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SUMMARY

Let ™ M be given populations associated with unknown real

[ ERRERT I

parameters © 8

1> e O The goal is to find a population with a

sufficiently large parameter in two stages with screening out inferior
populations at the first stage. Both the control and the non-control
situations are considered simultaneously. Let ;ﬁI ~denote the class of
permutation invariant randomized procedures (¢, P, 6), where at Stage

1, ¢ and Yy decide how many populations and then which ones, respectively,
are selected, and where at Stage 2, after additional samples have been
drawvn from the selected populations, & makes the final decision. Let

Y* and &* denote the natural decisions, i.e. which are associated

with the largest sufficient statistics. Under the assumption of a common
discrete or continuous:type strongly unimodal exponential family,it is

éhown that with respect to every reasonable loss function, procedures of

the type (¢, P*, 8*%) form an essentially complete class within “ZI .



1. Introduction.

Let Mys eevs M be k given populations associated with unknown

parameters 0 cees ek € Q , where § € R is an unbounded or bounded

l’
interval. Let the goal be to find a population with a sufficiently large

parameter after having screened out inferior populations at the first
stage. If all (all but one) populations are screened out at Stage 1, the
procedure stops and decides finally in favor of none (this one). Other-
‘wise, at Stage 2 additional observations are taken from all populations
which have been selected at Stage 1, and a final decision is made among
them, The result of this paper is applicable to both the control (where
a control value 60 € ¢ is given) and the non-control cases. For
references of papers dealing with two-stage procedures of the type descr-

ibed above see Gupta and Miescke EiQSi).

} can be

Assume that samples ): G I and Y .
P { 13}3=l { j=l,...5m

PR o] ij

drawn from U at Stage 1 and Stage 2, respectively, i =1, ..., k,

which are mutually independent. Let the observations from M. be real-
valued and have a density c(ei) exp(eix)b(x), x€ R , ei € Q, w.r.t. u,

the Lebesgue measure on R or the counting measure on Z, resp., i=1,...,

k . The function b(x), x € R, and thus the underlying exponential

family is assumed to be common for all k populations. Let Ui = Xil +

e + X, and V, =Y, + ...+ Y, be the sufficient statistics for
in i il im .

Gi with respect to the samples of ™. at the two stages, and let their

densities with respect to u be denoted by f@. and 8y > respectively,
i

1

i=1, ..., k . Finally, let Wi = Ui + Vi be the overall sufficient
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l, ..., Xk . For notational convenience, let

statistiec for ei, i

)

| <
1

(V., ..., V.) etc. in the following. For later

1 k

U= (U, ..., U

considerations, note that

(1) fa(u) = c_(8)exp(Bu)b (u), ue R, 0€Q,
n n

g (v) = c (B)exp(bv)b (v), vE R, 6€ Q,
s} m m

where cn(e) = c(8)", cm(e) = c(8)™, 6 € 9, and where b ~and b denote
the n-fold and m-fold convolution of b with respect to U .

We now give a precise definition .of a randomized .two-stage

procedure,

Stage 1: After having observed U = u , two decisions have to be made:
how many populations should be selected and then, which ones. Let ¢
and P Dbe the corresponding decision functions. Thus let ¢ {¢i|

k

i=0,1, ..., k} , where ¢i : R" =+ [0, 1] is measurable, i =0, 1,

n
eee, k ,and L ¢i =1 . Moreover, let Y = {ws + lse {1, ..., X},
i=0 ?

|s| = t, t= 1} , where ws £ R > [0, 1] is measurable, s<{1, ...,
H

k}, Isl =t, t= 1, and 2 ¥

s,[s|=t

HI

|
st 1,t=1, and where |s'|

denotes the size of a subset s' of {1, ..., k} .

If a decision based on ¢(u) states that |s| = 0 then the procedure
stops, and no population is finally selected. If a decision based on:

¢€u) states,the‘|s\v= 1 then the procedure stops also, and a final

decision is made based on {w{i} l(g)l i=1, ..., k} . In all other
>



cases the procedure proceeds to Stage 2.

Stage 2: If at Stage 1, populations s with j€s ='{ilg...,it}, ii <...<1

t = 2 , have been selected, then, after having observed Vi Z V. 5 eees
' 1 1

V. = v, , the final decision will be made based on {8, ~(u, v, s sees
i, i j,8 = i

v. )| € &} . Here, & ={8, i€ s, sc {1, ..., k}, |s| = 2} , where
i i,s :
Gi o RS x I{h3|+-[03 1] is measurable, i€ s ,s< {1, ..., k} ,
2

1, |s| =2 ;

|s| 2z 2, anda X Si

. s
i€s ?

Let J denote the class of all such two-stage procedures.

Definition 2. A procedure (¢, ¥, 8) € J is called (permutation)

invariant, if the following three conditions are fulfilled:

¢ is invariant: For every i€ {1, ..., k}, u € Ig(, and permutation

o of (1, ..., k), ¢0(E) = ¢O(u cees U

G(k)) and ¢i(g) =

o(1)?
b5 (ugeays - ee Ugqey)

Y _is invariant: For every t€ {1, ..., k}, s {1, ..., k} with

ls| = t, ué Igc, and permutation o of (1, ..., k), ¥ _; (u) =

-~ o(s),t —
ws,t(uc(l)’ cens uc(k)) » where o(s) = {o(§)]5 € s} .
§ is invariant: For every s = {il, cens it]with i1 < ... < if, t > 2,
every o(s) ='{j1,...,jt} with j1 < .. < jt’ o permutation of (1,...,k),

- 't _
and everyn(vjl,..{,vjt)é R, Gc(i),c(s)(g’vjl"'"Vjt) = Gi,s(uc(l)’

es g ug(k)’ VG(il)’ ce ey vG(it)) .

Let GZI denote the class of all invariant (¢, ¥, 8) €7 .

Loss Assumptions: Let L(O, s, i) denote the loss at RS Qk if subset

.t’



se{1, ..., k} with Is} =z 1 1is selected at Stage 1 and the final
decision is made in favor of i € s . Let this loss function be invar-
iant, i.e. L(B, o(s), o(i)) = L((ec(l), cees Go(k)),s, i), i€ s¢c

{1, eees kb, gESﬁ,:&rewmypamﬁmimlc of (1, ..., k)

Assume that at every fixed 6 € Qk with Ol < 62 ,and s<c{3, ...k}

with 0 < |s|< k-2 , the following four conditions are satisfied:

(L1) L(e, {2}, 2) < L(8, {1}, 1)

(L.2) L(e, §v {1,2}, 2) < L(g, sv {1,2}, 1)

(L3) L(B, sv {2}, i) =< 1(B, swv {1},1),1i€ 5,
(L) L8, v {2}, 2) =< 1(8, §v {1}, 1), |§] > 1.

Note that we make no assumptions about the loss function LO(QJ,
say, for selecting no population at Stage 1 at: S Qk. All reasonable

loss functions in the control as well as in the non-control setting

should have the properties assumed above,

Example: The following loss function has been adopted by Gupta and
Miescke (1982) in the control case. Lo(g) =0, L(B, {3}, J) = 2(90 - ej),
=1, «v., k, L(B,s,1) = c|s| + 2(90 - Gi), i€s,ss{1, ..., k} with
]s[ = 2 , where 60 €  is a given control value, £ is non-decreasing
with 2(0) =0 , and ¢ 2 0 is the cost for every population which enters

Stage 2.

In this paper our purpose is to show that every (¢, ¥, §) EnﬁI

is dominated, uniformly in terms of risk, by (¢,¢, 8*),

and, moreover, under the additional assumption of a strongly unimodal



discrete or continuous type exponential family, by (¢, %, &%) , where

y* and &% are the natural decision functions which are defined below.

Definition 3. For every t€ {1, ..., k}, s< {1, ..., x} with |s| = t,

u € Re, vE () = 'lBt(E)]'l(o) if s€ (@ B (W , vhere B (uw) ={s'|
s' < {1, ..., k}, |s'| = t, max {uili ¢ s'} < min {ujlj € st}

Similarly, for every s = {il, cees it}' with t=z= 2, i€ s, ué€ I£<,

(Ve s ey v, ) € I{ and w, =u, +v, ,j=1, ..., t, Gﬂ (u, v. ,
i i i, i i i,s = i,
-1 . .
s Vi ) = ICS(w:.L s eees Wy Y| TT0) if i€ (Q)Cs(wi s eees Wy ), where
+t 1 -t 1 t
C (w, 5 vouy w, ) ={7lw. = max {w_|r € s}, € s} . Note that &% is
1 i T i,s

only a function of (w, , ..., W, ) .
i i

The resultsby Eaton (1967) will play a fundamental role in our
considerations and will be used repeatedly. insfead of repeating at
every new occasion let us point out now that in all relevant situations
Eaton's "property M" is given. The argument is always the same and can
be found e.g. at the end of Section 2 in Eaton's paper. Also, the specific
loss functions under concern will always be invariant in his sense. but we

do not assume that they are non-negative.

2. 'The results.

The risk of a procedure (¢, ¥, §) €J at CAES Qk is given by

. k
(2) R(B, (6,9,8)) = LO(_O_)Egd)O(_Q) + iElL(Q,{i},i)Eg[¢l(g)¢'{i},l(g)]

+ Z Eq [d> (U) :w L0 Z L(g,s,j)aj NCER AR AN
t=2 2 '

s= 11,".,;t} i€s > 1 t



Since for every (¢, ¥, §) EgﬁI, R(B, (¢, ¥, 8)) = R((ec(l), cees
ec(k)), (¢, ¥, 8)), 6¢€ Qk , for every permutation o of (1, ..., k),
it is convenient to compare procedures in ;ﬂI in terms of their Bayes
risks with respect to permutation symmetric priors. Thus let 8 =(0,,

1

e oy Qk ) be from now on the random parameter vector with. any but fixed
permutation symmetric (prior) probability distribution T defined on

the Borel sets in Qk . It has to be assumed now that L(6, s, i) for
every fixed 1 € s,rs {1, ..., X} , is measurable and integrable
properly. Note that for most of our results we need to consider only
priors T which have finite supports, where these two conditions mentioned

above are met automatically. The Bayes risk for (¢, ¥, §) €.J under =

is given by

(3)  rlt, (¢, ¥, 8)) =[ RO, (b, ¥, 6))a1(8) = ERE , (¢, ¥, 8)) .
k
Q

Remark 1. Note that for two procedures in GZI we have R(6, (¢l, byo §.))

l)
ko, . .

< RS, (¢2, wQ, 62)), 6 € Q" , if and only if r(tr', (¢l, wl, 61)) <

r(T', (¢2, ¢2, 62)) for every symmetric prior T' with support (T')

= {(60(1), cens Q@(k)) ‘{ o permutation of (1, ..., k)}, B € Qk .

Since we will compare procedures in eﬁI which are only different in

the VY-and J-components, the natural way +to do this is to look at the

conditional posterior risks, given U=u, for every fixed u € Bg<.

Thus let u¢€ Bg< be fixed, which in view of the invariance of the
problem can be assumed to satisfy uy < u, < ... = - Now, for
(b, ¥, 8) € J_, this cenditional risk, given U = u , is given by



() E{L(O, (0,9,80[0 = u} = ¢, (WE {L (@] U = u}

K _
+ ¢ (W2 Viiy g E {10, {i}, 1)[U = u} + Z qb (W2
i=1 ? S

Y
={i_, ..,1 e s,t =

1’

‘E{ X E{a (w, v, » ..
i€s 28 1 t 1 t

which, after some standard computations, is seen to be equal to

| k -
(5) 0. (w [ L(0) T £ (u)dt(0)Blu) >
0= x 0~ Q=1 eq q - =
94

k k
Crs . _ -1
+ ¢, (w iElw{i}’l(E)'fk L(g, {i}, 1) qufeq(uq)dT(Q)B(E)
Q :

k
t L (W Ly @[ Ls. (u, Vis eees Vo)

=2 s={i,..., i} 5F T ptes 5T Tt
_ k
J o ne, s, ) @ £y (u) I ge (v )at(e) T dulv )B(u)
Qk g=1l “q 9 res pEs P
k
where R(u) = I oI £ (u)dz(e) .
ok @l g

Lemma 1. Let (9, ¥, 8) €I, be fimed. Then r(t, (¢, ¥, §)) <
(T, (8, ¥, 8)) and thus R0, (4, ¥, 8)) < R(8, (6, ¥, 8)), uniformly

in 0 € oh , where { is the same as Y except that @{i} 1= w?i} =

Procof: The first assertion follows from (L1) and Lemma 4.1 of Faton

(1967), and the second one holds true in view of Remark 1.

s V0, s, D|U=u, V., e, v, MU s

uj ,

(u)
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From now on we have to study the term following ws,t(g) in (5) in
more detail. Before we make use of the assumption that we are dealing
with an exponential family, it is crucial for our further considerations
to note that for every fixed s = {il, vees it} with t = 2 the following
holds by Fubini's Theorem.

k

(6) f LS, (U,v. 5ee.,v, ).f L(O,s,3) I £, (W) I g, (v )At(8) I dulv )
ot j€s Jos =71, i K — q=1 Gq 4 e er T ~ s P

k : k
= I LS, (u,v, yeu.,v, )‘r L(B,s,5) I £, (u )g, (v )AT(8) T dulv ).
;Rk ses 358 7 4y i ok — q=1 Gq q eq q p=1 p

Remark 2. It should be noticed that in (6) we have introduced the vi's
with 1€ s as dummy variables. This is necessary in order to prove
our Lemma 3 below with the help of Eaton's (1967) results.

Lemma 2, however, could also be proved without this trick.

For fixed s = {il, cees it} with t=z= 2 , the term following
L t(E) in (5) is seen, after inserting the exponential demsity function
3

(1), to be equal to

k
(7) I 26§, (u, Vis eees Y, )'f L(8, s, j) O exp(eq(uq + vq))

. Js8 — 1 =
IRR jeEs 1 t Qk q=1
K ~ -1
c (8 )dat(8) I b_(v )du(v )B(u) ~ ,
n+m g - 7.m p 7=
r=1
~ K n+m
where B(u) =‘fk qglexp(equq)cn(eq)dT(Q) and cn+m(6) =c(0)” 7, 0€ Q.

Q



A change of variables wq = uq + vq, qQ=1, ..., k,. reduces (7) to

3

k
(8) f 2 8, S(Eﬁ L R ) [ L(B,s,j) T exp(eqwq)
R J€s - 171 t Tt ok q=1
k v =1
c . (6 )dt(8) I b (w -u ddulw IB(u) ~ .
n+tm q ~ ey M T T r’ =

Lemma 2. et (¢, b, &) €T be fimed. Then r(t, (¢, U, %)) <
r(T, (¢, ¥, 8)) and thus RO, (¢, U, 6%))< R(O, (¢, ¥, 8)) , uniformly in

e of .

Proof: In view of Lemma 1, we can assume that ¢ = { holds. The measure

k

at(e) = Tec +m(e )dt(f) is seen to be a permutation invariant o-finite
g=1 " 1 |

(c 1is continuous ) measure on the Borel sets in Qk . Thus it follows

from (L2) and Lemma 4.1 of Eaton (1967) that for every fixed wE Igt,

k
(9) L 8. Su, L A ) f 100,s,3) T exp(6 w )dt(8)
jes I° 1 1 t Tt ok q=1 14
is minimized if Gj s 6? o? j € s . This proves the first assertion,
2 L

and the second one holds true in view of Remark 1.

Remdrk 3. As we have pointed out already at the end of Section 1, note

that the optimal decision function 6? o? j € s , makes use only of the
L

information contained in (Wi s sees W. )

1 11

Now, for §. = 6% » J € s , formula (8) reduces to
Js5 158



k k
(10) f min f L(B,s,3) I exp(@qwq)d?(@) I bm(wr_ur)du(wr)é(E)—l .

RS € gk q=1 r=1

From now on, let only uc¢ B£< with uy < u, < ... = Uy and

tef{2, ..., k} be fixed and let s & {1, ..., k} be variable subject

to |s| =t . For notational convenience, let
k . K
(11) ‘KS(E) = min I L(8,s,3) I exp(6 w )AT(8), we€ R, Is|] = ¢ .
. s€s Qk g=1 q4q ‘

Lemma 3. Let s<{l, ..., Kk} with 1< |s| < k-2 be fized and let
for p,q€ {1, ...,k}\;, SP=§v{p} and sq=§u{q} . Then for

every w € B with w sw, £ WL (w).
~ p- g’ s = s_ =

q P
k
Proof: Consider H .(w) = f L(0,s,3) I exp(6 w )dT(s), with
. S,] — x = =1 rT -~
Q
sc{1l, ..., k} and |s| = 8] +1, i€s, W€ ]Rk. As we have

mentioned already, T is a permutation invariant o-finite measure on
k .
the Borel sets of . Moreover, for we ]g< with Wp < Wq’ we have

the following.

(i) H .w)sH .(w), € 8 . This follows essentially in the
s - s

> 2

q b

same way as Lemma 4.1 of Eaton (1967). This is because for every
fixed j € s, we are concerned with a fixed size |§| + 1 subset
selection problem, where (L3) assures that the assumptions concering

the loss function in Eaton (1967) are satisfied.



(i) H (w) < H . The proof of this inequality is also
-— S »,q — s

q p

L]

very similar to that of Lemma 4.1 of Eaton (1967). This time we are

concerned with a fixed sizZe 1 subset selection problem, where now (L4)
assures that the assumptions concerning the loss function in Faton (1967)

are satisfied.

Combining mnow (i) and (i), the proof of Lemma 3 is completed.
For the last step in our considerations, we assume from now on that

the underlying exponential family is strongly unimodal, i.e. that the

densities in this family are lég—concave. This is equivalent to funection

b being log-concave, as can be seen immediately. At this point let us recall.

that the measure 1 is either the Lebesgue measure on R or the

counting measure on 2 ,or any other lattice in R, This is crucial for

the proof of our main result below, even in the case of m=mn =1 .

Theorem. Assume that the underlying exponential family is strongly
untmodal and that the measure \ is either the Lebesgue measure on R
or the counting measure on Z . Let (¢, P, §) Eaﬁl be fized. Then
r(t, (¢, Y%, %)) < v(1, (9, w,.G)) and thus R(8, (¢, V*, §%)) <
R(8, (¢, ¥, 8)), uniformly in 8 € Q° .

Proof: In the continuous as well as in the discrete case, strong

unimodality of a member of the exponential family of densities is

preserved under its convolutions Ww.r.t. u . For details and references,

5

see Barndorff-Nielsen (1978), chap. 6. Thus bm(x), x€ R or x€Z



respectively, is log-concave. By Lehmann (1959), p.330, this implies
that bm(w—u) has monotone likelihood ratio in w with respect to u ,

u,w& R or u,w €& Z , respectively.

At the fixed u € RS with s u<...suw and t€{2, ..., X},

in view of (5)-(8), (10) and (11), an optimal ws t(E) equals 0 , unless
2

s with ]sl = t minimiZes
k
(12) L) Tb (wo—u)daulw) .
Kk 5= -y T T v
R

Here we are concerned with a fixed size t subset selection problem.
By Lemma 3, ‘Zs(ﬂ) has the properties of the loss function assumed in
Eaton (1967). Thus the proof is completed by an application of Lemma

4,2 in Eaton (1967) and in view of Remark 1.

‘Corollary 1. Under the assumptions of the Theorem, the class of procedures

(¢, P*, &%) € ZI constitutes an essentially complete class in ZI .

The proof of Corollary 1 as well as that of the first part of Corollary 2
1.s obvious. The second part follows from Blackwell and Girshick (1954),

sec. 8.6. and the fact that the group of permutations is finite.

Corollary 2. Under the assumptions of the Theorem, let (¢, ¥, §) E.ZI
be fized. If (¢, ¥, 8) <8 minimax in ‘@I then (¢, V*, &%) has the

same property and, moreover, both procedures are minimax in I .



Remark 4. If one is looking for a Bayesian procedure with respect to a
symmetric prior, then if there exists any, there will also be one of the
type (¢, P&, &%) E‘ZI . Thus the problem reduces to optimization of

¢ which, admittedly, will usually be still a difficult task. In the
normal case (with unknown means and a common known variance) under a
symmetric product normal prior a Bayes procedure has been studied by
Gupta and Miescke (1982) in the known control case with respect to the

loss function given in the Example in Section 1.
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