Minimax Estimators that Shift Towards a Hypersphere for Location Vectors of Spherically Symmetric Distributions

by

M. E. Bock*

Technical Report #81-51

Department of Statistics Purdue University

revised June 1983

*This research was supported by NSF grant #MCS-81-01670.

Minimax Estimators that Shift Towards a Hypersphere for Location Vectors of Spherically Symmetric Distributions

bу

M. E. Bock *
Department of Statistics
Purdue University

^{*}This research was supported by NSF grant MCS-81-01670.

Running Title: Minimax Estimators to a Hypersphere

Address: M. E. Bock

Department of Statistics
Mathematical Sciences Building
Purdue University
West Lafayette, IN 47907

ABSTRACT

Let X be a p-dimensional random vector with density $f(||X-\theta||)$ where θ is an unknown location vector. For $p \ge 3$, conditions on f are given for which there exist minimax estimators $\hat{\theta}(X)$ satisfying $||X|| \cdot ||\hat{\theta}(X) - X|| \le C$, where C is a known constant depending on f. (The positive part estimator is among them.) The loss function is a nondecreasing concave function of $||\hat{\theta}-\theta||^2$. If θ is assumed likely to lie in a ball in \mathbb{R}^p , then minimax estimators are given which shrink from the observation X in the direction of P(X) the closest point on the surface of the ball. The amount of shrinkage depends on the distance of X from the ball.

<u>Key Words and Phrases</u>. Minimax Estimation, spherically symmetric, multivariate, shrinkage estimator, location vector, positive part estimator.

AMS 1970 subject classifications. Primary 62C99; Secondary 62F10, 62H99.

Section 1. Introduction

The problem considered is that of estimating the p-dimensional location vector θ for a p-dimensional random vector X under the nondecreasing non-negative concave loss function ℓ , i.e.,

$$L(\theta, \hat{\theta}) = \ell(||\hat{\theta} - \theta||^2),$$

where " $||\cdot||$ " denotes the Euclidean norm. It is assumed that p is three or more and that the distribution of X is spherically symmetric about θ . Assume that $E_{\theta=0}[||X||^{-2}]$ and $E_{\theta=0}[||X||^2]$ and $E_{\theta=0}[||X||^2]$ and $E_{\theta=0}[||X||^2]$

Because the minimax invariant estimator X has constant risk for all values of θ , a reasonable guess as to the location of θ may be very useful in specifying a better minimax estimator. That is, one may use a minimax estimator which has the property that the smallest values of the risk function occur for values of θ close to the "guessed" location of θ ; yet all the values of the risk function are less than or equal to the constant risk of the estimator X. When the "guess" is the specification of a single vector, the minimax estimators of Section 2 have this property. (In subsection b it is assumed that the "guess" is that θ is the zero vector but it can clearly be any vector.) Consider the situation where the "guess" is that θ is likely to lie in a ball of radius G centered at the vector β (i.e., $||\theta-\beta|| \leq G$). For values of θ outside the ball the estimators of Section 3 have smaller risk when θ is closer to the ball. For values of θ inside the ball, the estimators in

Section 3 may be specified so that the actual loss (rather than the expected loss or risk) is less than or equal to that of X no matter what the distribution of X. It should be noted that results for the closed convex polyhedron like those for the ball in Section 3 have been obtained for the normal distribution in [2] for squared error loss. (In the case that the "guess" is that θ is likely to satisfy a finite system of linear inequalities, then θ is thought likely to lie in the closed convex polyhedron that satisfies that finite system of linear inequalities.)

It is assumed that the density of the random vector X may be represented by the function $f(||X-\theta||)$. In Section 2 various conditions on the density function f of X and the loss function ℓ are presented under which there exist minimax estimators $\hat{\theta}(X)$ satisfying $||X|| \cdot ||\hat{\theta}(X) - X|| \le C$ where C is a known constant depending on f. In particular, $\hat{\theta}(X)$ has the form $(1-r(||X||^2)/||X||^2)X$ where r is a nondecreasing function such that $\{r(t)/t\}$ is nonincreasing, and $0 \le r(t) \le C$. The conditions on f allow larger values of C than were previously known. (See Brandwein [3], Brandwein and Strawderman [4], Berger [1] and Strawderman [6].) For instance, under squared error loss a larger class of minimax estimators (i.e. a larger value of C) is given when the derivative of log $f(t^{1/2})$ is monotone as a function of t.

The estimators in subsection a of Section 2 are "positive part" estimators analyzed under squared error loss and shift the estimate from X in the direction of a previously chosen vector $\boldsymbol{\beta}$. The estimators in subsection b are more general and so is the loss. These estimators may be chosen so that they

differ from the invariant estimator X in that they shift the estimate from X in the direction towards the vector zero. In Section 3 any chosen sphere or ball may play the role of the vector zero. For values of X outside the chosen sphere the estimators in Section 3 may be specified to shift the estimate from X in the direction towards the closest vector P(X) on the surface of that sphere. All the estimators of Section 3 dominate estimators which take the value X outside the sphere. Similar results for any chosen closed convex polyhedron are obtained for the normal distribution in [2] under squared error loss.

Although the discussions in this paper are presented only for a single observation vector from the spherically symmetric distribution, Brandwein [3] has noted that such results apply to spherically symmetric translation invariant estimators in the multiple observation case.

Section 2: An enlarged class of minimax estimators for nondecreasing concave loss functions.

The theorems and corollaries in this section give general conditions on the density function f for the domination of the estimator X by a family of estimators whose distance from X may be as great as $C/\|X\|$, i.e. $\|\hat{\theta}(X)-X\| \| \leq C/\|X\|$. Because the estimator X is minimax with constant risk for all values of θ , the estimators δ given in the theorems and corollaries are also minimax.

A useful example of such a dominating estimator is given by the positive part estimator analyzed in subsection a for the simple case of squared error loss.

The theorems in subsection b give the most general results.

Subsection a: Enlarged families of minimax positive part estimators

Let X be a p-dimensional random vector with density $f(||X-\theta||)$. If it is considered likely that the location vector θ for the distribution of X is a particular vector β , then a simple estimator which takes account of this

"vague prior information" is the positive part estimator $\hat{\theta}_C^+$. It is an appealing aspect of the positive part estimator that for values of X close to β the estimator is equal to β .

Define

$$\hat{\theta}_{c}^{+}(X) = \begin{cases} (1-c/||X-\beta||^{2})(X-\beta) + \beta & \text{if } ||X-\beta||^{2} > c \\ \beta & \text{if } ||X-\beta||^{2} \le c \end{cases}$$

where c is a fixed nonnegative constant depending on the density f. The constant c that appears in the definition of $\hat{\theta}_c^+$ may be chosen so that $\hat{\theta}_c^+$ dominates the constant risk minimax estimator $\hat{\theta}(X) \equiv X$ under the squared error loss. (Recall that the estimator $\hat{\theta}_0(X) \equiv X$ is the generalized Bayes estimator for the uninformative prior on θ .) The larger c is, the more values of X for which $\hat{\theta}_c^+(X) = \beta$, the likely candidate for θ . Yet it is also desirable to choose c sufficiently small so that $\hat{\theta}_c^+$ still dominates $\hat{\theta}_0(X)$. Brandwein [3] has shown that as long as

$$c \leq \left(\frac{2(p-2)}{p}\right) E_{\theta=0}[||X||^{-2}],$$

 $\hat{\theta}_{C}^{+}(X)$ dominates X for any spherically symmetric density f with p>4. The theorems in the following subsection b enlarge that upper bound of Brandwein's for c under certain conditions on f while retaining the dominance of $\hat{\theta}_{C}^{+}$ over X. (For convenience β is assumed to be the zero vector in the theorems in the next subsection b.) In particular the conditions which follow involve the function

$$q(R) = \int_{R}^{\pi} uf(u)du / f(R)$$

defined where $R \ge 0$ and f(R) > 0.

If q(R) is nondecreasing then the upper bound for c is

2 /
$$E_{\theta=0}[||X||^{-2}].$$

If q(R) is nonincreasing, then the upper bound for c is

$$\left(\frac{2(p-2)}{p}\right) \quad E_{\theta=0}[||X||^2] \quad .$$

(The monotonicity of the derivative of $\log f(R^{1/2})$ with respect to R implies the monotonicity of q (Lemma 4) and this may be easier to check.) These improvements in the upper bound for c may be contrasted with those developed by other authors. In the case that the density f is nonincreasing Brandwein and Strawderman [4] have given the upper bound $\left(\frac{2p}{(p+2)}\right)/E_{\theta=0}[||X||^{-2}]$ for When f is a mixture of normals then the upper bound for c has been shown to be 2 / $E_{\theta=0}[||X||^{-2}]$ by Strawderman [6] and Berger [1]. (This is a special case of the situation where q(R) is nondecreasing.) Note that q(R)nondecreasing implies that f is nonincreasing. However for q(R) nonincreasing there may be values of R for which f(R) is nondecreasing. (If f is the normal density then q is a constant function and thus both nondecreasing and nonincreasing. In that case the two upper bounds for c which depend on the monotonicity of q agree.) Berger [1] also gave upper bounds for c which depended on the function q. In the case that $\inf q(R)>0$ where $\inf is taken$ over those values of R such that f(R)>0, Berger's upper bound for c is 2(p-2) inf q(R). The upper bounds for c given in the situation where q is monotone are larger than this bound.

Subsection 2b: A general loss function

The positive part estimator given in subsection 2a is not admissible for squared error loss but is robust in the sense that it depends on the density f only through the constant c. For squared error loss, the general minimax estimators in Theorem 1 include admissible estimators and Theorem 2 gives a minimax positive part estimator under certain conditions on f.

Theorem 3 generalizes these theorems to nondecreasing concave loss functions. Without loss of generality, these estimators shift towards the vector zero, rather than β .

Theorem 1. Define X to be a p-dimensional random vector with density $f(||X-\theta||)$, where the set of points in $[0,\infty]$ for which f is discontinuous has Lebesgue measure zero. Assume $E_{\theta=0}[||X||^{-2}]$ and $E_{\theta=0}[||X||^2]$ are finite. For $p \ge 4$, under squared error loss, the estimator

$$\hat{\theta}(X) = \left(1 - \frac{r(|X||^2)}{|X|^2}\right) X$$

dominates the estimator $\hat{\theta}_0(X)=X$ provided that r is a nondecreasing real-valued function such that r(t)/t is nonincreasing in t and

(1)
$$0 < r(t) < 2/E_{\theta=0}[||X||^{-2}];$$
 and

(2)
$$q(t) = {\int_{t}^{\infty} uf(u)du / f(t)}$$
 is finite nondecreasing on ${t>0:f(t)>0}$.

Unless X is a normal random variable, the result holds for $r(t) \le 2/E_{\theta=0}[||X||^{-2}]$.

Remark 1. The assumption (2) that q is nondecreasing in Theorem 1 implies that the density f is nonincreasing. The upper bound for r(t) in assumption (2)

can be multiplied by p/(p+2) for general f nonincreasing where q is not necessarily nondecreasing according to Brandwein and Strawderman [4].

In Theorem 2 of this paper q is assumed to be nonincreasing. Some simple conditions which insure the monotonicity of q are given after Theorem 2. Also some examples of distributions satisfying such conditions are given after Theorem 3.

<u>Proof of Theorem 1.</u> Note r is differentiable almost everwhere. It suffices to show that $\Delta < 0$ where

$$\Delta = E[||\hat{\theta}(X) - \theta||^2] - E[||X - \theta||^2].$$

Using integration by parts (see [1] Berger, P.1325),

$$\Delta = E[\phi^{2}(||X||^{2})||X||^{2}] - 2E[q(||X-\theta||)\{p\phi(||X||^{2} + 2||X||^{2}\phi'(||X||^{2})\}]$$

Recall that $r(t)=t_{\phi}(t)$ implies $t_{\phi}'(t)=\frac{-r(t)}{t}+r'(t)$. If r'(t)>0 (since r is nondecreasing), then

$$\Delta \leq E\left[\frac{r^{2}(||X||^{2})}{||X||^{2}}\right] - 2(p-2)E\left[q(||X-\theta||) \frac{r(||X||^{2})}{||X||^{2}}\right].$$

Because $E_{\theta=0}[||X||^{-2}]=E_{\theta}[||X-\theta||^{-2}]$, assumption (1) of the theorem implies that

$$\Delta < E \left[\frac{r(|X||^2)}{|X||^2} \left\{ c - 2(p-2)q(|X-\theta||) \right\} \right]$$

where $c=2/E_{\theta}[||X-\theta||^{-2}].$

This last bound for \triangle may be written as

$$\tilde{c} \in [G(R)] + \int_{0}^{\infty} 2(p-2)\{-G(R)\}\{q(R)\}R^{p-1}f(R)dR \alpha_{p}$$

where
$$G(R) = E\left[\frac{r(||X||^2)}{||X||^2}\right] ||X-\theta||=R$$
, and α_p is the surface area of the p-

dimensional unit sphere.

The integral in the bound given above for Δ may be written as

$$2(p-2)d*\left[\int\limits_{0}^{\infty}\{-R^{2}G(R)\}\{q(R)\}\frac{R^{p-3}f(R)\alpha_{p}}{d*}dR\right]$$

where $d^* = E_{\theta}[||X-\theta||^{-2}]$. Note that $\alpha_p R^{p-3} f(R)/d^*$ is a density for R.

Because $\{-R^2G(R)\}$ is nonincreasing in R for p>4 (see Brandwein [3]) and $\{q(R)\}$ is nondecreasing in R, we may apply Remark 1 and Lemma 1 of the Appendix to find an upper bound for the integral which is

$$2(p-2)d* \left[\int_{0}^{\infty} \{-R^{2}G(R)\} \frac{R_{\infty}^{p-3}f(R)dR}{d*} \right] \left[\int_{0}^{\infty} \frac{\{q(R), R_{\infty}^{p-3}f(R)dR\}}{d*} \right].$$

This may be rewritten as

$$2(p-2)E[-G(R)]\left[\frac{1}{E_{\theta}[||X-\theta||^{-2}]} \left(\frac{1}{p-2}\right)\right]$$

because $\int_{0}^{\infty} q(R)f(R)R^{p-3}dR\alpha_{p} = \frac{1}{(p-2)}$ by Lemma 2 in the appendix.

This upper bound implies that $\Delta < cE[G(R)] - \frac{2E[G(R)]}{E_{\theta}[||X-\theta||^{-2}]}$, which is zero by definition of c. q.e.d.

Theorem 2. Let X be a p-dimensional random vector with density $f(||X-\theta||)$, where the set of points in $[0,\infty)$ for which f is discontinuous has Lebesgue measure zero. For $p \ge 4$, under squared error loss the estimator

$$\hat{\theta}(X) = (1 - \frac{c}{||X||^2})X$$

dominates the estimator $\hat{\theta}(X) = X$ provided that

$$q(t) = -\left\{ \int_{t}^{\infty} uf(u)du / f(t) \right\}$$

is finite nonincreasing on $\{t\ge 0: f(t)>0\}$ and

$$c < \left(\frac{2(p-2)}{p}\right) E[||X-\theta||^2].$$

Unless X is a normal random vector, the result holds for

$$c = \left(\frac{2(p-2)}{p}\right) E[||X-\theta||^2].$$

In the case that X is normal $\hat{\theta}$ and $\hat{\theta}_0$ have the same risk for this value of c.

<u>Corollary 1</u>. Under the assumptions of the Theorem 2, the positive part estimator

$$\hat{\theta}_{c}^{+}(X) = \begin{cases} \left(1 - \frac{c}{||X||^{2}}\right) & X & \text{if } ||X||^{2} > c \\ 0 & \text{if } ||X||^{2} \le c \end{cases}$$

dominates the estimator $\hat{\theta}_0(X) = X$ for $c \le \frac{2(p-2)}{p} E_{\theta=0}[||X||^2]$.

Proof of Theorem 2. The proof of Theorem 1-shows that (setting $r(t) \equiv c$)

$$\Delta = E[||\hat{\theta}(X) - \theta||^{2}] - E[||X - \theta||^{2}]$$

$$= c E[||X||^{-2} \{c - 2(p - 2)q(||X - \theta||)\}]$$

$$= c E[G(R) \{c - 2(p - 2)q(R)\}]$$

where $R = ||X-\theta||$ and $G(R) = E[||X||^{-2} ||X-\theta|| = R]$.

Brandwein [3] has shown that $R^2G(R) = \psi\left(\frac{R}{||\theta||}\right)$ where ψ is nondecreasing in the argument $\frac{R}{||\theta||}$. It is clear that $||\theta||^2G(R) = \psi\left(\frac{||\theta||}{R}\right)$ which is thus nonincreasing as a function of $\frac{R}{||\theta||}$. For fixed $||\theta||$, this shows that G(R) is nonincreasing in R. The assumption that Q(R) is nonincreasing in R implies that

$$E[G(R) \cdot q(R)] \ge E[G(R)] \cdot E[q(R)].$$

(Unless X is normal this inequality is actually strict.) Thus

$$\Delta \leq cE[G(R)](c-2(p-2)E[q(R)]).$$

Because (by Lemma 2B of the Appendix) $E[q(R)] = \frac{E[|X-\theta|]}{p}$,

we have $\Delta \leq 0$ for $c \leq \frac{2(p-2)}{p} E[||X-\theta||^2]$.

This inequality is actually strict unless $q(R) \equiv 1$ (i.e. X is a normal random vector.)

Proof of Corollary 1.

The corollary follows directly from the theorem and the fact that the positive part estimator $\hat{\theta}_{c}^{\dagger}$ dominates the estimator $\hat{\theta}$. q.e.d.

The following lemmas proved in the appendix give simple assumptions that insure the monotonicity of q. Note that q'(t)<0 if f'(t)>0.

Lemma 3: On $\{t\ge0:f(t)>0\}$, q(t) is nondecreasing if and only if on $\{t\ge0:f(t)>0\}$ we have f'(t)<0 and $q(t)\ge tf(t)/(-f'(t))$. On $\{t\ge0:f(t)>0\}$, q(t) is nonincreasing if and only if on $\{t\ge0:f(t)>0\}$ we have $q(t)\le tf(t)/(-f'(t))$ if f'(t)<0.

Lemma 4: On $\{t\ge0:f(t)>0\}$, q(t) is nondecreasing if f'(t)<0 and $\{f'(t)t^{-1}/f(t)\}$ is nondecreasing in t there; on $\{t\ge0:f(t)>0\}$, q(t) is nonincreasing if $\{f'(t)t^{-1}/f(t)\}$ is nonincreasing in $\{t\ge0:f(t)>0\}$ and $\{f'(t)<0\}$.

The following corollary employs simple assumption to insure that q is monotone.

Corollary 2. Let X be a p-dimensional random vector with density $f(||X-\theta||)$.

Let
$$g(t) = \log f(t^{1/2})$$
, and $q(t) = \int_{t}^{\infty} uf(u)du/\{f(t)\}$.

Then q is nondecreasing on $\{t\ge0:f(t)>0\}$ if f'(t)<0 there and g'(t) is non-decreasing there. Also, q is nonincreasing there if g'(t) is nonincreasing on $\{t\ge0:f'(t)<0$ and $f(t)>0\}$.

<u>Proof.</u> Lemma 4 of the appendix implies that if f is differentiable and monincreasing, q is nondecreasing because g'(t) nondecreasing is equivalent to the condition that $\{f'(t)t^{-1}/f(t)\}$ be nondecreasing: In the case that g is twice differentiable we have

$$\frac{d}{du} [g'(u)] = \frac{d^{(2)}}{du^2} [g(u)] = \frac{d^{(2)}}{du^2} [\log f(u^{1/2})]$$

$$= \left\{ \frac{d}{dt} \left[\frac{f'(t)}{tf(t)} \right]_{t=u^{1/2}} \right\} u^{-1/2}/4.$$

A similar argument works for q nonincreasing.

q.e.d.

Observe that the condition (2) that the function q be nondecreasing in Theorem 1 is satisfied for distributions which are mixtures of normal distributions. Thus the results of the theorem agree with those obtained by Strawderman [6] and Berger [1] for this class of distributions which includes the normal as well as the multivariate t-distribution.

Example. The following density is not a mixture of normals yet q(t) is nondecreasing. Let $g(t) = t - (2+t)e^{-t}$. Define $f(t) = Kg'(t^2) \exp(-g(t^2))$.

Then
$$q(t) = \int_{t}^{\infty} uf(u)du/f(t) = \frac{K}{2} \int_{t}^{\infty} 2ug'(u^{2})exp(-g(u^{2}))du/f(t)$$
$$= \frac{K}{2} exp(-g(t^{2}))/f(t) = \frac{1}{2}/g'(t^{2}).$$

Then $q'(t) = -tg^{(2)}(t^2)/[g'(t)]^2$.

Note that $g'(u) = 1 + (1+u)e^{-u}$, and $g^{(2)}(u) = -ue^{-u}$, and $g^{(3)}(u) = (u-1)e^{-u}$, and $g^{(4)}(u) = (2-u)e^{-u}$. Thus g'(t)>0 and g(t) is nondecreasing.

By Theorem 2 of Berger [1], f is a mixture of normals if and only if $\rho(u) \text{ is completely monotonic for } u \text{ in } (0,\infty) \text{ where } \rho(u) = g'(u) \exp(-g(u)) \text{ i.e.,}$

$$\rho^{(j)}(u)(-1)^{j} \ge 0$$
 for all $j \ge 0$.

But
$$\rho^{(3)}(u) = e^{-g(u)} \{ g^{(4)}(u) - 3[g^{(2)}(u)]^2 + 6g^{(2)}(u)[g^{(4)}(u)]^2 - 4g^{(4)}(u) - [g^{(4)}(u)]^4 \}.$$

Setting u=1, we see $(-1)^3 \rho^{(3)}(u) < 0$. Thus ρ is not completely monotonic and f is not a mixture of normals. q.e.d.

In the case that q is not nondecreasing, but f is nonincreasing, results of Brandwein and Strawderman [4] insure that the $\hat{\theta}$ in Theorem 1 of this section is minimax for p>4 when (2) is replaced by "(2') f is nonincreasing" and (1) is replaced by

$$\overline{\mathbb{I}}(1') \ 0 \le r(t) \le \{p/(p+2)\}2/E_{\theta=0}[||X||^{-2}].$$

(For p=3, the ratio p/(p+2) is replaced by 3/8.)

If f is not necessarily nonincreasing, Brandwein [3] has shown that $\hat{\theta}$ is minimax for p>4 when (2) is deleted and (1) is replaced by

$$r(T'') 0 \le r(t) \le \{(p-2)/p\}2/E_{e=0}[||X||^{-2}].$$

Note that if f is differentiable and there is a value t_0 such that $f'(t_0) \ge 0$, then $q'(t_0) < 0$ (using definition of q) so that q will not be nondecreasing at t_0 .

The following theorem extends the result of Theorems 1 and Corollary 1 as well as the result of Brandwein and Strawderman [4] for density f to a general nondecreasing concave loss function. It is an extension of a similar result by Brandwein and Strawderman [5] for all spherically symmetric distributions.

Theorem 3. Let X have a p-dimensional spherically symmetric distribution about θ with density $f(||X-\theta||)$. Define the nondecreasing concave loss function ℓ by $L(\theta, \hat{\theta}) = \ell(||\theta-\theta||^2)$. Then the estimator is better than X and minimax where

$$\delta(X) = \left[1 - \frac{r(|X||^2)}{|X|^2}\right] \chi$$

provided

- (i) r(t) is nondecreasing in t;
- (ii) r(t)/t is nonincreasing in t;

$$(iii) 0 < r(t) < c*2E_{\theta=0}[\ell'(||X||^2)]/E_{\theta=0}[||X||^{-2}\ell'(||X||^2)]$$

in the following three cases:

<u>Case A:</u> If the density f(t) is nonincreasing in t, set $c^*=p/(p+2)$ for $p\ge 4$ and $c^*=3/8$ for p=3.

<u>Case B:</u> If $\ell'(t^2)f(t)$ has a negative derivative and Q(t) is nondecreasing on $\{t\geq 0: \ell'(t^2)f(t)>0\}$, set $c^*=1$ for $p\geq 4$ where

$$Q(t) = \int_{t}^{\infty} u\ell'(u^2)f(u)du/[\ell'(t^2)f(t)].$$

Case C. If the function Q(t) is nonincreasing on $\{t\ge 0: \ell'(t^2)f(t) \text{ is positive with a negative derivative}\}$, set r(t) = t for $t \le c$ and set r(t) = c for t > c where $c < \frac{2(p-2)}{p} E_{\theta=0}[||X||^2 \ell'(||X||^2)] / E_{\theta=0}[\ell'(||X||^2)]$.

Remarks. (1) For p>4 and $c^*=(p-2)/p$, the result of the theorem was obtained by Brandwein and Strawderman [5] with no restrictions on f.

- (2) If the strict inequalities in (iii) are relaxed to " \leq ", then δ is minimax and at least as good as X, but not necessarily better than X; however if Q is strictly increasing on a Lebesgue set of positive measure where $\ell'(t^2)$ f(t) is positive, then δ is better than X.
- (3) Note that the proof of Corollary 2 shows that Q(t) is nondecreasing if $\log(\ell'(t)f(t^{1/2}))$ is nonincreasing in t with a nondecreasing derivative in t.
- (4) The condition (ii) of Theorem 3 that $\{r(t)/t\}$ be nondecreasing in t may be replaced by the weaker condition

(ii) $h(R) = R^2 E[r(||X||^2) + |X||^{-2}] ||X-\theta|| = R]$ is nondecreasing in R. Examples

In each case assume the loss $L(\theta, \hat{\theta}) = ||\hat{\theta} - \theta||^b$ where $0 < b \le 2$ and $p \ge 4$.

(1) If X has the p-dimensional uniform distribution on a sphere, i.e., $||X-\theta||^2 \le S^2, \text{ then case A applies, but not case B. So } \delta(X) \text{ is better than } X \text{ if}$

$$0 < r(\cdot) \leq \frac{2p}{(p+2)} \; E_{\theta=0} \lceil | \, | \, X \, | \, |^{b-2} \rceil / E_{\theta=0} \lceil \, | \, | \, X \, | \, |^{b-4} \rceil \; = \frac{2p}{(p+2)} \; S^{2} \frac{(p+b-4)}{(p+b-2)}$$

(2) Let X have a spherically symmetric distribution about θ which is a mixture of normals. Assume that p+b>4. Then Case B applies since log

 $(\frac{b}{2}\ t^{\frac{b}{2}}\ -1\ f(t^{1/2}))$ is nonincreasing with a nondecreasing derivative. Mixtures of normals include the multivariate t and normal distributions. For the normal distribution, δ is minimax if

$$0 \le r(\cdot) \le 2E_{\theta=0}[||X||^{b-2}]/E_{\theta=0}[||X||^{b-4}] = 2(b+p-4).$$

(3) Let X have a density $f(||X-\theta||)$ of a form considered by Berger [1] where $f(t) = kt^{2n} \exp(-t^2/2),$

for $n \ge 0$. Assume b/2 + n > 1. Then Case C applies since $\log (\frac{b}{2} t^{\frac{D}{2}} - 1) f(t^{1/2})$ has a nonincreasing derivative. Then the positive part estimator δ is minimax where r(t) = t for $t \le c^*$ and $r(t) = c^*$ for $t > c^*$ provided

$$c^* = \frac{2(p-2)}{p} E_{\theta=0}[||X||^b] / E_{\theta=0}[||X||^{b-2}] = \frac{2(p-2)}{p} (b+2n+p-2).$$

Proof of Theorem 2.

It follows immediately from Theorem 1 and Corollary 2 of this paper and from Theorem 2.1 of Brandwein and Strawderman [5] and Theorem 3.3.1 of Brandwein and Strawderman [4].

Section 3. Estimators that shift towards a hypersphere

In the situation where θ is deemed "likely" to lie in a certain ball or sphere, $K_{\beta,G}$, of radius G centered at the vector β , one has the opportunity to make use of this "vague" information when the minimax invariant estimator X does not happen to fall in the sphere $K_{\beta,G}$. The estimators given in this

section may be defined so they are minimax; they may also be chosen so that the estimate of θ (for values of X outside $K_{\beta,G}$) is shifted in a direction from X towards P(X), the closest vector on the sphere to X. Note that these estimators avoid the problem that occurs when θ is deemed likely to lie in a closed convex polyhedron and the estimate of θ is to be shifted from X towards the closest vector on the polyhedron (for values of X outside the polyhedron). For the polyhedron situation the estimators considered in [2] were equal to X if the closest vector on the polyhedron to X lay on a very high-dimensional face, in which case no "shifting" took place.

The notation $K_{\beta,G}^c$ denotes the complement of $K_{\beta,G}$ in the following theorem which gives a class of estimators containing estimators which shift to the ball $K_{\beta,G}$.

Theorem 4. Let $K_{\beta,G}$ be the ball of radius G in \mathbb{R}^p centered at the vector β , i.e.,

$$K_{\beta,G} = \{Y \text{ in } \mathbb{R}^p : ||Y-\beta|| \leq G\}.$$

Let X and θ be p-dimensional vectors in \mathbb{R}^p and assume that X is a random vector with density $f(||X-\theta||)$. Assume $p \ge 5$ and define the nondecreasing concave loss function ℓ by

$$L(\theta,\hat{\theta}) = \ell(||\theta-\hat{\theta}||^2).$$

Define P(X) to be the closest vector to X on the surface of $K_{\beta,G}$. Let δ_0 be an estimator of θ which equals X if X is not in $K_{\beta,G}$. Define the estimator $\delta(X)$ equal to $\delta_0(X)$ if X is not in $K_{\beta,G}$; if X is in $K_{\beta,G}$, let $\delta(X)=X-r(||X-P(X)||^2)(X-P(X))/\{||X-P(X)||(||X-P(X)||+G)\}$

where

- (a) r is a real-valued nondecreasing function such that $\{r([t^{1/2}-G]^2)/t\}$ is nonincreasing in t for $t > G^2$;
- (b) $0 < r(t) < 2c + E_{\theta=0}[\ell' | |X| |^2)] / E_{\theta=0}[||X||^{-2} \ell' (||X||^2)].$

Then δ dominates δ_0 for the following cases:

Case 0: With no restriction on f, set $c^*=(p-2)/p$.

Case A: If the density f(t) is nondecreasing in t, set c=(p/(p+2).

Case B: Define the function Q(t) to be

$$Q(t) = \int_{t}^{\infty} u\ell'(u^2)f(u)du/\ell'[(t^2)f(t)].$$

If $\ell'(t^2)f(t)$ has a negative derivative and Q(t) is nondecreasing on $\{t \ge 0: \ell'(t^2)f(t) \gg 0\}$, set $c^* = 1$ for $p \ge 4$.

The estimators δ given in the theorem are minimax if the estimator δ_0 is minimax. The values that δ_0 takes when X falls in $K_{\beta,G}$ were not specified and δ was defined to agree with δ_0 for those values of X.

Remark. If the strict inequalities in (b) of Theorem 4 are relaxed to " \leq ", then δ is as good as δ_0 and minimax if δ_0 is minimax.

<u>Example</u>: The following estimator is a simple shrinkage estimator to $K_{\beta,G}$ which belongs to the class of estimators given in Theorem 4. It is minimax and better than X.

Define
$$c = 2c * E_{\theta=0}[\ell'(||X||^2)]/E_{\theta=0}[||X||^{-2}\ell'(||X||^2)].$$

Then let
$$\delta(X) = P(X) + [1 - \frac{c}{||X-P(X)||(||X-P(X)||+G)}]^{\dagger}(X-PX)).$$

(The "+" indicates that the quantity within the square brackets should be replaced by zero if it is negative.)

For this estimator, a value of X outside the ball $\boldsymbol{K}_{\beta,\boldsymbol{G}}$ that satisfies

$$G \ < \ \left| \ \left| \ X - \beta \ \right| \ \right| \ \leq \frac{G}{2} \ + \sqrt{\left(\frac{G}{2}\right)^2 + c}$$

is shrunk to P(X), the point closest to X on the surface of the ball. Values of X further away from the ball are also shifted closer to the ball, but not onto the surface of the ball. Clearly, if c^* and thus c is larger, then more values are shrunk all the way to the ball. Consider the case for squared error loss. In the case that p=5, knowing that the density $f(||X-\theta||)$ is nonincreasing allows one to set $c^*-5/7$ rather than $c^*=3/5$. Knowing that $q(t)=\int_{c}^{\infty}uf(u)du/f(t)$ is nondecreasing allows one to choose $c^*=1$.

<u>Proof of Theorem 4</u>: Observe that $I_{K_{\beta,G}^{c}}(X) = I_{(G,\infty)}(||X-\beta||)$ and the projection

of X to the ball is
$$P(X) = I_{K_{\beta},G}(X)X + I_{K_{\beta},G}(X)(\beta+(X-\beta)G/||X-\beta||)$$
.

Since
$$I_{K_{\beta},G}^{c}$$
 $(X)(X-P(X)) = I_{(G,\infty)}(||X-\beta||)(X-\beta)(1-G/||X-\beta||)$

and
$$I_{K_{\beta},G}^{c}(X)||X-P(X)|| = I_{(G,\infty)}(||X-\beta||)(||X-\beta||-G)$$
, we have

$$I_{K_{\beta},G}^{c}(X)\delta(X) = I_{K_{\beta},G}^{c}(X)[X-r([||X-\beta||-G]^{2})(X-\beta)/||X-\beta||^{2}].$$

Thus

$$\Delta = E[||\delta(X) - \theta||^2] - E[||\delta_0(X) - \theta||^2]$$

$$= E[I_{K_{\beta}^{c},G}(X)\{||_{\beta}+(1-r([||X-\beta||-G]^{2})/||X-\beta||^{2})(X-\beta)-\theta||^{2}-||X-\theta||^{2}\}].$$

Now define
$$\delta_0^*(X)=X$$
 and $r^*(||X-\beta||^2)=I_{K_{\beta,G}^c}(X)r([||X-\beta||-G]^2)$, and

$$\delta^*(X) = \beta + (1-r^*(||X-\beta||^2)/||X-\beta||^2)(X-\beta)$$

=
$$X - r*(||X-\beta||^2)(X-\beta)/||X-\beta||^2$$
.

Then
$$I_{K_{\beta},G}^{c}(X)\delta(X) = I_{K_{\beta},G}^{c}(X)\delta^{*}(X)$$
 and $I_{K_{\beta},G}^{c}(X)\delta_{0}(X) = I_{K_{\beta},G}^{c}(X)\delta^{*}(X)$.

Thus the difference in risks between δ and δ_0 is equal to the difference in risks between δ^* and and δ_0^* , i.e.,

$$\begin{split} & \mathbb{E}[\ell(||\delta(X) - \theta||^{2})] - \mathbb{E}[\ell(||\delta_{0}(X) - \theta||^{2})] \\ & = \mathbb{E}[\mathbb{I}_{K_{\beta}^{c}, G}(X) \{\ell(||\delta(X) - \theta||^{2}) - \ell(||\delta_{0}(X) - \theta||^{2})\}] \\ & = \mathbb{E}[\mathbb{I}_{K_{\beta}^{c}, G}(X) \{\ell(||\delta^{*}(X) - \theta||^{2}) - \ell(||\delta^{*}_{0}(X) - \theta||^{2})\}] \\ & = \mathbb{E}[\ell(||\delta^{*}(X) - \theta||^{2})] - \mathbb{E}[\ell(||\delta^{*}_{0}(X) - \theta||^{2})]. \end{split}$$

Therefore, it suffices to show that δ^* dominates δ_0^* . The conditions a) and b) of Theorem 4 imply that r^* is a real-valued non-decreasing function such that $r^*(t)/t$ is nonincreasing for $t > G^2$ and

$$0 < r*(t) < 2c* E_{\theta=0} [\ell'(||X||^2)] / E_{\theta=0} [||X||^{-2} \ell'(||X||^2)].$$

However, $\{r^*(t)/t\} = 0$ for $t \le G^2$; it is not true that $\{r^*(t)/t\}$ is non-increasing for all t > 0. The condition that $\{r^*(t)/t\}$ is nonincreasing is used only to show that h(R) is a nondecreasing function of R where

$$h(R) = R^2 E[r*(||X||^2)||X||^{-2}|||X-\theta|| = R],$$

by Brandwein [3], Brandwein and Strawderman [4], [5] and Theorem 3 of this paper. Lemma 6 of the Appendix shows that h(R) is nondecreasing in R for $p \ge 5$.

Thus, for case 0, the dominance of δ^* over δ^*_0 is shown by Brandwein and Strawderman [5] and Lemma 6 of the Appendix. For cases A and B, the dominance of δ^* over δ^*_0 is given by Theorem 3 of this paper and Lemma 6 of the Appendix.

q.e.d.

Appendix

<u>Lemma 1</u>. Let T be a non-negative random variable. Assume f_1 and f_2 are real-valued functions defined on $[0,\infty]$ such that $\mu_i = E(f_i(T)]$, i=1,2, are finite. Let f_2 be nonincreasing and let there be a value $f_1^{-1}(\mu_1)$ such that

$$f_1(t) \leq \mu_1$$
 for $t \leq f_1^{-1}(\mu_1)$ and

$$f_1(t) \ge \mu_1 \text{ for } t \ge f_1^{-1}(\mu_1)$$

Then $E[f_1(T) \cdot f_2(T)] \leq E[f_1(T)] \cdot E[f_2(T)]$.

<u>Proof.</u> It suffices to show that $(*)\leq 0$ where $(*)=E[(f_1(T)-\mu_1)f_2(T)]$.

Without loss of generality, assume that $f_1^{-1}(\mu_1) \ge 0$. Let G be the distribution function of T. Then

$$(*) = \int_{0}^{\infty} (f_{1}(t) - \mu_{1}) f_{2}(t) dG(t)$$

$$= \int_{0}^{f_{1}^{-1}(\mu_{1})} (f_{1}(t) - \mu_{1}) f_{2}(t) dG(t) + \int_{f_{1}^{-1}(\mu_{1})}^{\infty} (f_{1}(t) - \mu_{1}) f_{2}(t) dG(t)$$

For $0 \le t \le f_1^{-1}(\mu_1)$, $f_1(t) \le \mu_1$ and $f_2(t) \ge f_2(f_1^{-1}(\mu_1))$ since f_2 is nonincreasing. This implies that for $0 \le t \le f_1^{-1}(\mu_1)$, we have $(f_1(t) - \mu_1)$ nonpositive and

$$(f_1(t)-\mu_1)f_2(t) \leq (f_1(t)-\mu_1)f_2(f_1^{-1}(\mu_1))$$

and the first integral in the latest representation for (*) is bounded above by

$$A = \int_{0}^{f_{1}^{-1}(\mu_{1})} (f_{1}(t) - \mu_{1}) f_{2}(f_{1}^{-1}(\mu_{1})) dG(t).$$

For $t \ge f_1^{-1}(\mu_1)$, we have $(f_1(t) - \mu_1) \ge 0$ and $f_2(t) \le f_2(f_1^{-1}(\mu_1))$ since f_2 is

nonincreasing. This implies that for $t \ge f_1^{-1}(\mu_1)$,

$$(f_1(t)-\mu_1)f_2(t) \leq (f_1(t)-\mu_1)f_2(f_1^{-1}(\mu_1)).$$

So the second integral in the last representation for (*) is bounded above by

$$B = \int_{f_1^{-1}(\mu_1)}^{\infty} (f_1(t) - \mu_1) f_2(f_1^{-1}(\mu_1)) dG(t).$$

The sum of A and B gives an upper bound for (*) which is zero.
q.e.d.

Remark 1. If f_1 is nondecreasing it satisfies the following conditions of Lemma 1: there exists a value $f_1^{-1}(\mu_1)$ such that

$$f_1(t) \leq \mu_1 \text{ for } t \leq f_1^{-1}(\mu_1)$$

and
$$f_1(t) \ge \mu_1$$
 for $t \ge f_1^{-1}(\mu_1)$.

Remark 2. If there is an interval (where the density of T is positive) such that f_1 is strictly increasing and f_2 is strictly decreasing, the conclusion of Lemma 1 may be strengthened to a strict inequality.

Lemma 2A Let X be a p-dimensional random vector with density $f(||X-\theta||)$. Define on $\{R > 0: f(R)>0\}$ the function

$$q(R) = \int_{R}^{\infty} uf(u)du/f(R)$$

and assume that $q(R) < \infty$. Then $E[q(||X-\theta||)||X-\theta||^{-2}] = \frac{1}{(p-2)}$.

<u>Proof:</u> Let $\alpha_{\rm p}$ be the surface area of the p-dimensional unit sphere.

Then

$$E[q(||X-\theta||)||X-\theta||^{-2}] = \int_{0}^{\infty} \{R^{-2}q(R)\}f(R)R^{p-1}dR\alpha_{p}.$$

Because $q(R)f(R) = \int_{0}^{\infty} uf(u)du$, a change in the order of integration implies

$$\int\limits_0^\infty R^{p-3} q(R) f(R) dR\alpha_p = \int\limits_0^\infty \frac{u^{p-2}}{(p-2)} u f(u) du\alpha_p. \quad \text{Since } \int\limits_0^\infty u^{p-1} f(u) du\alpha_p = 1, \text{ the last expression equals } 1/(p-2).$$

Lemma 2B $E[q(||X-\theta||)] = E[||X-\theta||^2]/p$.

Proof:

Note
$$E[q(||X-\theta||)] = \int_{0}^{\infty} q(R)R^{p-1}f(R)dR\alpha_{p}$$
. Because $q(R)f(R) = \int_{R}^{\infty} uf(u)du$,

we have (by a change in the order of integration) that

$$\begin{split} \mathbb{E} \big[q \big(\big| \big| X - \theta \big| \big| \big) \big] &= \int_0^\infty \frac{u^p}{p} \ \mathsf{uf} \big(\mathsf{u} \big) \mathsf{du}_{\alpha_p} \\ &= \frac{\mathbb{E} \big[\big| \big| X - \theta \big| \big|^{+2} \big]}{p} \quad \text{q.e.d.} \end{split}$$

<u>Lemma 3</u>. Let f be a differentiable function such that q(t) is finite where for $\{t \ge 0: f(t) > 0\}$, we have $q(t) = \int_{t}^{\infty} uf(u)du/f(t)$.

Then q is nondecreasing on $\{t>0:f(t)>0\}$ if and only if on $\{t>0:f(t)>0\}$, we have $q(t) \ge tf(t)/(-f'(t))$ and f'(t)<0.

Also, q is nonincreasing on $\{t\ge 0:f(t)>0\}$ if and only if on $\{t\ge 0:f(t)>0\}$ we have $q(t)\le tf(t)/(-f'(t)), \text{ when } f'(t)<0.$

Proof. The derivative of q is

$$q'(t) = -t - f'(t)q(t)/f(t) = (-f'(t)/f(t))(q(t) - tf(t)/(-f'(t))).$$

Note that q'(t)<0 if $f'(t)\ge0$. For f'(t)<0, we have $(-f'(t)/f(t))\ge0$, and the statements of the lemma follow.

q.e.d.

Lemma 4. Let f,q be given as in Lemma 3. Then

- (a) q(t) is nondecreasing on $\{t:f(t)>0\}$ if on $\{t:f(t)>0\}$ the function $f'(t)t^{-1}/f(t)$ is nondecreasing in t and f'(t)<0;
- (b) q(t) is nonincreasing on $\{t:f(t)>0\}$ if on $\{t:f(t)>0\}$ the function $f'(t)t^{-1}/f(t)$ is nonincreasing for t in $\{t>f(t)>0\}$ and $f'(t)<0\}$.

Proof. Note that

$$f(t) = \int_{t}^{\infty} [-f'(s)] ds = \int_{t}^{\infty} (-f'(s)s^{-1}/f(s))sf(s) ds$$

$$\leq (-f'(t)t^{-1}/f(t)) \int_{t}^{\infty} sf(s) ds$$

if $(-f'(t)t^{-1}/f(t))$ is nonincreasing. Multiplying both sides of the above inequality by t/(-f'(t)) implies $tf(t)/(-f'(t)) \le q(t)$, using the definition of q. Lemma 3 implies that this last inequality insures that q is nondecreasing. A similar argument gives (b).

q.e.d.

<u>Lemma 5.</u> Assume p>5. Let r(t) be a bounded nonnegative function for $t \ge 0$ with $r'(t) \ge 0$ and $\frac{d}{dt} \{\frac{r(t)}{t}\} \le 0$, for $t \ge 0$. For $-(R/||\theta||) \ge u \ge c_R$, and r > 0, M(u)

is a nondecreasing function of u where

$$M(u) = \{r(||X||^2)||X||^{-2}(1-u^2)^{(p-3)/2}\}$$

and

$$||X||^2 = ||\theta||^2 + R^2 + 2R||\theta||u$$
,

and
$$c_R = (2R||\theta||)^{-1}(G^2 - R^2 - ||\theta||^2) > -1$$
.

<u>Proof.</u> It suffices to show that $\frac{d}{du}(M(u)) \ge 0$. Because $r'(||X||^2) \ge 0$,

$$\frac{d}{du}(M(u)) = (r'(||X||^2)||X||^{-2} - r(||X||^2)||X||^{-4})2R||\theta||$$

•
$$(1-u^2)^{(p-3)/2}$$
 + $r(||X||^2)||X||^{-2}(p-3)(1-u^2)^{(p-5)/2}(-u)$

$$\geq (1-u^2)^{(p-5)/2} r(||X||^2) ||X||^{-4} ((-u)||X||^2 (p-3) - 2R||\theta||(1-u^2)).$$

Since $(-u) \ge (R/||\theta||)$ and $(p-3) \ge 2$,

$$\frac{d}{du}(M(u)) \ge (1-u^2)^{(p-5)/2} r(||X||^2) ||X||^{-4} (2R||\theta||^{-1}||X||^2 - 2R||\theta||(1-u^2))$$

$$= 2R||\theta||^{-1}r(||X||^2)||X||^{-4}(R + ||\theta||u)^2 \ge 0.$$

Lemma 6. Assume that the p-dimensional random vector X has a spherically symmetric distribution about the vector θ . Let r(t) be a nonnegative function of t such that r(t) is nondecreasing in t and $\{r(t)/t\}$ is nonincreasing in t for t>0. If $p\geq 5$, then h(R) is nondecreasing in R where

$$h(R) = R^{2}E[I_{(G^{2},\infty)}(||X||^{2})r(||X||^{2})||X||^{-2}|||X-\theta|| = R].$$

<u>Proof.</u> Note that for fixed θ and R (=||X- θ ||), the distribution of $||X||^2$ may be chosen to be that of

$$R^2 + 2R||\theta||u + ||\theta||^2$$

where u is a random variable with density $I_{[-1,+1]}(u)(1-u^2)^{(p-3)/2}M^*$. (The M* is a normalizing constant.) We will write

$$||X||^2 = R^2 + 2R||\theta||u + ||\theta||^2$$

in the sense that their distributions are alike for fixed R and $\boldsymbol{\theta}.$

Define $c_R = (G^2 - R^2 - ||\theta||^2)/(2R ||\theta||)$ for R > 0 and $||\theta|| > 0$. It is clear that ||X|| > G corresponds to $u > c_R$.

<u>Case 1</u>: Assume R satisfies $G^2 > (R + ||\theta||^2)^2$. Then $c_R > 1$. Since $u \le 1$, we have

$$I_{(G^2,\infty)}(||X||^2) = I_{(c_{R},\infty)}(u) = 0$$

and h(R) = 0. Thus h(R) is trivially nondecreasing for these values of R.

<u>Case 2</u>: Assume R satisfies $G^2 < (R - ||\theta||)^2$. Then $c_R < -1$. Since $u \ge -1$, we have

$$I_{(G^2,\infty)}(||X||^2) = I_{(c_{R},\infty)}(u) = 1$$

and

$$h(R) = R^2 E[r(||X||^2)||X||^{-2}|||X-\theta|| = R].$$

This has been shown to be nondecreasing in R by Brandwein [3].

Case 3: Assume R satisfies $(R-||\theta||)^2 \leq G^2 \leq (R+||\theta||)^2$. We may write

$$h(R) = R^2 \int_{c_R}^{1} r(||X||^2)||X||^{-2} (1-u^2)^{(p-3)/2} M*du.$$

Without loss of generality, assume that r is differentiable. Ther

$$\frac{d}{dR}(h(R)) = A + B + C$$

where

$$A = [G^{2} + R^{2} - ||\theta||^{2}]r(G^{2})(2||\theta||G^{2})^{-1}(1-c_{R}^{2})^{(p-3)/2}M*$$

and

$$B = \int_{c_R}^{1} R^2 r'(||X||^2) ||X||^{-2} (2R + 2||\theta||u) (1-u^2)^{(p-3)/2} M*du$$

and

$$C = \int_{c_R}^{1} r(||X||^2) ||X||^{-4} (2Ru + 2||\theta||) R||\theta|| (1-u^2)^{(p-3)/2} M*du.$$

Subcase 1: Assume R satisfies $R^2 + ||\theta||^2 \le G^2$. Then $c_R \ge 0$ and A, B and C are nonnegative which implies that $\frac{d}{dR}$ (h(R)) ≥ 0 .

Subcase 2: Assume R satisfies $G^2 < R^2 + ||\theta||^2$. Then $c_R < 0$ since $c_R = (G^2 - R^2 - ||\theta||^2)/(2||\theta||R)$.

<u>Subcase a:</u> Assume R satisfies $G^2 > ||\theta||^2 - R^2$. This implies that $||\theta|| > ||Rc_R| + ||\theta|| = (G^2 - R^2 + ||\theta||^2)/(2||\theta||)$.

If $Rc_R + ||\theta|| \ge 0$, then $Ru + ||\theta|| \ge 0$ and $c \ge 0$. If $Rc_R + ||\theta|| < 0$, then

$$C \ge \int_{-1}^{+1} r(||X||^2) ||X||^{-2} R||\theta|| (2Ru + 2||\theta||) (1-u^2)^{(p-3)/2} M*du$$

since $(2Ru + 2||\theta||) < 0$ for $-1 \le u \le c_R$. This lower bound for C was shown to be nonnegative by Brandwein [3]. Because $R + ||\theta||u > R + ||\theta||c_R = (G^2 + R^2 - ||\theta||^2)/(2R)$, we have $A \ge 0$ and $B \ge 0$. Thus

$$\frac{d}{dR}(h(R)) = A + B + C \ge 0.$$

Subcase b: Assume R satisfies $G^2 \le ||\theta||^2 - R^2$.

Since $||\theta||>R$ and since $(R+||\theta||u)>0$ for $u>-(R/||\theta||)$ and since r'(t)>0, we have

$$B \geq 2R^2 \int_{c_R}^{-(R/||\theta||)} r'(||X||^2)||X||^{-2} (R + ||\theta||u)(1-u^2)^{(p-3)/2} M*du.$$

Because $\{r(t)/t\}$ nonincreasing implies $r'(t)/t \le r(t)/t^2$ and because $(R+||\theta||u) \le 0$ for $c_R \le u \le -(R/||\theta||)$, we have

$$B \geq 2R^2 \int_{c_R}^{-(R/||\theta||)} r(||X||^2)||X||^{-4} (R + ||\theta||u)(1-u^2)^{(p-3)/2} M^*du.$$

Thus

$$C + B \ge 2R \int_{C_R}^{-(R/||\theta||)} r(||X||^2) ||X||^{-4} [(R||\theta||u + ||\theta||^2) + (R^2 + R||\theta||u)].$$

$$\cdot (1-u^2)^{(p-3)/2} M du$$

$$= 2R \int_{C_R}^{-(R/||\theta||)} r(||X||^2) ||X||^{-2} (1-u^2)^{(p-3)/2} M du.$$

Because $r(||X||^2)||X||^{-2}(1-u^2)^{(p-3)/2}$ is nondecreasing in u for $p \ge 5$ by Lemma 5 of the Appendix if $-(R/||\theta||) \ge u \ge c_R$, we have

$$C + B \ge \left[2R\left[r(||X||^2)||X||^{-2}(1-u^2)^{(p-3)/2}M^*\right]_{u=c_R} \begin{bmatrix} -(R/||\theta||) \\ c_R \end{bmatrix}_{u=c_R} du$$

$$= 2Rr(G^2)G^{-2}(1-c_R^2)^{(p-3)/2}M^*[-(R/||\theta||) - c_R] = -2A.$$

Thus $A + B + C \ge -A \ge 0$.

q.e.d.

References

- [1] Berger, James (1975) "Minimax estimation of location vectors for a wide class of densities". The Annals of Statistics. Vol.3, 1318-1328.
- [2] Bock, M.E. (1981) "Employing Vague Inequality Information in the Estimation of Normal Mean Vectors (Estimators that shrink to closed convex polyhedra)" Purdue University Statistics Department Technical Report #81-42.
- [3] Brandwein, Ann Cohen (1979) "Minimax estimation of the mean of spherically symmetric distributions under general quadratic loss". <u>Journal of Multivariate Analysis</u> Vol.9, 579-588.
- [4] Brandwein, Ann Cohen and Strawderman, William E. (1978) "Minimax estimation of location parameters for spherically symmetric unimodal distributions." The Annals of Statistics 6, 377-416.
- [5] Brandwein, Ann Cohen and Strawderman, William E. (1980) "Minimax estimation of location parameters for spherically symmetric distributions with concave loss". The Annals of Statistics Vol.8, 279-284.
- [6] Strawderman, W.E. (1974). Minimax estimation of location parameters for certain spherically symmetric distributions. <u>Journal of Multivariate Analysis</u> Vol.4, 255-264.