables gives 1/{m*1) as for i=0 and the

theorem is proved.

Application of this theorem to the optimal stopping problem at

the rth stage., with Xr a relative maximum, gives
P{Xpa12X,} = {xp* €/(m*1)]/(C*r),

It is important to note that this probability depends on C, r, m, and

km, but not expicitly on kl""’km—l’ For convenience denote the

number km of ties at the relative maximum by 1, The probability Pg of

correct selection by stopping at'Xr and the probability P, of correct-
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selection by continuing at Xr with the optimal strategy are now derived

iteratively.

Theorem 3,2. If X .,e0e3X is from a Dirichlet process with
1 n

non—atomic parameter with mass C the probability of correctly

selecting the maximum value for Xl,...,X by stopping at a

n

relative maximum Xr is given by:

1

pS( 1.!]1.!‘;0) = ps(lsmsr’l;c) + ps(l*l-,m,t"'l;C)

{3.1)
mC/{m*1)

* ——E:;—*— pg{l,m*1,r*13C),

Proof. It is necessary to calculate P{X_ . j,see,X %2} If X, 52

then either X ,,=z or X ,,<z,, for i*m, or Xr,le(zi,zi,l) for ifm—1.

Since 1 denotes the number of ties at the relative maximum, the prob—
is tied with a

ability X _,,=z; for i=l,...m—1 is (r—-1)/(C*r). If X

i r*]l

previous X that is not a relative maximum, the probability Xr is a
relative maximum is the probability xr*2""’xn are also :zm which is

ps(l,m,r*l;C). I£f X =z s Which occurs with probability 1/{(C*r), the

r*]

probability xr,z,....xn are jzm is ps(lfl,m,r’l;c). It Xr,le{zi,zi,l)

for some i 0O,s..e,m—1, which occurs with probability mC/[(m*1)(C*r)],

the conditional probability X. is a maximum is ps(l,m*l,r*l;C). The

proof is complete.

It is possible to calculate P at stage r by backward iteration

from stage n—1 together witith the initial condition

pg(l,m,0—15C) = [(n—1)*mC/(m*1)]/(C*n—-1).

In that the initial condition does not depend on 1, neither does Pg

for the rtib stage. Thus, for convenience the notation ps(m,r;C)
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will be used for this prodbability.

The fuanction ps(m,r;C) is increasing in m, This is proved by

backward induction on r, It is trivial for r=n—1,., Further, if it is

true for r=s+] then
s
pg(m*1,55C)pgl(m,s;C) = . [pgim*1,8*15C)pg(m,s+135C) ]
s

oC/{m*1)
+ ———E:-—— ps(m*Z,s*l;C)—ps(m’i,s*l;C)]
S

C
*
[(C*s){m*1 ) (m*2)]

pg(m*235s+15C).

Applying the induction hypothesis for r=s5+*1 proves monotonicity of

ps(m,s;c) in m for r=s, Similar arguments prove ps(m,r;c) is

decreasing in C and ps(m*l,r*i;c) is increasing in i for i<n—r.,

Thegrem 3.3« if Xl""xn is <from a Dirichlet process with

non—atomic parameter with mass C the probability of correctly

selecting the maximum value for xl,...,x by continuing at X _ with

n r

fthe optimal strategy is given by:

r—1 mC/(m*1) :
p(l,m,r;C) = oo p(l,m,r*15C) » e Pe(l,m*1,r+13C)
(3.2)
1 C/(m*1)
* Gor Pull*1.m,715C) ¢ ————— py(l,m*1,r*13C)
where

Pyl t,m,r3C) = max| pglm,r;Cl,p (1l,m,r;C)],

Progf. There are four cases for X,.;. If X,.+1=2z; for some i<m, which

occurs with probability (r—1)/(C+*r), one must continue with correct

selection probability pc(l,m,ril;c). if Xr*le(zi’zi’l) for some i“m,
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which has probability mC/[ (m*1 M C+*r)], again one must continue, with

probability pctl,m*l,r*l;C}. if Xr*l=z with probability 1/(C*r), it

m'
is unclear whether to stop or continue to use the better sStrategy of.

the two with probability pM(l*l,m,r*l,C). Lastly, if X with

>
r+*l “m
probability C/{(m#1)(C*r)], the maximum conditional probability is

pﬁ(l,m*l,r*i;C).

The initial condition for the backward iteration on r is obtained

from Theorem 3,132

P (l,m,n—13C) = {1+[C/(m*1)]}/(C*r).

For any C and n one tan calculate p_ and p for any {(l,m,r)
s c

configuration and hence determine whether to stop or continue for any

X ..

The expression pc(l,m,r;C) is increasing in 1., Again a

backward induction argument is used, For r=n—1, it is trivially

true. If it is true for r=s*]l then

s—1—1

p(l+i,m,8;C) — p_(1,m,s3C)
c c Crs

[p.(1*1,m,s*15C)

mC/{m*1)

- P (l,m,s*135C)] + P

[pc(1+1,m*1,5+15C)

{(1+1)
— pll,m*1,s%13C)] + oin py(l*2,m,s*1;C)

1
C+g

1
pyl{l*l,m,s*15C) — E:; Pcll,m,s*1;5C).

By the induction hypothesis the first two terms on the right are

positive, Further, since pc(1,m,s*1;C):pH(1,m,s*1;C) the remaining

terms on the right are > [pM(1*2,m,s*1;c)—pM(l*l,m,s*l;C)] +

Cs*g
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1
—— [py(l*2,m,s*13C)py(l,m,5*13C)] which by induction is positive. Thus
C*sg M M

pc(1*1.m,s;031pc(1,m,s;c); the induction is complete.

The ramification of this result is as follows, Since pg does
not depend on 1 and P, increases in 1, if there is a configuration
{l,m,r) for which pc>ps then the optimal strategy is to continue for

all (1",m,r) configurations, where LX1” <r—m*1,

The value of C can influence the decision to stop or to vontinue,

For example, for n = 5,

52 9 5 2 3
p_(1,2,23C) = (24 + —C * —C< + —C7)/[(C*2)C*3)(C*4) ];
3 2 5

9 5 13 3
p.(1,2,235C) = (18 + 16C + —C% + —C7)/[(C*2)C*3)(C*4)].
2 30

Therefore at X, (>X1) the optimal rule is to stop if C<Cy and to con—

tinue if C’CO whe re Cos?.93. The complete rule for n=5 is to continue

also at (1,1,13, (2,1,2), (3,1,3) and to stop otherwise., At (4,1,4)

it doesn’t matter whether one stops or continues.

Optimal rules are presented for n*8 and for various € in

Table 3.1l. In particular, the (l,m,r) configurations at which one
continues are listed. The configuration (r,1,r) appears in all.
cases, in that the optimal strategy is always to continue at (r,l,r)

if r*n-2, with indifference at r*n—i, It is interesting

to note that the strategies for C=100 are just the reduced rules of

Section 2.

Table 3,2 contains the probabilities of correct selection for the

optimal strategies; it is just a table of pcll,l,l;C) for various

values of n and €, For comparison the optimal probability for the
continuous case as in Gilbert and Mosteller {196&£) is presented in the

last column of the table.,
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TABLE 3.1

(2,m,r) CONFIGURATIONS AT WHICH THE
OPTIMAL STRATEGY FOR DIRICHLET SAMPLES IS

TO CONTINUE (1<r<n-2)
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continuous
n\\ C 0.4 1.0 10 100 1000 case
2 .9545 .7500 .5455 .50495 .5005 .5000
3 .9545 .7500 .5455 .50495 .5005 .5000
4 .9615 .7691 .5241 .4657 .4591 .4583
5 . 9682 .7802 .5004 L4411 L4341 .4333
6 .9733 .7825 .5050 L4371 .4287 .4279
7 .9769 . 7805 .5048 .4254 .4154 .4143
8 .9793 . 7897 .5007 .4213 .4110 .4098
9 .9809 .7948 .5066 L4191 .4073 .4060
10 .9819 .7982 .5097 .4135 .4002 .3987
12 .9835 .8047 .5156 4124 .3973 . 3955
15 .9849 .8132 .5260 .4100 .3916 . 3894
20 .9858 .8242 .5435 .4102 .3870 .3842
TABLE 3.2

OPTIMAL PROBABILITIES OF CORRECT SELECTION

FOR DIRICHLET PROCESS SAMPLES
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4, Asymptotic rules and discussion

The 1limiting behavior of the strategies of Section 3 is examined.

First consider the linit as C tends to infinity. Then equation

{3.,1) becomes:

lim p (m,r;C) =

L lim p(m*1,r*13C),
s a0

m+1l Co»x
Repeated application and the known limit for sStage r=n—1 yields:

m m*i m+n—r—1 m
{4.1) 1im ps(m,r;C)= PN = -
Cow» m*l m*2 m*n—r m*n-rpr

Note that this is merely the probability of correct selection by
stopping for the <continuous version of the problem where ties are
completely ignored. This 1is the appropriate probability for the
reduced strategy of Section 23 namely, discard the r—m tied values,
reducing n t6 n”"*n—{r—m) and reducing r to m, and obtain the analogous

probability for the classic untied strategye.

Similarly, equation (3.2) becomes:

m
iim p (1l,m,r;C) = lim p {(l,m*1,r*+135C)
C»m ’ m*l Corw
(4.2)
1
* —— 1lim pM(l,m"l,r’l;C).
m?*l Coe

For 1=1, éim Pl l,m*i,r+i;C) is decreasing in i for 0Z2ifn—r-1.
-~ a0

This is so because

lim p {1,m,r3C) — 1lim p (1,m*1,r*15C) =
C> Lo
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1

m*1

lim

i
puyll,m*1,r*13C) — —— 1lim p (1,m*1l,r+1;C) 2 O,
Cow N c

m*] Cow

On the other hand ps(m*i,r*i;C) is increasing in i for 0fifn—-r-1.

Thus in the limit as C tends to infinity there exists a unique s

depending on n and r such that the optimal rule is to stop at (i,s,r)

(for the unique minimum s) and hence also for (1l,sti,r*i) for 1<ji<

n—r—1i,

Therefore for m2>s the repeated application of (4.,1) and (4.2)
yvields
m*] m 1 m*2
lim pc(l,m,r;C) *
Coo m#*]1 n—(r—m) m*l m*2 n—(r—m)
m m*l m*n—r—2 1 m+n—r

m*]l m*2

m*n—r—1 m*n—r n—{ r-m)

i m

m
B ——

m*}

n—{r—m) =

But this is just equation 39) for

the

{2a—2) of Gilbert and Mosteller (p.

optimal probabiility of continuing in the continuous case for a

sample of size n“=n—(r—m) at stage r’*m; i.e., it is the probability

for the reduced strategye.

This then proves that as C tends to infinity the rules from the

Dirichlet process approach those of the reduced rules of Section 2, Fur-—

ther, the optimal probability of selecting a maximum therefore converges

as C tends to infinity to the optimal probability for the continuous

distribution function case, The convergence rate can be observed in

Table 32

The behavior as C tends +to zero is also quite interesting,.

Sethuraman and Tiwarji {(1982) point out in general that the limit as C

tends to zero in the Dirichlet process does not correspond to the

non—informative prior., AsSs C tends to zero, all observations are tied

at Xl, a random value, In this optimal stopping application, the
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only role of C is to regulate ties, s0 this 1limit should be

interpretable in this application.

Taking the Llimit as C tends to 0, (3.1) becomes

lim ps(m,r;C) =

1lim ps(m,r*l;C).
C-»0

C-=0

Bin

Repeated application of this along with the limiting initial condition

implies

%ig pg{m,r;C) 1.

Equation (3.2) becomes

r—1 1
lim pc(l.m,r;c) = = 1lim pc(l,m,r*l;c) + — 1lim pM(l*l,m,r*l;C)
=0 i r C-=0 r C—-0
r—1 1
= = 1lim pc(l,m,r*I;C) + —
r C-0 r

Since éig pc(l,m,n—l;c) = 1/{n—1), this becomes
i

[ r—1 (r—1)(r—121)
li (L,m,r3C) = — [1 + * v
cag PetltemeTs r r+1 (e+1)r+2)

{r—1)...( ﬂ_l—Z)
* ese ¥ ].

{r+1 )..‘( n—1)

Note that lim p (1l,m.r3C)<1 unless lim p (l,m,r*ij;C)=1 for all
C-+0 Cc—»0

1

1%in—r-1, But éim pc(l,m,n—l;C)=——I which is <1 unless m=1.
gt n—

The conclusion is that the linmiting sirategy as C tends to =zero

is to stop at a relative maximum at'Xr with configuration (l,m,r) if

1 r. 1f 1l=r a more detailed analysis is necessary:
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r

im [p (r.1,r3C)pg{1,r;C)] = Llim {

1 1 [pyle*1,1,r+15C)
C=0 C+0 C*r

c/2

C*r

— pgli,r*15C)] + [Pe(r,2,r*15C)

c/2
- pg(2,r*13C)] * — py(1,2,r*15C)}.
C*r

Since pu(1,2.r91;C):ps(2,r+1;C) because ps(m,r;C) is increasing

in m, it follows that 1lim pC(r,l,r;C) 2> 1lim ps(l,r;ﬂ);vi.e., the
C+»0 -0

optimal strategy for r<*n—2 is to continue at (r,1,r).,

An inspection of Tabie 3,1 reveals that for n<8 these limiting

rules are achieved at C=0,1.,

In that the optimal stratezy based on the Dirichlet: process is
admittedly complex, depending at the rth stage on 1 and m, a
simplified strategy is proposed, Let D denote the number of distinct
values in the sequence of fixed length n from a Dirichlet process with
non—atomic parame ter with mass C, If ties are completely ignored, the
search for the optimal rule is then similar to the approach of
Gianini—-Pettitt (1979), who found an optimal rule for a sequence of
random length N, where N has a discrete uniform distribution, For
"simplicity here, the reduced rules of Section 2 are utilized iFf the
number of distinct observations are Known, The strategy is to
continue with a relative wmaximum at sStage r with m distinct

observations if

P{D2d_ lm,r} > P{D=dglm,r}

where the reduced rule continues at Xy with m distinct  observations
if D:dc, stops if D:ds, is indifferent if dS<D‘dc. This strategy does

not depend on 1, the number tied at the relative maximum.

Consider the simplified rule for n=8, €C=10, 7To easily obtain the

reduced rules, the optimal strategy for the continuous problem for n<8
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is displayed; for a sequence of length d, this rule stops at the first
relative maximum at stage s or later (from Gilbert and Mosteller

(1966)):

Note indifference in stopping or continuing for d=2, For a relative
maximum at {(m,r)=(1,6), if D=3 the‘reduced rule, discarding the
first five observations, continues; if D=2 the reduced rule is
indifferent; if D=1 the reduced rule stops. Now P{D=31{1,6)} =

C C

P[X7,Xg {X;,X5,X3,X4.X5,Xg} . X77 Xg] = = 0.3676 and P{D=11(1,6)}

C+*6 C*+7

6 7

—— = 0.1544, Since 0,3674%0,1544, the simplified rule continues
C*6 C+7

at (1.6)., At (m,r)=(2,4), d_=4 and d_=5. Now P{D>51(2,4)} =

3
10
{10%*4+5%6+7] = 0,5602, so the rule continues at (2,4),
14°15°16°17

At (2,.3), d_=4, d_=5 and P{D>51(2,3)}=0.6114, so the rule continues.,

For (m,r)={2,5), d_=4 and P{DZ41(2,5)}=0.7549; the rule is to stop.

The complete simplified rule is to continue if r<3, and also at (2,3),

(2,4) and {1,r) (for r<6) and to stop otherwise, The optimal Dirichlet

rule for n=8, C=10 from Table 3,1 continues when the simplified rule
does and also for (IL,m,r)=(3,2,5) and (4,2,5). The optimal rule is

approximated by the simplified rule.

The limiting behavior of these simplified rules is easily
obtained. As C tends to infinity, P{D=n-r+*ml(m,r)} tends to 1, The
rule is then Jjust the reduced rule at the mth stage for a sample of
size n—r*m, As C tends to zero, P{D=mi(m,r)} tends to 1 in which
case one stops, These limiting cases are as in the limiting cases for

the optimal Dirichlet rules,

If the parameter C is unknown for the Dirichlet process, it can
be estimated based on a previous sample, If n” denotes the size of
the previous sample and D7 =d’ 15 the observed number of distinct

observations out of n’, then the maximum likelihood approach of Ewens
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{1972) can be employeds: the estimate is the unigue solution for C. of
the implicit egquation:
101 1

d’ = C(_’ ’ooo'—-‘—_).

C C+1 C#*n’—1

For large n” the consistent estimator D”/log n” of Korwar and

Hollander (1973) is more easily computed.,

An important question concerns the use of the Dirichlet Process
t0 generate rules for the maximal selection from a sequence with ties
if the sequence is pnot from a Dirichlet process, If the sequence
arises as a random sample from a discrete distribution, the use of
Dirichiet process is particularly appropriate in that the prior from
the Dirichlet process concentrates its mass on discrete distributionse.
The selection of‘ a4 non—atomic measure as the parameter for the
Dirichlet process is necessitated by the fact that only relative ranks
of the sequence are observable, In addition, the resulting rules from
the non—atomic measure depend only on the mass C of this measure, The
limiting behavior of the Dirichlet rules as C tends to 0 and tends to
infinity strongly reinforces the use of C as a mechanism to model the
ties in the sequence, Therefore, prior information concerning the
incidence of ties would be incorporated into the procedure by the
choice of C, In particular, the distribution of D for the Dirichlet
model is given by Antoniak (1974):

P{D=d} = S;d’cd/c[“] d=1l,eee50,

where ¢ln) = c(c*1)e..(C*n—1) and s{d) is the absolute value of the

Stirling number of the first kind. Since the distribution of D for the
random sample from the discrete distribution depends on the probabilities
at the atoms, C could be chosen to approximate the prior belief of one’s

distribution of D.
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