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ABSTRACT

The convergence rates of large deviations probabilities are determined
for a class of estimators of a real parameter. We also give a simple upper
bound for probabilities of large deviations when the latter are measured

in terms of the Chernoff function.

Key words and phrases: Probabilites of large deviations, minimum contrast
estimators, M-estimators, Chernoff function.

AMS 1980 subject classifications. Primary 62F12, Secondary 62F35, 62E20,62B10.



1. Introduction and Summary

Let {Pe’ o€ @} be a family of probability distributions over a
space X and assume that the parameter space ® is an open subset of the
real line. If x = (X]""’Xn) is a random sample from this family and
§ =6&(x) is a consistent estimator of 6, then the rate at which Pe{|6-6|>e}
tends to zero for a fixed ¢ > 0 is of importance in large sample estimation
theory. In the case of a more general parameter space with a metric D
these probabilities of large deviations have the form %{D(6,6)>e}. Useful
lower bounds for the Tlimits of these probabilities have been obtained by
Bahadur (see Bahadur «ﬂgﬁ]? and Bahadur, Gupta and Zabell (1980)).
Further results concerning the asymptotical behavior of large deviations
probabilities for various estimators have been given by Fu (1973), (1975).
In this paper we determine the exact rate of convergence of large
deviations probabilities for a class of approximate M-estimators,
consistency of which has been established by Huber (1967). In Section
2 a simple upper bound is obtained for probabilities of large deviations
when these are measured by means of the Chernoff function and the

parameter takes values in an abstract space.

2. An Upper Bound for Large Deviations Probabilities.

Let XpsXose o be a sequence of i.i.d. random variables wtih common

distribution P = Pe where 89 is a fixed parametric value. In this section we
0
consider a class of statistics'6=5h(5) such that there exists a sequence > 9,70,

n

-1 , 1"
W(x.,8) - W (X., .
n % (xJ ) 1re1f noy (xJ ) <4,

1
Here W is a measurable real function on X x ®, and the parameter space @ is



assumed to be a locally compact Hausdorffrtopologica1 space.

This class of approximate minimum contrast estimators (which of course
includes maximum 1ikelihood estimators) was considered by Huber (1967).
Using the idea of original Wald's proof (1949) Huber under mild regularity
conditions proved the consistency of statistics from this class (see also
Pfanzagl (1969), Perlman (1972)).

Under somewhat different assumptions we show that the large deviation
probabilities for these procedures tend to zero exponentially fast and give
a simple upper bound for these probabilities.

Denote for any measurable set C

q(x,C) = inf W(x,t)
teC

and

p(C) = 1ng E .exp{s[W(x,eO)- q(x,C)1}.
s>

Qur assumptions have the form:-
Assumption 1. For all e# %9

E[W(x,8,) - W(x,8)] < O.

0

Assumption 2. For any a, 0 < a < 1 there exists a compact set A and sets

D.s k = 1,...,K such that u D, > A and

k

o (8,) < a k=1,...,K. (2.1)

k

Assumption 3. For any ¢ and positive ¢ there exists a neighborhood B of

8 such that
p (B) < po(8) + e, (2.2)
where po(8) = p({8}) is the Chernoff function,

p(6) = inf E exp{s[W(x,0,) - W(x,0)]}.
s>0 0



2a

Notice that Assumption 3 is quite similar to Assumption 2 of Bahadur
(1965) where it was used to prove asymptotic optimality of the like-

1ihood ratio test.
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Theorem 1, Under Assumptions 1-3 for any a, 0 < a < 1

T/
1im sup P /n{p(é),f_a} < a.

N>
Proof. Since p(eo) = 1 > a, the point 0, does not belong to the set

E={6: p(6) < a}. Also the event 6 ¢ E 1implies that

-1 0 -1 8
infn ' J W(x.,8) <n ] W(x,,s).
o€k 1 J 1 J

Since for any fixed positive €y and all sufficiently large n

=
1
—
—~1S

'I n
W(x.,6) - n . ) W( x 0
! 1

: n R
<n ) W( x »8) = inf n " ) W(x.,8).< e,
1 i 0

one concludes that the event & €E implies

o futeg o v Pt
inf n x ,0) < n W(x.,6 + e,
o¢E i -7 3o
Thus for large n
-1 0 -1 0
P{p(8) <a} < P{infn '} W(x.,8) <n "} w(x.,eo) tegl (2.3)
0€E T Y 17

Let A and D, k = 1,...,K be the sets such that (2.1) holds, and for a pos-
itive ¢ let Be be a neighborhood of 6 for which (2.2) is satisfied. Then the compact
set C = ANE is covered by open sets Be,eec. Therefore there exists a
finite subcovering, say, B]""’Bm of C.

Denote for i=1,...,m> P =m+ T,...,m+K

qi(x) q (XaBi)a

a,(x) = a (6D ).

1

1

One has with M = m + K

-1 9 -1 0
inf n ) W(xj,e) > min n '} qi(xj).

o€k 1 1<i<M 1



It follows from (2.3)

1 n

P{s€E} < P{ min n ' ] [W(x:0,) - q.(x.)] + e, > 0}
T<i<M | 0
M g0

< ) P{n % [W(xj,eo) - qi(xj)] teg > 0}

i=1

T Lilx00) - g, (x))] 0)

< M max P {n W(x,,064) - q;(x;)] + e, > O}.
- 1<i<M pooren a0

Because of Chernoff's Theorem (see Chernoff (1952))

P]/n {n—] E[W(x 6~) - q:(x:)] *+ e, > 0}
L2007 T 4y 0

Se

>infe VE exp {s[W(X,eo) - q;(X)13,
s>0
so that 1 se
limsup P /7 (€€} < max infe O E exp(s[N(X,0,) - a;(X)1L (2.4)

1<i<M s>0
Notice that for a fixed i, i = 1,...,M and any positive € there exists S4
such that

E exp{s][w(x,eo) - qi(x)}}< inf E exp{s[w(X,eO) - qi(X)]} e

s>0
Therefore for sufficiently small £y
Se S-Ieo

infe O E exp{s[w(X,eO) - qi(X)]} <e

E exp{s][w(X,eo) - qi(X)]}
s>0

< inf E exp{s[W(X,eO) - qi(X)]} + 251.
s>0

Thus in (2.4) we can let £ tend to zero and obtain



1
1im sup P /n {8 €E} < max inf E exp{s[W(X,eo) - q.(X)713.
T<i<M s>0 !

Assumption 3 entails for i=1,...,m

inf E exp{s[w(X,eo) - qi(X)]};g_p(ei) te<a+e,
s>0

and because of Assumption 2 for i = m + 1,...,M

inf E exp{s[w(X,eo) - q.(X)1} < a.
$>0 1

Since e was an arbitrary positive number Theorem 1 is proven.

1
Remark 1. For smooth functions W the probability P /n (p(8) < a) for
small a typically behaves as a® with ¢ > 2. However examples with discrete
parameter 6 or nondifferentiable functions W show that the bound of Theorem 1

is the best possib]e without any regularity assumptions (.l1so see Section 3j.

Remark 2. Assumptions 2 and 3 can be modified and weakened. For instance
the function p(C) can be replaced by
| i 1/m
[1nf E exp {s } [W(x-,eo) -q (x.,C)]}] )
550 1 J J

where m is an fixed positive integer and (xl,...,xm) are i.i.d. random
variables with distribution P. (See Perlman (1972)). These modifications
(with m>2) allow to establish Theorem 1 for location-scale parameter

families under mild moment conditions.

3. Convergence Rates for Approximate M-estimators.

In this section we determine the exact convergence rate for some approximate
M-estimators of a real parameter 6. These estimators & satisfy the following
condition: there exists a (nonrandom) sequence d,> 9, > 0 such that

n
|n %W(X\]-,G)'iqn'



Here w(x,0) is a real function over X x R. The cbhsistehCy
of approximate M-estimators has been also established by Huber (1967).

Theorem 2. Assume that for each fixed x, w(x,-) i5 a decreasing function, and let

$ =6n(§) be the corresponding approximate M-estimator. If for a positive e
Pe{w(X,e+-e) > 0} > 0, (3.1)
then
pé/”{a >80 + ¢} » inf Ee exp{sw(X,o+e)} = e](e,e), (3.2)
s>0
Pa/M(s < 6 - e} > inf E, expl-sw(X,0-¢)} = e,(6,e) (3.3)
0 s3>0
and
P/ "] 6-6] > e} » maxle;(8,c), ey(0,¢)]. (3.4)

Proof. One has for arbitrary small positive £y

1

n -
Pe{6>6+s}i Pe{n %:W(Xj’n) > -gg for n <6 + ¢}

PRSI ]
= P in % w(xj,e +e) > ep’-

Also
-1 "
P, In % w(xj,ei-e) > egh <P {8 > o+el.

Applying Chernoff's Theorem we obtain
-Se
inf e
s>0

1
O, expisw(X,0+¢e)) < Tim P,/ "6 > o+ e)
Sso ‘
< inf e 7 E  exp{sw(X,6+c)} (3.5)
s>0



Because of (3.1) the functions of £0 in (3.5) are continuous. Since ey Was

arbitrary one deduces

. 1/n
Tim Pe

{§ > 6+¢} = inf Ee exp{sw(X,o+e)} .
5>0

Analogously formula (3.3) is established which together with (3.2) implies (3.4).

Remark 1. It follows from Theorem 2 that the probabilities of large
deviations Pe{LG—el > ¢} tend to zero exponentially fast if and only if

both infima in (3.4) are smaller than one, i.e.

Ee w(X,e+e) <0

and
Ee w(X,0~-¢) > 0.

These conditions are met of course when

E, w(X,8) = 0 (3.6)
and w(x,0) is strictly monotone. In the case when w(x,8) = Tog' p(x,8),
wehre p(x,8) is the density of Pe’ (so that approximate maximum 1ikelihood
estimator obtains) condition (3.6) is satisfied under mild regularity

assumptions. Monotonicity of w(x,8) means the log-concavity of p(x,8).

Remark 2. Notice that Theorem 2 does not hold if the function w is not
monotone. This can be seen by the example where w is the 1ogarjthm1c
derivative of Cauchy distribution density with location. parameter 6. In

this case probabilities of large deviations for the maximum Tikelihood
estimator do not have the rate given by the right-hand side of (3.4). However
if the latter is a decreasing function of ¢ and assumptions of Theorem 1 are

met then (3.4) provides an upper bound for probabilities of large deviations.
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In the case of Cauchy distribution this monotonicity does not hold but
Theorem 1 shows that probability of large deviations decrease exponentially.
Their precise rate is unknown and its determination seems to be a difficult

problem.

Remark 3. Note that one can derive from Theorem 2 a class of estimators 3
‘which are asymptotically efficient after Bahadur:

Tim Vim 07! <78 log P (|8 6] > e} = -1(0)/2. (3.7)

e+ nreo

Indeed (3.7) holds if & is an approximate M-estimator with w(x,6) = Tog"p(x,8),
which is easy to check by taking Timit as ¢ tends to zero for the logarithm of the

right-hand side of (3.4). An analogue of the result of Fu (1973) concerning

asymptotical efficiency of the generalized maximum 1likelihood estimator 3,

n n
I p(x,, §)A(8) = max I p(x.,0)r(e),
1Y o 1 Y

can be obtained from this remark since § is an approximate M-estimator with

w(x,0) = log'p(x,6) (the last function is assumed to be monotone and the

function log'Xx is assumed to be bounded).

Remark 4. Assume that o is real location parameter, and let § be the Pitman

estimator in the problem of confidence estimation of & by means of an interval

of width 2e, i.e.

n n
Ip(x, -6 -e) =T p(x, - &+ ¢g).
PR P

If w(x,8) = w(x-9) and 8 js the corresponding equivariant M-estimator, then

the comparison of § and 6] shows that

max[inf [ p]—S (x)p> (x + 2¢)dx]
>0

B

< max[inf [ exp{sw(x + €)} p(x)dx].
s>0



It is assumed here that log p is a concave function (i.e. the family

{p(- - ©)} has a monotone likelihood ratio) and that w is a monotone function.

Remark 5. Theorem 2 holds if the approximate M-estimators s are defined as

follows: for any measurable set E and a positive ¢

0
1"
) w(xj,t) > egs tEE} a8 ¢E}
1 ,
IR
C{n ZW(stt) > 'Eos tEE},

1
if n_is sufficiently large.

As an application of Theorem 2 let us consider the situation when

w(x,8) = x-p(e)
where ¢ is an increasing function. Clearly the corresponding M-estimator §

satisfies the condition

and
Pe(é > 6 +¢g) = Pe(i > y(e+e)) = Pe(x_i a).
Thus Theorem 2 contains Chernoff's Theorem,

o > a) » inf E

s>0

X5 (X-2)3,

as a particular case.
In another example Tet w(x,08) = -1, x < 8; =1, x > 6. Then the
corresponding M-estimator can be interpreted as the median, ¢ = x(]/z), and

1/n . S -S
Pe (X(]/Z) >0+ ¢g) > gzg[e Pe(X >0 +e)+e Pe(X <8+ e)]

= [2Pe(X <9 + a)Pe(X > 0 + 8)]]/2.‘
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For instance, P is a double exponential distribution, then according
to this formula

P1/n(

: ‘|9|/2(2_e'le|)1/2 = o(0).

X(1/2) > 6 +e)>e

Since for W(x,6) = |x-8| + log 2

p(e) inf E exp{s[W(x,0)-W(x,6)]}

6>0

e 18172014161 /2),

Theorem 1 implies that

1/n

Tim Pe

g

(|X(]/2)I > t) < o(t).
This inequality means

(2-e” 1t h/2 (4161 2).

In this example, log o(6)/1og p(6) decreases from 4 as |e| ~ 0 to 1

as |8] -+ ~. This shows that the bound in Theorem 1 cannot be. improved.
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