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ABSTRACT

Let X be a p-dimensional random vector with density f(||X-6]|) where
6 is an unknown location vector. For p>3, conditions on f are given for
which there exist minimax estimators 6(X) :satisfying ||X||-]]|6(X)-X]]|<C,
where C is a known constant depending on f. (The positive part estimator is
among them.) The loss function is a nondecreasing concave function of ]lé-e]]z.
If 6 is assumed Tikely to lie in a ball in Bip, then minimax estimators are
given which shrink from the observation X in the direction of P(X) the

closest point on the surface of the ball. The amount of shrinkage depends on

the distance of X from the ball.
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Section 1. Introduction

The problem considered is that of estimating the p-dimensional location
vector 6 for a p-dimensional random vector X under the nondecreasing non-

negative concave loss function 2, i.e.,
Ay N 2 '
L(G,@) - Q(IIG'GII )a

where "||-||" denotes the Euclidean norm. It s assumed that p is three or
more and that the distribution of X is spherically symmetric about 6. Assume

-2 ; 2 112 . .
that E _o[1[X]]™"]1 and Eg-oll1X]]17] and Eg=gle(]1X]]7)] exist and are finite.

Because the minimax invariant estimator X has constant risk for all
values of 6, a reasonable guess as to the location of may be very useful
in specifying a better minimax estimator. That is, one may use a minimax
estimator which has the property that the smallest values of the risk function
occur for values of 6 close to the "guessed" location of 6; yet all the
values of the risk function are less than or equal to the constant risk of
the estimator X. When the "guess" is the specification of a single vector,
‘the minimax estimators of Section 2 have this property. (In subsection b it is
assumed that the "guess" is that o is the zero vector but it-can clearly be any
vector.) Consider the situation where the "quess" is that o is Tikely to lie
in a ball of radius G centered at the vector 8 (i.e., ||e-8|]<G). For
values of ¢ outside the ball the estimators of Section 3 have smaller risk when

6 is closer to the ball. For values of o inside the ball, the estimators in



Section 3 may be specified so that the actual loss (rather than the expected
Toss or risk) is less than or equal to that of X no matter what the distri-
bution of X. It should be noted'that results for the closed convex.polyhedron
Tike those for the ball in Section 3 have been obtained for the normal distri-
bution in [2] for squared error loss. (In the case tHat the "guess" is that

6 is Tikely to satisfy a finite system of linear inequalities, then o is
thought Tikely to 1ie in the closed convex polyhedron that satisfies that
finite system of linear inequalities.)

It is assumed that the density of the random vector X may be represehted
by the fuhction‘f(llx-e||). In Section 2 various conditions on the density
function f of X and the loss function 2 are presented under which there exist
“minimax estimators 6(X) satisfying ]]X]]-][é(X)-X}]fp where C is a known con-
stant depending on f. In particular, 6(X) has the form (T-r([[X]12) ] 1X][2)X
where r is a nondecreasing function such that {r(t)/t} is nonincreasing, and
O<r(t)<C. The conditions on f allow larger values of C than were previously
known. (See Brandwein [3], Brandwein and Strawderman [4], Berger [1] and
Strawderman [6].) For instance, under squared error loss a larger class
of minimax estimators (i.e. a larger value of C) is given when the derivative
of log f(t1/2) is monotone as a function of t.

The estimators in subsection a of Section 2 are "positive part" esti-
mators analyzed under squared error loss and shift the estimate from X in
the direction of a previously chosen vector 3. The estimators in subsection b

are more general and so is the loss. These estimators may be chosen so that they



differ from the invariant estimator X in that they shift the estimate from

X in the direction towards the vector zero. In Section 3 any chosen sphere

or ball may play the role of the vector zero. For values of X outside the
chosen sphere the estimators in Section 3 may be specified to shift the
estimate from X in the direction towards the closest vector P(X) on the
surface of that sphere. A1l the estimators of Section 3 dominate estimators
which take the value X outside the sphere. Similar results for any chosen
closed convex polyhedron are obtained for the normal distribution in [2] under
squared error loss.

Although the discussions in this paper are presented only for a single
observation vector from the spherically symmetric distribution, Brandwein [3]
has noted that such results apply to spherically symmetric translation
invariant estimators in the multiple observation case.

Section 2: “Anenlarged class of minimax estimators for nondecreasing concave

Toss functions.

The theorems and corollaries in this section give general conditions on
the density function f for the domination of the estimator X by a family of
estimators whose distance from X may be as great as C/||X]||, i.e.
||6(X)-X[]<C/||X]|. Because the estimator X is minimax with constant risk
for all values of 6, the estimators § given in the theorems and corollaries
are also minimax.

A useful example of such a dominating estimator is given by the positive part
estimator analyzed in subsection a for the simple case of squared error loss.

The theorems in subsection b give the most general results.

Subsection a: Enlarged families of minimax positive part estimators
Let X be a p-dimensional random vector with density f(||X-6|]). If it
is considered 1ikely that the location vector ¢ for the distribution of X is

a particular vector 8, then a simple estimatoh which takes account of this



"vague prior information" is the positive part estimator é: . It is an
appealing aspect of the positive part estimator that for values of X close to
B the estimator is equal to B.

Define

(1-c/| [%-8] |2)(X-g) + & if ||X-g||%>c

; i [1x-s] P

where ¢ is a fixed nonnegative constant depending on the density f. The con-
stant c that appears in the definition of é: may be chosen so that é: dominates
the constant risk minimax. estimator 6(X)=X under the squared error loss.
(Recall that the estimator éO(X)zX is the generalized Bayes estimator for the
uninformative prior on 6.) The larger ¢ is, the more values of X for which
éZ(x) = B, the Tikely candidate for o. Yet it is also desirable to choose c
sufficiently small so that éz still dominates 8

O(X). Brandwein [3] has shown

that as Tong as

2(p-2)\ / P
cs<——p———/ Eqmol X172

eC(X) dominates X for any spherically symmetric density f with p>4. The
theorems in the following subsection b enlarge that upper bound of Brandwein.'s
for ¢ under certain conditions on f while retaining the dominance of 6: over
X. (For convenience 8 is assumed to be the zero vector in the theorems in

the next subsection b.) In particular the conditions which follow involve the
function

q(R) = £ uf(u)du / f(R)

defined where R>0 and f(R)>0.



If q(R) is nondecreasing then the upper bound for c is
2/ Egol]|X]17]
e=0t )

If q(R) is nonincreasing, then the upper bound for c is

2(p-2) | ).
<~—p——> Eggll1X]1°]

(The monotonicity of the derivative of log f(R]/z) with respect to R
implies the monotonicity of q (Lemma 4) and this may be easier to check.) These
improvements in the upper bound for ¢ may be contrasted with those developed

by other authors. In the case that the density f is nonincreasing Brandwein

and Stkawderman [4] have giVen the upper bound <%%I§Y> / Ee=0[|]X]|'2] for

c. When f 1is a mixture of normals then the upper bound for c has been shown

tobe 2/ Ee=0[||X||'2] by Strawderman [6] and Berger [1]. (This is a

special case of the situation where g(R) is nondecreasing,) Note that q(R)
nondecreasing implies that f is nonincreasing. However for q(R) nonincreasing
there may be values of R for which f(R) is nondecreasing. (If f is the normal
density then q is a constant function and thus both nondecreasing and non-
increasing. In that case the two upper bounds for c which depend on the
monotonicity of q agree.) Berger [1] also gave upper bounds for c which
depended on the function gq. In the case that inf q(R)>0 where inf is taken
over those values of R such that f(R)>0, Berger's upper bound for ¢ is
2(p-2) inf q(R). The upper bounds for c given in the situation where q is

monotone are larger than this bound.



Subsection 2b: A general loss function

The positive part estimator given in subsection 2a is not admissible
for squared error loss but is robust in the sense that it depends on the
density f only through the constant c. For squared error loss, the general
minimax estimators in Theorem 1 include admissible estimators and Theorem 2
gives a minimax positive part estimator under certain conditions on f.

Theorem 3 generalizes these theorems to nondecreasing concave loss functions.

Without loss of generality, these estimators shift towards the vector zero,
rather than B.

Theorem 1. Define X to be a p-dimensional random vector with density
£(||X-6]]), where the set of points in [0,»] for which f is discontinuous has
Lebesgue measure zero. Assume Ee=0[[|X|]'2] and Ee=0[]|X||2] are finite. For

p>4, under squared error loss, the estimator

2
X1

dominates. the estimator éO(X)=X provided that r is a nondecreasing real-valued

8(X) = <] - Y‘_(_LD(_U_Z)_> X

function such that r(t)/t is nonincreasing in t and

(1) 0 <r(t) <2/ _[||X||™°]; and

(2) q(t) = -{[ uf(u)du /f(t) }is finite nondecreasing on {t>0:f(t)>0},
t

Unless X is a normal random variable, the result holds for r(t)EZ/Ee=O[||X||_2].

Remark 1.  The assumption (2) that q is nondecreasing in Theorem 1 implies

that the density f is nonincreasing. The upper bound for r(t) in assumption (2)



can be multiplied by p/(p+2) for general f nonincreasing where g is not
necessarily nondecreasing according to Brandwein and Strawderman [4].

In Theorem 2 of this paper g is assumed to be nonincreasing. Some
simple conditions which insure the monotonicity of q are given after
Theorem 2. Also some exampies of distributions satisfyfng such conditions

are given after Theorem 3.

Proof of Theorem 1. Note r is differentiable almost everwhere. It suffices

to show that A<Q where

- 2
&= EL]1600-0]|%1 - EL||x-0]|°].
‘Using-'ihtegration by parts (see [1] Berger, P.1325),

s = EL6C K121 1XT12] = 2eCaClIXeo D pa ] 1117+ 211X 0 (X120

-r(t)

Recall that r(t)=t¢(t) imp]ﬁes t¢'(t) = + r'(t).

If r'(f)ép (since r is nondecreasing), then

2 2y 2
a < eI © opo2)E a([]%-8]]) r({X15)

= 12 2
R [1X]1]

-24_ -2 .
Because Ee=0[||X|| ]*Ee[llx-ell 1, assumption (1) of the theorem implies
that | |

2
p<E %‘Lz—) c - 2(p-2)a(|]%-s])

where c=2/Ee[||X-e||_2].



This Tast bound for A may be written as

CE [8(R)] + [ 2(p-2) -6(R) (R H(RIR

2 .
where G(R) = E ri%%fffgl

' |[X-8][=R| , and a, s the surface area of the p-

dimensional unit sphere.

The integral in the bound given above for A may be written as

2(p-2)d* Z’{;RZG(R)}{q(R)}“

where d* = Ee[||X-6[[_2]- Note that apRp"3f(R)/d* is a density for R.
Because '{-RZG(R)} is nonincreasing in R for p>4 (see Brandwein [3]) and

{q(R)} is nondecreasing in R, we may apply Remark 1 and Lemma 1 of the Appendix

to find an upper bound for the integral which is

. R3rRIaR] [ ta(r) R%3FRIRL
2(p-2)d* | [{-R2G(R)1—P. AEE ] [ d*P 1 .
0 J 0 ]

This may be rewritten as

1 [ 1
6]



because éq(R)f(R)Rp'BdRap = TE%7Y by Lemma 2 in the appendix.

2E[G(R) T
E Ll %617

This upper bound implies that A < cE[G(R)] - » which is zero

by definition of c. q.e.d.

Theorem 2. Let X be a p-dimensional random vector with density f(||X-6]]),
where the set of points in [0,») for which f is discontinuous has Lebesgue

measure zero. For p > 4, under squared error loss the estimator

6(X) = (1 - —S—)x

dominates the estimator 8(X) = X provided that

q(t) = ~{Z uf(u)du / f(t)} B

is finite nonincreasing on {tz0:f(t)>0} and

¢ <2 [x-¢] %1.

Unless X is a normal random vector, the result holds for

c =(ZLE:ZA)E[[|X-6||2].'

In the case that X is normal 6 and éo have the same risk for this value of c.

Corollary 1. Under the assumptions of the Theorem 2, the positive part

estimator
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c . 2
st - ) T *o
0 if ||x]]2

dominat i 6 = 2(p-2) 2
nates the estimator 65(X) = X for ¢ 5_——95—— Egol1X]1°].

Proof of Theorem 2.

~Tthe-preof-of Theorem- 1 -shows that (setting r(t) = c)

~7

>
n

EC[8(x)-6]|%] - E||X-0]|2]

c E[[]X]l {c-2(p-2)q(||X-6]])}]

¢ E[G(R) {c-2(p-2)q(R)}]

where R = [|X-6| and G(R) = E[[]X]]'Z i‘]]x_ell =

Brandwein [3] has shown that R G( ) = w(TT—TT> where v is nondecreasing in

the argument TTSTT . It is clear that ||6]| G(R) = w(ll%ll> which is thus

nonincreasing as a function of TTETT . For fixed [|6]], this shows that

G(R) is nonincreasing in R. The assumption that q(R) is nonincreasing

in R implies that

ELG(R)-q(R)] > E[&(R)]-E[q(R)].
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(Unless X is normal this inequality is actually strict.) Thus

A < cE[G(R)](c-2(p-2)E[q(R)]).

Because (by Lemma 2B of the Appendix) E[q(R)] = E[|1§-911] ,

we have A < 0 for ¢ f_z(p-z) E[||X-e||2].

This inequality is actually strict unless q(R)=1 (i.e. X is a normal random

vector, ) g.e.d.

Proof of Corollary 1.

The corollary follows directly from the theorem and the fact that the positive

part estimator é: dominates the estimator §. ' g.e.d.

fhe following Temmas proved-in the appendix give simple assumptions that

insure the monotonicity of q. Note that q'(t)<0 if f'(t)>0.

Lemma 3: On {t>0:f(t)>0}, q(t) is nondecreasing if and only if on
{t>0:1(t)>0} we have f'(t)<0 and q(t)>tf(t)/(-f'(t)). On {t>0:f(t)>0},
q(t) is nonincreasing if and only if on {t>0:f(t)>0} we have
q(t)<tf(t)/(-f'(t)) if f'(t)<0.
Lemma 4: On {t>0:f(t)>0}, q(t) is nondecreasing if f'(t)<Q andﬁf'(t)t-]/f(tﬂ
is nondecreasing in t there;son“{tzorf(t)§0}, g(t) is nonincreasing if
'{f'(t)t']/f(t)}is nonincreasing in {tz0:f(t)>0 and f'(t)<0}.
The following corollary employs simple assumption to insure that q is

monotone.
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Corollary 2, Let X be a p-dimensional random vector with density f(||X-g]]).

(=]

Let g(t) = Tog f(t'/?), and q(t) = [ uf(u)du/if(t)y.
t

Then q is nondecreasing on {t>0:f(t)>0} if f'(t)<0 there and g'(t) is non-
decreasing there. Also, q is nonincreasing there if g'(t) is nonincreasing

on {t>0:f'(t)<0 and f(t)>0}.

Proof. Lemma 4 of .the appendix 1mp]1es that if f is differentiable and
\m®n141bheasdpag » G 1s nondecreasing because g'(t) nondecreasing is
equivalent to the condition that'{f'(t)t-]/f(t)} be nondecreasing: In the

case that g is twice differentiable we have

_ d | f'(t -1/2
RS O

A similar argument works for g nonincreasing. qg.e.d.

Observe that the condition (2) that the function q be nondecreasing in
Theorem 1 is satisfied for distributions which are mixtures of normal
distributions. Thus the results of the theorem agree with those obtained by
Strawderman [6] and Berger [1] for this class of distributions which includes
the normal as well as the multivariate t- distribution.

Example. The following density is not a mixture of normals yet q(t) is
nondecreasing. Let g(t) = t- (2+t)e . Define f(t) = Kg' (t ) exp(-g(tz)).

Then d(t) fuf(u)du/f(t = g— Z 2ug'(uz)exp(-g(uz))du/f(t)

5 exp(-g(t9))/£(t) = brg' (D).
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Thena' (8) =-tg!)(t%)/[g" (1)1,
Note that g'(u) = 1 + (1+u)e ¥, and 9(2)(u) = —ue™Y, and 9(3)(u) = (u-1)e™Y,
and 9(4)(u) = (2=u)efu. Thus q'(t)>0 and q(t) is nondecreasing.
By Theorem 2 of Berger [1], f is a mixture of normals if and only if

o(u) is completely monotonic for u in (0,=) where o(u) = g'(u) exp(-g(u)) i.e.,

p(j)(u)(-T)j > 0 for all j > 0.

But 23 (0 = e 9 48 (4~ 316@) ()12 + 6612 (u) ! ()12

- 49'(U)g(3)(U)-[g'(U)]4}.

Setting u=1, we see (71)39(3)(u)<0. Thus p is not completely monotonic

and f is not a mixture of normals. q.e.d.
In the case that q is not nondecreasing, but f is nonincreasing, results

of Brandwein and Strawderman [4] insure that the 6 in Theorem 1 of this sec-

tion is minimax for -p>4 when (2) is replaced by "(2') f is nonincreasing'and

(1) is replaced by

V(1) 0 < r(t) < 1p/(pr2)12/E, ol 1X]17E1Y

(For p=3, the ratio p/(p+2) is replaced by 3/8.)
If f is not necessarily nonincreasing, Brandwein [3] has shown that

5_15 minimax  for p>4 when (2) is deleted and (1) is replaced by

) 0 < r(t) < Up-2)/p32/E gl |1X]] 721
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Note that if f is differentiable and there is a value to such that

f'(to)zp, then q'(t0)<0 (using definition of q) so that g will not be
nondecreasing at tO. T e o -

The folTowing theorem extends the result of Theorems 1 and Corollary 1~
as well as the result of Brandwein and Strawderman [4] for density f to a

general nondecreasing concave loss function. It is an extension of a similar

result by Brandwein and Strawderman. [5] for all spherically symmetric

distributions,,

Theorem 3. Let X have a p-dimensional spherically symmetric distribution

about 6 with density f(]|X-6]]). Define the nondecreasing concave loss

function 2 by (6,8) = 2(,[6-6][2)._ Then the estimator is better than

X and minimax where

2
s(x) = |1 - r(LIX )]
[ |Ix]12

(i) r(t) is nondecreasing in t;

provided

(1) r(t)/t is nonincreasing in t;

(11i)0<r(t)<c*2Ee=0[z'(|[xl]z)]/Ee=O[||x|]'22'(|lx||2)]

in the following three cases:

Case A: If the density f(t) is nonincreasing in t, set c*=p/(p+2) for p>4
and c*=3/8 for p=3.
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Case B: If 2'(t2)f(t) has a negative derivative and Q(t) is nondecreasing on

{t>0: 2'(t2)f(t)>0}, set ¢c* = 1 for p > 4 where

Qt) = [ ue' (ud)F(u)du/[a' (£2)F(t)].

+— 8

Case C. If the function Q(t) is nonincreasing on {tzp: Q'(t?)f(t) is positive
with a negative derivative}, set r(t) =t for t < c and set r(t) = ¢ for t>c

where ¢ <-2@=2L g _oriixi|%e (11x]1%) )1/ Egugle' (111} 1.

Remarks. (1) For p>4 and c*=(p-2)/p, the result of the theorem was obtained
by Brandwein and Strawderman [5] with no restrictions on f.

(2) If the stkict.inequalities in (iii) are relaxed to "<", then & is
minimax and at least as good as X, but not necessarily better than X; however
if Q is strictly increasing on a Lebesgue set of positive measure where
2'(t2)f(t) is positive, then & is better than X..

(3) Note that the proof of Corollary 2 shows that Q(t) is nondecreasing
if ]og(z'(t)f(t1/2)) is nonincreasing in t with a nondecreasing derivative
in t.

(4) The condition (11) of Theorem 3 that {r(t)/t} be nondecreasing in t

may be rep]aced by the weaker cond1t1on

(i1) h(R) = RPE[F(]|X]] 2)41x1172| [ 1x-61] = R] is nondecreasing in R.

Examples

In each case assume the loss L(e,8) = ||6- ell where 0;b§2 and px4.

(1) 1IfX Has the p-dimensional uniform distribution on a sphere, i.e.,
|[X-e||25§2, then case A applies, but not case B. So §(X) is better than

X if

0 < r(+) < 2By Eg ol 1M1 172V ol X1 P71 = By R0}
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(2) Let X have a spherically symmetric distribution about & which is a
mixture of normals. Assume that p+b>4. Then Case B applies since log

b _
b ,2
(§'t
of normals include the multivariate t and normal distributions. For the

1
f(t]/z)) is nonincreasing with a nondecreasing derivative. Mixtures

normal distribution, ¢ is minimax if

0 < r(+) < 26, oL X[ [P722/E, o1 1X11P7*T = 2(bvp-4).

(3) Let X have a density f(||X-6]|) of a form considered by Berger [1] where

£(t) = kt?" exp(-t%/2),

b _
b .2
2t
has a nonincreasing derivative. Then the pesitive part estimator & is minimax

1

for n > 0. Assume b/2 + n>1. Then Case C applies since Tog ( f(t]/z))

where r(t) = t for.t < c* and r(t) = c* for t>c* provided

cr = 202 g LIKIPT 7 Egugll X11°720 = Z22) (przmep-2).

‘Proof of Theorem 2.

It follows immediately from Theorem 1 and CokoT]ary 2 of this paper and
from Theorem 2.1 of Brandwein and Strawderman [5] and Theorem 3.3.1 of

Brandwein and Strawderman [41]. g.e.d.

Section 3.. Estihators'that shift towards-a hypersphere

In the situation where 6 is deemed "1ikely" to 1ie in a certain ball
or sphere, KB Q’ of radius G centered at the vector 8, one has the opportunity
to make use of this "vague" information when the minimax invariant estimator

X does not happen to fall in the sphere K The estimators given in this

B,G
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section may be defined so they are minimax; they may also be chosen so that
the estimate of 6 (for values of X outside KB G) is shifted in a direction
from X towards P(X), the closest vector on the sphere to X. Note that these

estimators avoid the problem that occurs when 6 is deemed likely to Tie in

a closed convex polyhedron and the estimate of 6 is to be shifted from X
towards the closest vector on the polyhedron (for values of X outside the
polyhedron). For the polyhedron situation the estimators considered in [2]
were equal to X if the closest vector on the polyhedron to X Tay on a very

high-dimensional face, in which case no "shifting" took place.

‘The notation Kg g denotes the complement of KB G in the following theorem
which gives a class of estimators containing estimators which shift to the
ball KB,G'
Theorem 4. Let KB G be the ball of radius G in RP centered at the vector
B, i.e.,

Ky g = 1Y inRP: |]v-g]|<6}.

Let X and 6 be p-dimensional vectors in RP and assume that X is a random
vector with density f([[|X-6]|). Assume p>5 and define the nondecreasing
concave’ Toss function 2 b&

L(6.8) = 2(]]e-8]]%).
Define P(X) to be the closest vector to X on the surface of KB,G' Let 85

" be an estimator of @ which’équa]s X if X is not in KB;G‘ Befine the

estimator 6(X) equal to GO(X) if X is not in KB,G; if X is 1in KB’G,.1et
§(X)=X=r(| [X=P(X) [ |2) (X-P(X))/ | [X-P(X)] | (] |X-P(X)] |+6}}
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where

172_612) /41 s

(a) r is a real-valued nondecreasing function such that {r([t
nonincreasing in t for t > GZ;
(b) 0er(t)<2erE, o[a'] XD VEgolI X110 (11X 191
Then & dominates 8 for the following cases:
Case 0: With no restriction on f, set c*=(p-2)/p.

Case A: If the density f(t) is nondecreasing in t, set c=(p/(p+2).

Case B: Define the function Q(t) to be

o]

OB ug* (u?) F(u) du/e [(£2) £ ()]

If 2'(t2)f(t) has a negative derivative and Q(t) is nondecreasing on

ft > 0: 2'(t2)f(t)» 0}, set ¢+ = 1 for p > 4.

The estimators & given in the theorem are minimax if the estimator

60 is minimax. The values that 60

and § wés defined to agree with 89 for those values of X.

takes when X falls in KB g were not specified

Remark. If the strict inequalities in (b) of Theorem 4 are relaxed to "<",
then § is as good as 8 and minimax if 8o is minimax.
Example: The following estimator is a simple shrinkage estimator to KB G

which belongs to the class of estimators given in Theorem 4. It is minimax

and better than X.

Define ¢ = 2c*E,_oLu' (| 1X|[2)I/E oLl 1X] 122" (11X] 1)1,

Then let §(X) = P(X) + [1 - IIX'P(X)H((:HX'P(XH|+G)T(XTPX))"

(The "+" indicates that the quantity within the square brackets should be

replaced by zero if it is negative.)
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For this estimator, a value of X outside the ball KB G that satisfies

G
6 < [1x-8l| <5+/()°

+C

is shrunk to P(X), the point closest to X on the surface of the ball. Values

of X further away from the ball are also shifted closer to the ball, but not
onto the surface of the ball. Clearly, if c* and thus c is larger, then more
values are shrunk all the way to the ball. Consider the case for squared error
loss. In the case that p=5, knowing that the density f(||X-6]|) is nonincreasing

allows one to set c*-5/7 rather than c*=3/5. Knowing that q(t)=fuf(u)du/f(t)
t

is nondecreasing allows one to choose c*=1.

Proof of Theorem 4: Observe that I . (X) = I(g oo)(HX-BH) and the projection

KB,G
of X to the ball is P(X) =1, (X)X +1 . (X) (B+(X-8)6/ || X-8]1]).
8,6 Ke,G
since e (O (X-P(X) = Ty (Ix-E1) (x-8) 16/ [x-61 D)
and IK; GI(X)||X—P(X)|| = I(G’w)(||X—B||)(||X-B{|-G), we have
e (Ke(X) = L (O Tx-r([ | | %-81[-61%) (x-8) /| |X-81°1.
B,G B,G

Thus
el s(x)-8112 - EL|lag(x)=s11°]

>
1i

1l

EL,C G(x){||e+(1-r([lIX-BII—GJZ)/\\X-BIIZ)(X-B)-6|lz—llX-eHz}]-
B

Now define 8%(X)=X and ee(]1%-811%) = IKE G(X)r([IIX-BIl-GJZ), and

9

s*(X) = 8 + (1-r=(]|X-8] |2/ 1X-811%) (X-8)

X - re(][x-8112)(x-8)/] %81 1% -



Then IKc (X)s(X) = I,c (X)s*(X) and I,c (X)s

Thus the difference in risks between § and Gois equal to the difference

in risks between s* and and 66, i.e.,

EL(][8(00)-01[9)] - ELa([[5,(X) - o] 2]

ElLe (0211800 - o] %) - 2115500 - o[|2)3]

s

Elle (01(]18¥(X) - o] 1) - a([5500 - o]1%)1]

ELa(16%(x) - o] 1)1 - ELe([|s5(X) - o]|2)1.

Therefore, it suffices to show that §* dominates 66.
The conditions a) and b) of Theorem 4 imply that r* is a real-valued non-

decreasing function such that r*(t)/t is nonincreasing for t > Gz.and
0 *(+) < 20k . 2 -2, 2
< re(t)<2ekEg Lot (X[ 121/l [X] 20 (] X[ 12)].
However, {r*(t)/t} = 0 for tgﬁz; it is not true that {r*(t)/t} is non-
increasing for all t > 0. The condition that {r*(t)/t} is nonincreasing is used only

to show that h(R) is a nondecreasing function of R where

h(R) = RELr*(| |X]12)]1X]172] | |x-8]] = RI.
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by Brandwein [3], Brandwein and Strawderman [4], [5] and Theorem 3 of
this paper. Lemma 6 of the Appendix shows that h(R) is nondecreasing in

R for p>5.

Thus, for case 0, the dominance of §* gver 66 is shown by Brandwein and

Strawderman [5] and Lemma 6 of the Appendix. For cases A and B, the
dominance of &* over 66 is given by Theorem 3 of this paper and Lémmagﬁ'

of the Appendix.
g.e.d.
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Aggendix

Lemma 1. Let T be a non-negative random variable. Assume f] and f2 are
real-valued functions defined on [0,~] such that u1=E(fi(T)], i=1,2, are

finite. Let f2 be nonincreasing and let there be a value f;](u]) such that

f(t) < uq fort 5_f;1(ﬁ]) and

f1(t) >y for t 3_f{1(u1)

Then E[f](T)-fz(T)] 5_E[f](T)]-E[f2(T)].
Proof. It suffices to show that (*)<0 where (*)=E[(f1(T)—u1)f2(T)].

Without Toss of generality, assume that f;1(u1)3p. ‘Let G be the distribution func-
tion of T. Then )

(*)

1

(£ () Fp()dB(E) + [ (£ (£)-ug)F,(£)dG(E)
f] (U])
For Ofﬁff{](u]), f](t) < and fz(t) Z-fZ(f;](ul)) since f, is nonincreasing.

This implies that for Oﬁpif{](p]), we have (f](t)-u]) nonpasitive and

(F1(8) =) Fp ()< (4 (£) =) £, (£ (g))

and the first integral in the latest representation for (*) is bounded above
by

T (uy)

f
A= TR (D) ) de(t).

1 - : .
For t2f; (uy) 5 we have (f;(t)-1;)0 and fz(t)jfz(f]](u1)) since f, is
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nonincreasing. This implies that ‘or tzfi](u1),
(F1(8)=up) (1) < (F1(0)=up) P, (F7 ().

So the second integral in the last representation for (*) is bounded
above by

B - (£, (£)-uy) £, (£7 (ug))d6(2).

—H'— 8

{](U])

The sum of A and B gives an upper bound for (*) which is zero.
qg.e.d.

Remark ‘1. If f] is nondecreasing it satisfies the following conditions %'

of Lemma 1: there exists a value -f{](u]) such that
-1
f](t) <y for tif] (u-l)

and  f,(t) > uy for tzf{](u1).

Remark 2. If there is an interval (where the density of T is positive)
such that f1 is strictly increasing and f2 is strictly decreasing, the
conclusion of Lemma 1 may be strengthened to a strict inequality.

Lemma 2A Let X be a p~-dimensional random vector with density f(||X-6]]).

Define on {R > 0: f(R)>0} the function

q(R) = [ uf(u)du/f(R)

I— 8

and assume that q(R) < «. Then E[q(||X-e||){[X-e[l_2] = Tﬁ}fy .

Proof: let % be the surface area of the p-dimensional unit sphere.
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Then
-2+ _ % o2 p-1
ECa(]|X-0][)[[X-8]]7°] = é {R™“q(R) }f(R)R dRa. .
Because q(R)f(R)=fuf(u)du, a change in the order of integration implies
0 .
= p-3 = P2 “ p-1
éR q(R)f(R)dRap = é =2) uf(u)dUQp. Since éu f(U)dUQp=], the last

expression equals 1/(p-2). q.e.d.

Lemna 28 E[q(||X-0]|)] = E[||x-6||%1/p.
Proof: -

Note E[q(l]X-e[[)] = Zq(R)Rp']f(R)dRup. Because q(R)f(R) = [uf(u)du,
R

we have (by a change in the order of integration) that .

| .
_ u

ELq(]|X-6]])] = g R uf(u)dUap
_ E[][x-8][*?]

P g.e.d.

Lemma 3. Let f be a differentiable function such that q(t) is finite where

o]

for {t>0:f(t)>0}, we have q(t) = [ uf(u)du/f(t).
t

Then q is nondecreasing on {t>0:f(t)>0} if and only if on {t>0:f(t)>0}, we have

q(t) > tf(t)/(-f"(t)) and f'(t)<0.
Also, q is nonincreasing on {t>0:f(t)>0} if and only if on {t>0:f(t)>0} we have

q(t) < tf(t)/(-f'(t)), when f'(t)<0.
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Proof. The derivative of q is

Q' (t) = -t - f'(t)q(t)/f(t) = (-F' (£)/F(t))(a(t) - tF(£)/(-F'(¢))).

Note that q'(t)<0 if f'(t)>0. For f'(t)<0, we have (-f'(t)/f(t))>0, and the

statements of the lemma follow.

qg.e.d.

Lemma 4. Let f,q be given as in Lemma 3. Then
(a) q(t) is nondecreasing on {t:f(t)>0} if on {t:f(t)>0} the fuﬁction'
f'(t)t‘]/f(t) is nondécreaSing in t and f'(t)<0; B
(b) q(t) is nonincreasing 6n {t:f(t)>0} if on'{t:f(t)>0}the function
f‘(t)tf]/f(t) is nonincreasing for t in {t>f(t)>0 and f'(t)<0},

Proof. Note that

F(t) = [I-F'(s)Tds = [(~F*(s)s™1/£(s))sF(s)ds
t t

< (-F(0)EV/R() [ sf(s)ds
t

if (-f‘(t)t_]/f(t)) is nonincreasing. Multiplying both sides of the above
inequality by t/(-f'(t)) implies tf(t)/(-F‘(t))gg(t), using the definitidn

of q. Lemma 3 implies that this last inequality insures that q is nonde-
creasing. A similar argument gives (b).

q.e.d.
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Lemma 5. Assume p>5. Let r(t) be a bounded nonnegative function for t>0

with r'(t)>0 and af{ (t)}<0 for t>0. For -(R/{[e]]) > u > cp, and.r>0, M(u)
js a nondecreasing function of u where

mw) = te(| X112 x| 20-2) P30
qnd

[1X12 = |16} |% + &® + 2R||o][u,

and ¢, = (2R]fo])71(6 - R - ||e||2) > -1,

Proof. It suffices to show that - (M(u)) > 0. “Because r'(llX[[2)~g_Q,

o)) = e (XA TIXTT2 = (X2 X 2R] fo] |

- (1) P32 (1111172 (p-3) (1-u2) (P52 (L)

> (=02 PO 2 12 114w X1 12Cp-3) - 2R[Jo]] (1-42)).
Since  (-u) > (R/[|e]]|) and (p-3) > 2,

d

() > (=AY P2 1B 1 211011710012 - 21161 (1-4%))

_ 1, i
= 2R] o] |7 (X 1D [ IXTTHR + (o] [w)? > 0. B
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Lemma 6. Assume that the p-dimensional random vector X has a spherically
symmetric distribution about the vector 6. Let r(t) be a nonnegative
function of t such that r(t) is nondecreasing in t and {r(t)/t} is
nonincreasing in t for t > 0. If p > 5, then h(R) is nondecreasing in

R where

h(R) = RZE[I(GZ )(IIXI|2>r(|IXH2)I|XII'2 |1%-8]] = RI.

H]

Proof. Note that for fixed 6 and R (=||X-6]|), the distribution of

IIXII2 may be chosen to be that of

R® + 2R|[e]|u + |[e]]?

where u is a random variable with density I[_1 +]:l(u)(l-uz)(p'?’)/zM*.

(The M* is a normalizing constant.) We will write

2 _ o2 2
HXH = R® + 2R[fo]u + []e]]

in the sense that their distributions are alike for fixed R and 6.
Define cp = (6° - RZ - [18]12)/(2R ||e]])for R>0 and |[6]| > 0. It
is clear that [|X||>G corresponds to u >cp.
Case 1: Assume R satisfies 6 > (R#‘f‘9¥T)2, Then ¢, = 1. Since u < 1, we

have

Lo (11x]1%) = (e )W) 70

and h(R) = 0. Thus h(R) is trivially nondecreasing for these values of R.
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Case 2: Assume R satisfies G2 <(R - ||e||)2. Then cp < -1. Since u > -1,

we have

. 2 - -
I.Gz’m)(||X!| ) = I(C (u) =1

R9°°)

and
A(R) = RZELr(] |X]12)]1%] 72| ]%-0] | = RI.

This has been shown to be nondecreasing in R by Brandwein [3].

Case 3: Assume R satisfies (R-[|e||)2 §_G2 < (R + ||e||)2. We may write

1
h(R) = RZ [ v(1X]12)[1%]172(1-u?) (P=3)/2ypsqy
C
R

Without loss of generality, assume that r is differentiable. Then

—%—(h(R)) =A+B+C

where

]
]

(6% + RZ - |Jo| [2Ir(6%)(2]]0]16%) " (1-cB) (P~3)/ 2

and

1
[ R (L IXT2Y 11X ) 7202R + 2] o] u) (1-u?) (P=3)/2q
C

R

lee)
1
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and

1 .
2 - ‘ , -
c = (XU (2R + 2] o] DRI o] [(1-u?) P73 2ueau.
‘R
Subcase 1: Assume R satisfies R® + ]Ie]lz_i 6. Then cp, >0 and A, B and C

R
are nonnegative which implies that a%—-(h(R)) > 0.

Subcase 2: Assume R satisfies G° < RC + ||e||2. Then cp < 0 since

cg = (&R ~[[o]12)/(2] o] R).

Subcase a: Assume R satisfies 6 > ||e||2 - R%. This implies that

Ru+ [lo]] > Reg + [lo]] = (6% - &% + ]e]|%)/(2] el ).

If Rept||6]|>0, then Rut|[6]]>0 and c>0. If Rept|le]{<0, then

+1
c> | LX) TIXTT2R 011 (2R + 216 ) (1-u2) (P=3) Zpeqy

since (2Ru + 2[[6[|) < 0 for -1 < u < cp. This Tower bound for C was
shown to be nonnegative by Brandwein [3]. Because R + ||o]]u > R + [1e]]cq

= (G2 ¥ R® - ||e|i2)/(2R), we have A > 0 and B > 0. Thus

d

R (h(R)) =A+ B+ C > 0.

Subcase b: Assume R satisfies Gz_i ||e||2 - R?,
Since |[e|[>R and since (R + ||8]||u) > O for u > -(R/||6]|) and since

r'(t) > 0, we have

~(R/[]6]]) ,
B > 2R f eI IXTT2R + o] [u) (1-u2) (P30 Zgsqy.
R
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Because {r{(t)/t} nonincreasing implies r'(t)/t §_P(t)/t2 and because

(R+ |]e]|u) <0 for cp 2 u < ~(R/[[6]]), we have

-(R/jlel])
5> o2 ] eI TR + [10] [u) (1-02) (P3) Zysgy
C
R
Thus
-(R/]le]]) o o
C+B>2R [ rCIXTATIXTTA0R ol Ju + [ 10]12) + (RZ + R][o] [u) 1.
C
R .

. (1-u2)(p'3)/2M*du

-(R/]1e|]) o )

=R | O X217 201-02) (P30 2y
(o}
R

Because r'(1|X||2)||X||—2(1-u2)(p'3)/2 is nondecreasing in u for p>5
by Lemma 5 of the Appendix if -(R/[]|6]]) > u > cp» we have

[i(R/llell)d
c

¢+ B 2 [RIr(||X] 2] x| 72(1-2) P30 2y u

R cp

= 2Rr(GZ)G'2(1-c§)(p'3)/2M*[-(R/llell) - ¢cpl= -2A.

Thus A+ B+ C > -A > 0. q.e.d.
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