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Summary.  Speckman developed a minimax 1inear estimator robust against
departures from an assumed model. We investigate some concomitant
questions of optimal design. Characterization of the optimal designs is
provided through theorems applicable to a broad class of specific models.

Sample probl.ms are solved to illustrate their application.




1. Introduction. In the usual regression design problem using the best

Tinear unbiased estimator based upon N observations the variance of fhe
estimator of c'6 may be expressed as N-]d(c,g) where £ is the design mea-
sure. One task of the designer is the choice of the best possible design
measure ¢ concentrated on N or fewer points, namely the one which mini-
mizes d(c,&). Often it is the case that if a larger class of designs is
allowed then the mininﬁzationAis more easily accomplished. For example in
the usual regression problem E[Y(x)] = 6'f(x), eEIRk, it is known that

if the class of measurés on X contains all the finitely supported measures
and f(X) is compact then a minimizing design must always exist in that
class. Such a design is said to be optimal in the approximate theory:
since that design may not be feasible on N or fewer points. One may employ
a method such as that given by Fedorov (1972) to pass from the approximate
theory optimal design to a good design on N of fewer points.

In the model robust design problems which we consider there is a
Tinear operator T which provides a measure of the possible contamination.
The measure of the performance of the estimator is maximum mean square
error and it is shown that based upon N observations the minimax 1linear
estimator has a maximum mean square error which may be written as
N"]dT/’ﬁq(c,g) where this function of £ is very like d(c,£). Again
one would choose the design on N or fewer points which minimizes
d T/,ﬁq(c=€) and again minimization is more easily carried out over a
larger class of designs. Obviously from the notation the minimizer of
d T/,GE(C’E) may depend upon N, the number of observations to be taken.
We show that whenever the support of the minimizer contains fewer than
N points the same procedure as given by Fedorov for use in the usual
case continues to provide good designs on N or fewer points. Thus the

wonted employment of the approximate theory works with the amendment that



the number of observations be specified beforehand.
Actually the last statement requires qualification because one of

the desirable characteristics of the usual design problems is that one is
assured of the existence of an optimal design in an appropriately enlarged
design space. Our investigations include both those with finite dimension-
al parameteryépaces where these assurances are easily obtained in the class
of finitely supported measures and those with infinite dimensional param-
eter spaces where those assurances are more difficult to obtain even if
one is able to identify an approriate enlargement.

The contents of the paper by section are as follows. Section two
is devoted to the development of some formulas for the minimax mean square
error allowing observations which are second order processes. The geherali-
zation proceeds with little deviation from the lines established by
Speckman (1979). In the third section theorems on optimal design are
presented. These designs could be termed optimal in the approximate
theory in the sense we have described. The'fourth section is concerned
with finding good exact designs from approximately optimal ones. In
the fifth section some comparatively simple sample problems are present-
ed. The subject of the sixth section whose contents we now summarize in
some detail is an extended sample problem. In many instances more detailed
arguments are given in Spruill (1982).

The problem considered is that of the extrapolation of a function
to a point outside the interval on which observations may be taken. Thus
we suppose that for every finite collection of points {Xl""’XN} in
[a,b] we may observe with error the values of an unknown function f and
that we are to provide on the basis of the observed values |
lxq )5 Y000 Y(x,) = F(x.) + ery Eley) 2 0, E(eqey) =

J J J J 7] %j
estimate of the value of f(c). It is assumed that on the interval

, an
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[a,c], ¢ > b, f is essentially a polynomial whose degree does not exceed
m - 1. Allowance is made for the possibility that f(m) is non-zero by
choosing a Tinear estimator to minimize the maximum mean square error

(m-1) 2, %

c
is absolutely continuous and ( | (f(m)(s)) ds)=<e.

over f for which f
' a

The maximum mean square error of the resulting estimator may be found using
Speckman's methods and depends of course on the selection of the points

{xl,...,x }. HWe prove that the optimal locations of these points are at

N
a <X} < XF <., < x> < b and that the observations should be taken in
9 ()]
the proportions (see theorems 6.2 and 6.3) p? = = ! at x?,
1 lele)]
M (y=x3) =t
where ¢X*(y) = —%flT§;7§¥7 are the Lagrange interpolation polynomials to
J e i 7]
J#i

the points x?. The resulting estimator is the same as the usual one %(c),

where f is the unique polynomial of degree m - 1 passing through the points

m
{(x*,y(x*))} and §(x§) is the average of the observations at x*.

VA J
The points {xf,...,x;} are gotten from the solution of the following
complementary problem Pn for n = (Naz)”].

Pn: For n > 0 and a < b < ¢ fixed minimize

o(F) = sup [£001% + n (5™ )2
a<x<b a

over all f in the Sobolev space wé[a,c] such that f(c) = 1.

We prove that if n>0 then a solution fO exists, is unique, and equioscillates

on [a,b]. That is, setting |[f]|_= sup [f(x)] here and throughout the re-
a<x<b

mainder, there are m points a < XF<...< x* < b such that:fo(x§)= (—1)3.'mllf0||0°

for j=1,2,...,m. We also provide a formula which, given x*,...,x%,




[

completely determines the solution. Thus fo is shown to be a polynomial
spline of degree 2m - 1 on each of the subintervals [x?,x?+]], i=0,...,m,
* = * = 1 * *
where x5 = a and Xpy = C The knots are located at points x seee XY
where the solution fO attains its extreme values on [a,b]. At the left

end of the interval, one can have a < Xy in which case folx)= (—1)]-mllfollm

X E[a,x]]. Even though this is the case the location of the points

m
{x§} is unique. Thus the optimal design is unique. It is readily ob-
j=1

served that the optimal proportions for the robust extrapolation problem

correspond to those found by Hoel and Levine (1964) for unbiased extrapo-

lation except that the locations {x$} may differ. The estimators are the

same and Hoel and Levine's results as well as their extension by Karlin

and Studden (1966b) may be subsumed under ours. We do not present a method
m

of determining the locations {x$} in general. MWe can show by an example
i=1

in the case m = 2 that the locations can differ. In the example they dif-
fer, depending upon N and e, with the locations a and b given by the Hoel-
Levine resuls. If a <b < c then one of the two points of support is
always b. The left hand endpoint however is located in the interior of
(a,b) when either the contamination ¢ or the sample size N is suffic%ent—
1y large. In studying the model-robust extrapolation of a mean function
Huber (1975) derived similar characterizations when the interval of obser-

vation is a half-line and the contamination is sup [f(m)(x)|< e. We are
O<x<teo

able to make direct comparisons when m = 2. The model under our consider-
ation leads to a location of right-most support point to the right of
Huber's by a factor of roughly (3/2)1/3 - 1. N

It is not surprising that the similar models lead to quite similar
optimal designs although the proof is laborious. Some recompense

is tc be Tound in the aesthetically pleasing manner in



which the solutions to the purely mathematical problems Pn and the purely
statistical optimal design problems entwine éﬁd by their convolution lead
to information not readily apparent by the consideration of either one
separately. While it is not entirely clear that the prob]ems-Pn inherent-
ly merit solution it has been shown in Spruill (1981) that solutions in
the case m = 2 are useful in the solution of a class of non-standard con-
trol theory problems. Nonetheless the generality of the method suggested
by the theorems commends itself. For example, if instead of the estima-
tion of f(c) one is to estimate f'(xo) for some Xg €(a,b), then the optimal
design and estimator may be found in the following way.

i) Find fo Ewé to minimize p(f) under the restriction f‘(xo) = 1.

ii) Find £y whose support is contained in {x: Ifo(x)|= ]]foliw} and

which satisfies for all f ewé[a,c],

; 1 g () gyem)
[ folx)f(x)dey(x) + : [ g GOFT (x)dx = o (F) ' (xg)
a € a

iii) Estimate f'(xo) by

k
, - 1
Mol ey ok
There are many others who treat optimal robust designs. See,
for example, Huber (1975), Kiefer (1980), Li (1981), Li and Notz (1980),

Marcus and Sacks (1976), Notz (1980), and Pesotchinsky (1980). None of

the above-mentioned have assumptions which are exactly the same as ours.

2. Preliminaries. Let X be an arbitrary set which is to be thought of

as a set indexing all the experiments available to the experimenter. We
k

assume throughout that for each finite subset {xj} , 0 <k <w, of
J=1



K
distinct elements xj from X and each collection {nj} of natural numbers
j=1
nj >0, j=1,...,k an experiment can be run. We further assume that the
k
experiment results in the N = J n uncorrelated second order stochastic
J=1

processes {Y(x],l,t),...,Y(x],n],t),...,Y(xk,nk,t): t €T} where T is an
arbitrary set. We think of T as the time parameter set although it could
bg space or some other parameter. For example, if the Y's are Banach space
valued then one could have T as the dual space and Y(x,t) the evaluation

of Y(x) at t e T.

We will notationally suppress the underlying probability space (,G,P)
upon which we assume all the processes to be defined. Thus it will be
assumed that Y(x,t) are all measurable functions from (2,G ) into (IR?B)
where § is the usual class of Borel subsets in iR].

The stochastic process Y(x,t) is the sum of a mean function mxe(t)
and a zero mean error process N(t) whose covariance function K(s,t) is
assumed to be known. The parameter 6 is known to be a member of the separ-

able Hilbert space € although its exact value is unknown. The mappings

m are each known bounded linear mappings from € into the reproducing

kernel Hilbert space H(K) generated by K, the value of my at 6 in € being
the function of te€ T given by m.8.

Our ultimate objective is to robustly estimate the value of (T,e),'
where 1 € € 1is fixed, with a linear estimator employing the best possible
choice of x's. We begin by fixing the set of observation points XqsensXy
and numbers of observations Nyseensny at each point. Then the space of
Tinear estimators which we employ is that developed by Parzen (1959). As
detailed in Spfui]] and Studden (1978) our experiment induce; a stochastic
process Z on the new parameter set T = {(x];l),(x],Z),...,(x],n]),...,(xk,nk)}

x T whose covariance kernel is B. Denoting by H(B) the reproducing kernel



Hilbert space generated by B the linear estimators are {<Z,g>B: geH(B)} .
The particular way in which the estimator is to be robust was introduced
and studied by Speckman (1979) when the observations are scalars. There
is a given bounded linear operator T which maps ® into a separable

Hilbert space % and a given ¢ > 0. The associated minimax linear estima-

tor <Z,go>B satisfies ipf sup  V(t,8,9)= sup V(r,e,go) where
g [ITef|<e [1Te]]<e

V(t,0,9) = Ee(<Z,g>B-(r,e))2. The first theorem provides a concise and

useful formula for inf sup.  V(r,0,9), where we have assumed without any
g |ITel]<1

Toss of generality that € has been absorbed into the definition of T.

The proof of the theorem proceeds exactly along the Tines of Speckman's
proof. Define the mapping m: @ - H(B) by me(y) = (mxe)(t) where

Yy = (X,V,t) € T. We shall denote the adjoint of any bounded 1inear opera-

tor A by A*, the range of A by & (A), and the null space of A by 7 (A).

Define

M = m*m + T*T,
Theorem 2.1.  If R (M) is closed then whenever < er (M)
(2.1) inf sup - V(1,8,q) = M

ge H(B) |[Te]|<]
where M# is the Moore-Penrose inverse relative to the ordinary orthogonal

projections. If t¢ & (M) then the expression on the 2.h.s. of (2.1) is

tw, If 1€R (M) and 3 is any solution to the equation M6 = ¢ then

m(e) = 99 yields the unique minimax linear estimator of {8).

Corollary 2.1. If & (M) is closed then for all t¢@

>2

inf V(z,9,9) = (z,0
g Tl 0 S‘é%(umwni%mw?)

where N = {62 [|m(o)|[%||Ts{|%> 0} .



Proof.  The proof proceeds as in lemma 2.3 of Spruill and Studden (1978)
(except that our M here is a linear operator on @ and t replaces c) and
will not be given here. See Nashed and Votruba (1976) Section 5.3 to
verify that all the needed characteristics of the proof of lemma 2.3 are

present in this case. O

We shall require at some points an alternative characterization of
the minimax linear estimator proven by Speckman using different methods

and under stronger conditions than those assumed in the next Temma.

Lemma 2.1. If H(K) = IR] and the range of the mapping (m,T) from @ into

the product Hilbert space IRNx § =W is closed and m and T are bounded
then there is a ®- valued random variable 6(Y) minimizing for each Y in

RV the expression llY—meIIZ w llTelli{ and the minimax linear estima-
R ;

tor of (t,8) is (1,8) = (7,8(Y)).

Proof.  One can show that (m,T)*(m,T) = M = m*m + T*T has closed range
H

and is bounded. Introducing the Moore-Penrose inverse (m,T)" of (m,T)

we have

(m,T)# = M#(m,T)*
as is verified in Beutler and Root (1976) by equation (1.44) and the
material which it precedes. An element w of W is of the form w= (w],wz)
where wy = (w]],...,w]N) and its norm squared is llw{ls = Zw%i + llwzl{i :
Since (Y,0) €W the usual properties of the Moore-Penrose inverse show

that inf ll(Y,O)—(m,T)e[IS is achieved for
C]

5(Y) = (m,T)7(v,0) = Mim*y.

By theorem 2.1 the formula



) ~ -~ a 3 »
holds for Speckman's estimator whenever M§ = . Since 8 = M't satisfies

the equation and since theorem 1.6 of Beutler and Root shows that

()% = ()% = 17 ve have (x76) = (MFe,mev) = (e ifwny) = (,5(1)) prov-

ing the lemma. O

3. Some theorems on optimal designs.  Theé experiment above has an associ-
n,

ated probability measure £ defined by g(xi) = T%—, i=1,...,k. We wish now

8,9) on the design measures

to examine the dependence of inf sup V(t,
g [ITe||<1
.

We assume that the set X has a topology and denote the minimal o-field
containing the open sets by g W« the Borel o-field on X. We shall denote
by = an arbitrary, fixed, non-empty convex collection of Borel probability
measures on X and for each £ € =, S(¢) will denote the support of €. The
set S(g) will be regarded as having measurable subsets S(g)ﬂ AN The set
V= H(K)x ¥ is a Hilbert space with inner product [(u],v]),(uz,vz)]

= (U1’V1)K + (u2,v2)li and the collection of measurable functions f from

$(g) to V satisfying [ ) [[f(x)]léda(x) < w is Lz(g) and is a Hilbert
S(g

space with inner product (f,,f,) = (f1(x),f,(x)). de(x) as is shown
1°°27¢ 5(¢) 1 2 v

in Dunford and Schwarz (1958).

(A1) We make the assumption that for every 6 €® and every £€E the func-

tions m 8 of x are measurable on S(g).

In 1ight of this we define, for each £ €% , the linear mappings L _: @~ Lz(g)

&
given by Lge(x) = (mxe,Te) for x € S(¢). It is easily checked that if

(A2) is satisfied then Lg are bounded since T is assumed to be bounded.

(A2) For all ges , /( ) [Imy | 1%d5(x) < = where |In || = sup |[no
S(¢g

[y
el K
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-

Define & to he the collection of measurable functions ¢: X - V satisfy-
ing ][¢(x)l|v < 1. Note that under (A1) the function L;¢(x) is measurable
from X into @ whenever ¢ € 3 and under (A2) /IILxellsdg(x) < ®» and the

Bochner integral fL;¢(x)dg(x) €@ . Define

R = {[L*X¢(x)dg(x): $€3, £€E}

)2

(3.1) d(t,€) = sup (T’g
seN  flL 0]]yde(x)

where N = o1 [||L o|[7de(x)> 0.

(A3) For each ¢ €3 Lg is bounded and g (LE) is closed in Lz(g).
We shall also use the operator M(g) = Lng and point out here that R(M(t))
is closed if and only if R (Lg) is closed and in this case R (Lg)= R(M(g)).

(A4) There is a proper closed supporting hyperplane to R at each of its

boundary points.

(A5) For each o # 0, sup%iLXOil > 0.
X

Theorem 3.1.  Under conditions (A1) - (A5) if t€R(M({E)) for some ¢ €=
then dT(r,gO) = vy and &0 €z if and only if there is a function ¢ €3 such
that II¢(x)]]V = 1 and fL*X¢(x)d£O(x) is

i) proportional to T and

i1) in RNa R .
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Proof.  When the proper replacements are made (Lx for m s etc.)

the same. arguments as in Theorem 3.1 of Spruill (1980) apply. As is not
made clear in that proof the G-inverse M# is relative to the orthogonal

projectors. OJ

Theorem 3.2 of Spruill also goes through. However we have a much improved
version which we prove below in its stead. Let a = {0 c@: (r,8)=1} and
recall that Lxe = (mx,TO), an ordered pair in V = H(K)x ¥ for all x €X

and 6¢€e .

Theorem 3.2. Suppose there is a point 8y €4 and a design g €F satisfy-
ing

1) S(gp) < tx: [[L 5yl = S;pIILxéollv}

ii) fL;Lxdong(x) = at for some « > 0, and

. 2 ) ) i
1i1) flleeflvd€O(x) = 0 entails (t,8) = 0.
Then &, satisfies dp(r,¢4) = inf dr(7,¢) and

L 2 _ 2
iv) dnf sup||L 6]]|° = sup||L 84| .
A X x 'y ¥ x 0ty

The conditions required are (A1) and (A2). Conversely if (A1) - (A5) hold

and there is a £g €5 satisfying dT(r,gO) = vy < = then a point §q €4 may

be found satisfying conditions i) through iv).

Proof. Clearly

. 2 -1
3.2 d(t,z5) > f d .
(3.2) (026) 2 T ine J]]L0] s (x)]

Since inf [llLXSIIng < inf Sup!ILxelfz i_sup[leéollz = s, we have
NOa NNa X X
-1

d(T,E’) >s  forall g€z . Using ii) we have for £g



9
-2~

L. so>vdg0< x)1°

d(t,€4) = sup
O FIL 61 Zdeg ()
el 0P,
< sup 5 <sa =5
N [[]Lxell dey(x)

Since by (3.2) d(v,e0) > 57! > [ inf sup[L,0]]1217" ve have inf sup|[L s ||
Nna X Nna X
z_SUPIILX5ol|2~ By ii1) ANN = a and we have shown that if (A1) and (A2)
X

hold then i), ii), and iii) entail d(r,go) = inf d(t,£) and iv). Now

1

suppose that (A1) - (A5) hold and that go €= minimizes dT(T,E). By theo-
rem 3.1 there is a function ¢: X » H(K) x ¥ such that ||e(x)]] = 1,

(3.3) [Lre(x)dey(x) = gr

and gt €3 ). By(Ad4)there is a x # 0, » €8 such that (x,r) < g{xr,t) for

all reg . Since by(AS)sup]}LXx]j > 0 we may find a sequence of points
X

{x,} in X satisfying IILX A4 sup[leA[] and [ILX Al > 0. Set

n X n
LX by
ro= L* D 2 . Then r, €8 for all n and since (3.3) holds
X X

n

VimfIL Al < f(LEa(x) 1) dey(x)

N-rco n

< sup|[L A
¥ X

with strict inequality unless ||L x||=sup||Lx|]| a.e. &,. Set &, =
X ¥ X 0 0

T?AX7'((T’X) # 0 since B{(t,x) > 0). Clearly i) is satisfied. From above

we also conclude that ¢(x) = kXLXA a.e. 50. This in turn implies that
LXA

$(x) = TWTSZTTT a.e. £y. Therefore

JLza(x)deg(x) = [fLAL sodey(x )J[s;plltxmr‘
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and we see that ii) is also satisfied. If i11) is not satisfied then there
is a sequence 6, such that fl[Lxenllzdgo(x) + 0 and (T,en) +t # 0. This
implies dT(r,gO) =+« which contradicts our assumptions. We conclude

that iii) is satisfied and consequently that iv) also is satisfied. O

When @ is finite dimensional, X is compact, and the mappings Lxe
are continuous in x for each fixed o then one may prove much stronger
theorems than 3.1 and 3.2. We state, without proof, one such theorem. We

shall need the following conditions.
(B1) The mappings LX: ® -~ V are linear for each x €X.

(B2) There is a topology on X for which X is compact, one point subsets
are Borel measurable, and = is the collection of all finitely supported

probability measures.
(B3) For each fixed sc @ the mappings Lxez X -~ V are continuous in x.
(B4) ® 1is a finite dimensional Hilbert space.

Theorem 3.3.  Under condition s (A5) and (B1) - (B4) there is an optimal
design g €% for estimating (t,0) whose support contains no more than
dim © points.. In addition conditions (A1) - (A4) are satisfied so that
a point g exists in a = {9: (v,0)=1} satisfying i) - iv) of Theorem 3.2.
Finally one can prove the following theorem, which is the analogue
of Theorem 4.1 in Spruill (1980), using the same techniques as employed

there.

Theorem 3.4.  If assumptions (A1) and (A2) hold and if there is a constant

k > 0 such that for all o

sup L,0ll, > klfo]|
X

then (A4) and (A5) also hold.
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4. Finding good exact designs. In the previous section few assumptions

were made concerning the set = of design measures. In this section we

shall also assume that =2 N where En is the collection of exact (or
N>1

rational) designs on N or fewer points

{prob. meas. £ on X: #S(¢) <N and Ng(xi) €N Vx; € S{g)} ,

{0,1,2,...} is the set of natural numbers.

=
=
@
=
D)
=
i

We shall demonstrate in the last two sections the effectiveness of
the theorems above in producing designs which minimize, for a given T and
7, the function dT(r,g) over = . However for a given N,T, and 1 we
really would like to minimze over 2y the expression in (2.1) which may be
written as

(2.1) Nd o (1E).

N/VT

In the usual design problem using the best linear unbiased
estimator the operator T is the zero operator. In that

case one may employ the optimal approximate theory design £ in £ to pass
for each N sufficiently large to a good design in £ y- Fedorov (1972)

gives such a procedure and inequalities which provide a measure of the

departure from optimality of the design so constructed. In our present
case we observe the possibility that the designs which minimize dT/vN(T’é)

will depend upon N. Thus a change in the routine of passing from the
approximate theory to the exact theory has been introduced. Moreover,

since the assumptions employed by Fedorov in providing the inequalities

do not hold it is not clear what procedure should be employed in the con-
struction of a good exact design from the optimal approximate theory design.
We shall prove in this section that Fedorov's procedure continues in the

present case to provide as good a method of finding a good exact design
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from the approximate as it does when unbiased linear estimators are
employed.

. There is a reasonable alternative to the modus operandi upon which we '
have embarked which bears mentioning. If in the definition of the linear
estimator we measure the allowable deviation from the model relative to the
size of the sample we may circumvent some ensuing difficulties. Specifically,
if we take the supremum over o satisfying ||Te]]| g.N'% the minimax mean square

error is N"]

dT(r,a). For this estimator the approximate theory optimal design
(if one exists) will not depend upon N. Still the assumptions employed by
Fedorov in bounding the error in passing from the optimal approximate theory
design to a good design in Zy do not hold for the functional dT(r,g).

g9 = * = * = * .

In the following A AOAO, B = B3By, and D DODO where Ag> By, and Dy are
all bounded linear operators from & into Hilbert spaces and all their ranges
are closed. For t €@ fixed define
. 2.

LD(A) = [ sup (x.0 ] ]
0eN(A,D) a(A+D)9

where we take [+w]"] = 0 and N(A,D) = {6: 6(A+D)6 > 0). Ofie can show (see

av v
Spruill (1982)) that for all scalars k > ] kLD(A) 3_LD(kA) and

N N

LD(A+B) 3_LD(A).

Let N be a fixed positive integer and T, as above, be a bounded 1inear

operator from v into 4. Suppose that £*€Z minimizes (4.1) over = and

that #S(&*) = r < N. Also suppose that gﬁez minimizes (4.1) over =,,.

“N
Define the measure éN EEN from £* as follows. Denoting by [ ] the least

integer function defined by [x] = smallest integer greater than or equal to

X, assign [(N-r)g*(xi)] observations at X; €5(¢*). Since



C{N-v)e(x r)e(x

11 < (n-

observations.

.) + 1 this uses <
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E((Nﬂﬁa(xﬂ t1=N-r+r=y
i=]

Assign the other observations in any manner and denote the

proportion of the total N at X by éN(Xi)'

Theorem 4.1,

A

A

and

. - M5y = o % sy
whenever }M(:) ) LXLXd,(x)

Proof: Both relationships
(4.2)  Lplten)] > Loey)
where D = T*T/N S0 we show

= 2%y The middle inequal

The design éN constructed from £* as above satisfies

S V2 I S LA
L N - N-r
Irpom (v gy)

Pt

TS W
dr/ v (0 8f)

has closed range for all £ e,

above are a consequence of

1> Gne )] > (-0 [H(ex) )

(4.2). The left-most inequality follows from

Tty follows from the fact that éN EEN by

definition of iy- The proof of the right-most inequality uses the facts
given above. Since g > 1
NM(E, )
N, : - N
T T
n
LAL-r)ex(x)] + o, Lx L,
- ¢ ori=l _ i
= Lol N-T Ir
- [(N'Y‘)E*(r.’)] (N"Y‘)E*(Xi)
where New(x.) = [(N—r)&*(xi)] * ooz Since T 2 N-F
we have
Mo LlH(e)T > Loim(ex 4—12 it L]
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[(N‘Y‘)g*(Xi)J*‘Gi . 0‘1' .
where Ys = NoF - £ (xi) > o 0. Since

LDDNE*FiYiL;}X_]3_[DDK€*)] the proof of theorem is concluded.O
i 7

Note that r itself may conceivably depend upon N. We do not investi-
gate this general QUestion here. In the examples below r remains bounded
for all N so that by making N sufficiently large the relative loss which

comes about by using éN instead of gﬁ can be made as small as desired.

5. Examples.  The basic strategy in our examples is
a) to find if possible a point 8 €4 = {6 €@ : (1,8)=1} satisfying

. 2 2
inf sup||L e|| = sup||L._s.||°, and
A X X X x 0

1)

b) to find a probability measure &0 in the collection = of all finite-
. . 0
ly supported measures satisfying f(Lxe,LXGO)dgo(x)-sksup[ledollz(r,e)
X
2
[l

and S(go)c: {x: [ILX50|]2=s;p]|LX60 }. If such can be found then £g s

optimal in the approximate theory and if it is exact then the minimax

linear estimator is [N sup]|L 6O[|2]-] < Z,m§n> .
¥ X 0

In our first example we require the notion of a band 1imited function.
The reader is referred to Slepian and Pollack (1961) for details. Denote
the space of Lebesgue measurable complex valued functions f: IR] > ¢
satisfying [[f[p < o by LP.  There is an isometry F: L2 - LZ, called tﬁe

1,2 1

Fourier-Plancherel transform, which satisfies for all fel' nL , WweEIR

F(F)w) = f f(t)e” WEam(t),

1
where m is Leesgue measure normalized by (2n)” 2 (see Rudin 1966)). If
a > 0 then the space 8, of band Timited functions is that subset of L2

whose Fourier-Plancherel transforms vanish off of the intervd] [-a,a].



-18-

We denote this set by B - We have, defining the operators Ba by Baf

) fI["a 3a],

2

0 = . = -1
B, {fel™: f=(F

BaF)f}.

The operators F_]BaF'nmy be verified to be orthogonal projections onto B, which
are closed subspaces of LZ. For f €L2 denote by fﬁ the projection of f

a
onto @ a

Example 1. For each finite collection of points {X1""’XN}’XjE(O’XO]
for all j, we may observe the uncorrelated stochastic processes

{Y(xi,t): te(-eo,+w), i=1,...,N} where

06T = m ()(E) + e (t), te(-m i),

X

e, is a zero mean stationary process with spectral density fx(A)= I[~>< X](A),

1

6 ELZ is unknown, and m = F BXF. Setting Te = ¢ . find the optimal de-

]
sign using Speckman's estimator with ||Te]| < a for estimating

4o
(u,6) = [ u(s)e(s)ds, where u EL]HL2 is continuous.

We shall prove that the optimal design places all mass at X0 regardless
of the function u and give the resulting best minimax linear estimator. One

should note that in this problem the error process depends upon the design

variable x. Our methods still apply if we replace [Imx(o)l!i by I[mx(e){[i

X
in theorem 3.2.

One can show that mx(e) € H(KX) for all x E(O,XO]. Fixing N we seek §
satisfying

=12 1 ~ 12
sup | m 8]]5 + —% 1176 =
(5.1)
Cinf s [Ime] |5 + L [[To]|?
{g:(u,8)=1} O<xgxo x  Na
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and claim that

u +Na2u*

(5.2) fe—0b 8B
[ ugl a2 oz |2

In order to see this introduce
L

3

Then bg = fo: (u,8) = 1} < 4y and we show that ) EA] minimizes

[svp [ Imo]|? + alf 1701177 .

Since 8 is also in bg 1t satisfies (5.1). Since flmxefli = []BxFeljg

g 2 2 PR 2
= [ [Fe(t)|“dm(t) we have sup l[mxe]]K = []BX Fe[lz = ||F B, Fellz.

~X O<x5x0 X 0 0
Thus the problem for ¢ EA] becomes minimize A2 + n82 subject to aA + bB > 1,
where a = []u@]],b = f]ugl{, and n = (Naz)-] The solution, using calculus

. a2 b2 . - .

methods, 1is AO = a/2y, BO = b/2ny, and y = vE + 7 Choosing 6 as in

(5.2) we see that indeed these norm conditions are met. Obviously & ¢ apN by
proving the claim in (5.1) that 5 is the minimizer.

Let ¢* place all mass at x = X9+ One can verify
(5.3) mEm§ o+ — TG = (|lu f{z + Nazllul[lz)—]u
XA X , 2 3 3
0 "0 Nu

by taking the inner product with an arbitrary 6 on both sides. Therefore g*

- - 2,2 -] 2 _
is optimal. By (5.3) 9 = N ](l]uﬁH2+Na2[|qu| Jo =N u_+q UE and m (e)‘~

B 0
o di timator is N7 < Y(xn)» U, >. Since u_ (+)
N ug3 . The corresponding estimato ol> Ug > 8
4+ ‘ .
= f u(t)KX(-,t)dm(t), the minimax linear estimator of (u,8) is

OO
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1

N f Yj(xo,t)u(t)dm(t). This estimator has a maximum mean square

Il ~122

2
Hugll 2 2 , .
error of ~*7%——~ + o ||u$]| over g with lle@{]_i a. Ifu Eﬁx] where

0 < Xy < Xq then one can verify that any design whose support is contained
in [X]’XO] will be optimal.
The following result is used below. Suppose that f],...,fm is a T-system

m
on [a,c] and b €(a,c) as above. In general the subspace { ) ajfj: a'd=0},
i=1

where d is a fixed arbitrary vector, does not have the Chebyshev property.

Lemma 5.1.  The collection of functions 3 = {

m
f.0 g'f(c)=
‘ igl 85,1 8'f(c)=0} has
the Chebyshev property on [a,b]. In particular at least one of fj(c),
m
Je{l,...,m}, say f](c), must be non-zero and the system {gi} is a
i=2
T-system for J , where
fo(c)
(5.4) gi(x) = fi(x) - ?;TET' f](x).
m
Proof. It is easily checked that the span of {g:} is ¥ if fl(c) # 0.
i=2
Let a STy < Ty < ... <1y 2 band form the determinants
gZ(T-l)'..gZ(Tm‘]) f](T-|>...f~l(C)
D= |: and A= |:
gm(T])...gm(Tm_]) fm(T])...fm(c)
Since A = (-1)mf](c)D and the determinants A do not change sign the deter-
minants D must not change sign. 0

Example 2.  We assume in this, as in all the examples except the first,

that the observable random variables are scalar valued. The mean function
m .
is assumed to be a polynomial of degree m, me = ) 6J.xJ for x €[a,c].
, j=0

‘ v
]
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-

Writing fj(x) = xj and f(x) for the column vector of functions fj we write
mo = 6'f(x). Our objective is the estimation of the value 8'f(c) based
upon observations in the interval [a,b] where b € (a,c) is fixed and under

the assumptio: that O pyo---20 are small. Specifically we use Speckman's

m
m+] m-k

minimax estimator with @ = R" ', ¥ =R" ", and T8 = 5'1(6k+],...,em)'.

We fix a number N larger than k+1 and minimize d (1,€) over € in the

Y
collection = of all finitely supported probability measures on [a,b] where
T is the m+ 1 vector f(c).

We prove that there are points a < x6 < xf < L.l < x§ < b which
constitute the support of the optimal design £* and that g*(x*)

= l c)|/ Z ’¢x* c)| for i=0,...,k, where ¢,+(x) is the Lagrange inter-
1 i

polation po1ynom1a] of degree k at x?. We do not prove here the fact that
the optimal estimator of g'f(c) is the value at c of the kth degree poly-
k

nimial which passes through the k+ 1 points {x?,&(x?)} but mention that
i=0

its proof is a consequence of lemma 2.1 and paraliels that of theorem 6.3
below.
One can easily verify that the conditions of theorem 3.3 are satisfied.

Thus a design £g and a point 8 EIRm+] exist satisfying i) - iv) of theorem
3.2 where L o = (8'f(x), =— Te) €R
e/N

that the collection of functions {eo+e]x+...+e

% Him"k. From lemma 5.1 it follows

k

k

P
JOJ

Chebyshev property on [a,b]. Using an arqument 1ike that in theorem 6.1

K O} has the

one can show that 56f(x) equioscillates on [a,b] at k+ 1 points a 5.x6 <

. < xE < b and is the unique function satisfying iv) of theorem 3.2 above.
Furthermore these points must be isolated or 66f(x) is a constant violat-
ing the equioscillation. Thus the support of £ is discrete. By ii) of

theorem 3.2 we know that for all s Eﬂlm



k m
] .
ToE (x¥)e Fx¥)eg fix3) + — 6:60: = ab'f(c)
j50 O 0 Na® joke1 d O
for some « > 0. Setting 8 to satisfy ej =0 for j = k+1,...,m and
k
Y o6.f.(x) = ¢ ,(x) we have
%0 33 Xj
(5.5) go(x$)ldéf<x$)[sign(séf(xg)) = ap,.(c) > 0.

3

Therefore sign ééf(x?) =(—1)1'k and since (5.5) holds for i=0,...,k,

* - * *
go(xi) S (Xi)
An argument 1ike that in theorem 6.2 also proves that the design is
unique ifm = k + 1. An obvious question remains. Are these designs

precisely the same as the usual unbiased extrapolation designs when the
k .
mean function is § 8.xJ?
j=0

show in the case k=1 and m=2 that the answer is dependent upon the value

We do not know the general answer but we can

of Nez. A detailed examination in the latter case of the general solution

ééf(x) which may be shown to be, setting n = (Naz)'],
k . m . k )
5700 = (52 ) Mz ] g 09 T a6de T g (i),
=0 %3 j=k+] 120 %
.k - m 5 k
where o. = ¢J - ) N (c)xg, s© = ) e, and z =} {4 (c)|, reveals
) i20 % jok+1 9 is0 %y .

that if st 5-”6] = { [ (c- b% 2 Zil_l(c—b)(c-a)}‘] then the designs
(b-a)”  (b-a)

1

coincide with the usual and if Naz > ”6] is sufficiently close to n6 the

design is supported on {x],b} where X is the unique solution in (a,b) to

4n(c-b)
(b-x,)”

Zn
(b—X])

+

7 = (cb)(cmx,).
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6. Robust nonparametric extrapolation. This section is devoted in its

entirety to the proof of the assertions in the introduction concerning the
solutions to the extremal problems Pn and statistical problems which we
shall here abstract and call Sn' More specifically let = be the collection
of all probability measures on [a,b], -w<a < b <« +e , with the Borel sub-
sets as the o-field. Denote by 0" the mth derivative operator defined on
the Sobolev space wﬁ[a,c] of all functions whose m - ]EE-derivatives are
absolutely continuous with respect to Lebesque measure and whose mﬁ1
derivatives are in Lz[a,cj. Let n > 0 be arbitrary and define the

statistical problems

Sn: Find £g € E if such exists minimizing d m(ec,g).

/n D

Here (ec,e) = 6(c) is the evaluation functional on W§[a,c] and is a bound-
ed Tinear functional, L6 = (8(x),7/n e(m)) EIR]xLz[a,c],;v x €[a,b], where

e(m) = Dme, and

2
(Ts€) = sup lofc)]
/n D gEN f}]Lxellvdg(x)

2 . 2 .
where N = {g: j]]LXe]]Vdg(x)> 0} . The integral [l]Lxellvdg(x) is well
defined as is jL*x¢(x)dg(x) (a Bochner integral) as a consequence of
assumptions (A1) and (A2) which :hold in the present case. Let N

and € > 0 be given and set Ne2 = n_]. When the observable

2
random variables are Y(x) = o(x) + e, E(e) = 0, E(e“) = 1, for
x €[a,c] where Ewé[a,c] is unknown and when o(c) is to be estimated based

only upon x's in [a,b] using Speckman's minimax estimator with

c
I]e(m)ljg = (eé?%)zdt 5.52 then the solution to Sn’ if it concentrates
a

on r < N points may be used as described in section 4 and in more detail

prefatory to theorem 6.3 to construct an experiment using N observations
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which is within Ng?' of the optimal experiment using that number of obser-

vations. In this sense Sn is a statistical problem.

The extremal problems are

Pn: Minimize over 9 éwi[a,c] satisfying 6(c) = 1 the functional

ol8) = [fel]Z + [1o™ )2 .

(Recall the abuse of notation above, [[-]]_ 1is restricted to the sub-
interval [a,b] while [1+1], is on [a,c].) The problems P are not standard
since p is not differentiable (see Spruill (1982)). Nevertheless
the next two theorems reveal a great deal about the problems Pn and their
solutions. The first theorem applies more generally. Let D™ + am_]Dm~1
L ags where aj is j times co?tinuously differentiable, G(x,s) satisfy

LG(+,s) = 0 on [s,c] subject to _QT G(x,s) = §
dx X=$

i m-1 (the Kronecker

m
delta) G(x,s) = 0 for x < s and {wx } be the Lagrange interpolation
i i=]

polynomials for the null space of L on a,c] to the points {x],...,xm}.

Define

m
hs) = Glx,s) - Ty, (x)G(x,,s)
i=1 ™
For n > 0 the problem ﬁn is
P : Minimize
n
~ 2 2
o(e) = [[8]], + n|lLe[[;
over 8 in wé[a,c] satisfying e(c) = 1.
Theorem 6.1.  The problem ﬁn has a solution ) Ewﬁ[a,c]. If the null

space of L has the Chebyshev property then there exist points a <Xy < X5
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< .+.. <x. <band q=0 or 1 such that

) = (-1)'* sup  [6,(x)]

0n(x
0™ a<x<b

and the solution is unique if n > 0.

Proof. If n =0 clearly 5n(60) = 0 and there are many solutions. If
2 - .

n >0 let 8, Ewm[a,c] be such that pn(en) + 1nfpr§e). The sequence Len

satisfies n{lLenllg 5_5n(e]). Since ||h[], < k is weakly sequentially

compact in Lz[a,c] there is an element u eLZ[a,c] and a subsequence n'

such that Lo _, MU We may write, fora < 1, < 1, < ... < T < b,
n - 1 2 m —
m c
O ()= Toop(egdu, (x) + [ (s)Le ,(s)ds.
i=] i a
c c
The integrals f hx(s)Len.(s)ds converge to | hx(s)u(s)ds for all x ¢[a,c].
a a
m
Since sup |e _(x)]| <5 (9,) all of the m sequences {6_,(t,)} are
n - "nt] n' il .
a<x<b i=]

bounded. Appealing again to sequential compactness of IR] we may assume

that the sequence n' has been chosen to satisfy en‘(Ti) > o

; also. Define

the function 8, Ewé[a,c] by

Since [[u[[z 5‘11@[]Len,]]2 it is clear that 5n(60) < inf 5n(r). Since
en(x) - eo(x) for all x, ao(c) = 1. The first assertion of the theorem
has been proven.

For the following arguments we shall employ the notation of Karlin

and Studden (1966a)in counting the zeros of a continuous function on [a,b],
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If X0 €(a,b) is an isolated zero of f and f does not change sign at Xg
then Xg is termed a non-nodal zero. All other zeros, including zeros at
the endpoints are nodal zeros. For any such functionli(f) is the number
of zeros in [a,b] counting one for each nodal zero and two for each non-
nodal zero. Suppose that g is a continuous function on [a,b] and there
are points a < x, < Xp < ... < x < band q€{0,1} such that g(x;) =
(-T)i+qj[g[]m » 1=1,...,m. If there exists a point Xp € (%750 05x ) and
a continuous function h such that h(xq) = g{xy) then |fh]|_ < [laf],

entails Z(g-h) >m - 1. Consider the collection of functions on

m
[a,c] { V.. a'f(c)=0} where f]""’f
j=1 J J

space of L. Their restriction to [a,b] is spanned by the

0 is a T system for the null

bhebyshev system 9ps--+5G, which may be defined, if f](c) # 0, except for
the sign of one of them, from (5.4). By Bernstein's theorem (see Karlin

and Studden (1966) there are constants ByseesB such that g'f(c) = 0,

m
and the function 7§ ijj = gp Is the minimax approximant to 8y on fa,b].
=1
Therefore there exist m points a LX< ..o < x < bandaqe{0,1} such
that
i+
(6.1) (99(%;)-80(x; ) (-1) "7 = J]gg-00] ],

where ||gg-65]|_ = sup l9g(x)-84(x)|. Also

a<x<b
IIQO-QOIIW - inf{][zsjfj-eoljw : 8'g(c)=0} .
Since Lgy = 0 on [a,c] and g'f(c) = 0 entails (89-95)(c) = 1 we must have
'Iegilw = Ilﬁo-gollm . Furthermore there must be a point x €fa,b] at

which eo(x) = eo(x) - go(x) = i]leof]m . We conclude 2(80j(60~go)) > m-1

on [a,b]. However if 8y - (eo—go) = 94 is a non-trivial polynomial in the
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system 99s---,9, we must have by Theorem 4.2 of Karlin and Studden (1966a)

Z(go) <m - 2. We conclude that 9p» the best approximant from 3 on [a,b]
is zero. Consequently 8g itself equioscillates in the sense of (6.1).

We now verify the uniqueness of the solution when the null space of
L is spanned by a T-system {f],...,fm}. Because the norm on the Hilbert
space Lz[a,c] is strictly convex, if hO and h] are two solutions to the
5n problem then o (ahg+(1-a)hy) < 5 (hy) unless kLhy = Lhy, a.e. on [a,c]
for some constant k. Since ilaho+(1—a)h][[£ < aj[holli + (I-a)!]h][{§ ,

where |[h|| = sup [h(x)], we have 5 (aho+(]—a)h]) < B{a) where the func-
© a<x<b n :

tion B is defined by

B(e) = allngl 12+ (=c) [y 12 + nlkba(1-k)2] [Lhg] 12 .

Note that B(0) = B(1) = § (hg) and B"(a) = 2n(1-k)?|[Lho[|2 . Thus,
whether ][Lho[[ = 0or [[Lhy[] > 0 we must have Hholloo = [[h][]m .

Again it must be the case that hO and h] share a common extreme value at
one of their points of equioscillation. Therefore 2(h0-h]) >m - 1. If
Lhy = 0 then hg = hy €3 and of necessity Z <m - 2unless hy = hy. If
|[Lhg[] > 0 then k=1 so that again, hg = hy ds in 3= (z8;f;: g'f(c)=0}
and Z <m-2. We conclude that in any case hg = hy proving that the solu-

tion is unique. ]

When L = D™ the Lagrange interpolation polynomials which we now

m
write as (o, } are explicitly ¢ (x) = 1 (x-x.)/ @ (Xi"xj) and
ii=1 % J#i J#i

(x-5)™"1
Sas) = oy
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One can prove that if ¢ is a probability measure on [a,b] then the operator
LE: 0 - Lz(g) defined by Lge = (e,/rTe(m)) ELZ(g) is bounded and has

closed range and hence satisfies assumption (A3).

Lemma 6.1. Conditions (A4) and (A5) are satisfied.
Proof. It suffices to prove the existence of a constant k > 0 satisfy-

ing supl|L.8[] > k[]e|| for all g in Hé[a,c] because of theorem 3.4. Sup-
X

pose that no such constant can be found. Then there is a sequence {en}

satisfying for all n > 1 [[en[}z 3_n[[jen][§+q[]e£m)[[23. Since
6
n . . .
satisfies the same inequality we may and do assume that [fe |] = 1.
HGnH ‘ n

Thus ]]en[]w and llegm)jjz both tend to zero as n becomes large. Write

for tg €la,c] arbitrary
m X
(6:2) o(t) = e l3) ¢

Equation (6.2) shows that fleéj)]]m + o for j=0,1,...,m-1. Since
o8 ee) < 1108301+ Bz 11030

we have

(6.3) e 15 < k01110000120 01341 2

0 that starting with j =m - 1 in (6.3) and proceeding to successively

smaller values we find that lim [le. || = 0. This contradiction establishes
N-ro

the Temma. G

Lemma 6.2. If the probability measures £, in = converge weakly to ¢ €z

then [MCe )-M(e) ]| »0as n > w .
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Proof.  Consider for ||8]]| =

[ (6, M(g, )-M(g = | / ML, o] |2 de_( f [L,el] 2de(x) ]

Since M(gn) - M(g) is self adjoint l{M(gn)—M(g)]] = ! TTp | (o,[M(¢ )—M(g)]e)[.
oll=

Suppose that flM(gn)—M(g)lt does not caonverge to zero as n + » . Then

there is a subsequence {g of measures and a sequence {ek} and

k>1
an ¢ > 0 such that l(ek ( ) M(¢ )]ek)[ > ¢ for all k. Since the func-

|
kS ks

tions ||Lys, || of x are un1form1y bounded and equicontinuous on [a,b]
there is a subsequence k' and a continuous function h such that {[Lxek.jlz

converges to h(x) uniformly on [a,b]. By theorem 5.5 of Billingsley

b b
(1968) 1jm f |[Lxek,f12dgn o= [ h{x)dg(x). We also have
klseo @ k a
b 2 . .
Tim [ [l g [[%de(x) = fh(x)de(x). Thus Vim [ (g, M(g -Mlg) ey )|
k'seo a k' k
= 0. The contradiction establishes the lemma. O

If ¢ —EQ-E and the supports of all contain more than m- 1
n

points then 1im d(e,gn) = d(e,g) for if S(&) has more than m-1 points of

n+(n

support then M'](g) exists and is bounded and

|1 @) 12 MGE)-ne, )|
! TN ME)-Nce, )|

whenever ||M(§)-M(gn)[| < ][M'](E)]['], Lemma 6.2 and

g, )-d(e,E)] < el 12T (e )i (2 ||

show that 1im d(e, g,) = d(e,g).

N
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Theorem 6.2. Let n > 0 be arbitrary.
i) There is a unique solution £o to Sn' Its support S(go) con-
sists of m distinct points {x],...,xm} in [a,b] and

m .
(/T o, (c)]
] i=1 i

for j=1,...,m.

ii) There is a unique solution 60 to Pn' It is given by the

formula
(6.8)  s5(x) = (s%nz2) Mnz ] (-1)i ™ i
: o{x) = (s"+nz%)" ' [nz 1_%] (-1) ¢X1(X)+i h (s)h (s)ds],
where
(x-s)m'] m (x.-s)m']
h (s) = m-]+' - igl ¢Xi(X) ]m—1+' ,

m
52 = []hcllg, and z = [¢X (c)] .
i=] i

iii) Parts i) - iv) of theorem 3.2 are satisfied by g0 and 8-

Proof. As we have indicated assumptions (A1) through (A5) hold. We

know that if a sequence of probability measures g, converges weakly to a

probability measure ¢ and all are supported on more than m-1 points then
d(r,gn) converges to d(r,£). This entails the existence of a probability
measure £* which minimizes d(ec,g) overc€z for let £, satisfy d(ec,gn)

-+ inf d(ec,g). Then there is a probability measure £* and subsequence £y

satisfying £t v, g*. We know that inf d(ec,é) < o because the design &'

which places equal mass at any m distinct points in [a,b] satisfies d(ec,g)

= (eC,M_](g')eC). If a design £ €2 is supported on fewer than m points then

d(eC,E) = +» as can be seen from equation (2.1) by choosing an arbitrary point
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y €[a,b] - S(¢) and selecting a sequence 6 converging to ¢y' Hence we
conclude that eventually the supports S(gn,) all contain at least m
points. On the other hand, if S(&*) contains fewer than m points then

choosing z €[a,b] - S(g*) yields

iy lo,(c) |2 .
m = o,

2
1o {c)]
Since d(ec,gn,) > (¢z’M?gn')¢z) this contradicts the convergence of

d(ec,gn,) to igf d(ec,g). Clearly d(ec,g*) = igf d(ec,g).

Now we may apply theorem 3.2 to conclude that an element 60 of
wi[a,c] may be found satisfying i) through iv) of theorem 3.2. The func-
tion 8y is the solution of Pn and, as has been shown, 60 is the unique
solution of Pn' It was also shown that there are points a < X¥ o< x§ <
- < x* <bandaq=0or1l such that 6O(x§) = (—1)j+ql[60[]m for j=1,

.>m. The points X*Z""’Xa all have the property that lao(x)l

<|l8g]] for all x in some deleted neighborhood of each of the
+
given points for suppose not. Then 6O(x) = (-1) 0 l]aollw

for some interval containing x§ . Thus 581)(x§ )= 0 for i=1,2,...,m.
0 0

8o(x)  x 3_x§0
Consider the function 6](x) = j0+q . Clearly

(-1) {‘50le a < x < x¥
p(G]) g_p(ao). The unicity of the minimizer of p then shows that 8y = 8,

and contradicts the fact that 60 must oscillate m times. Let

X7 = sup{t: 5O(x)=50(a) for x¢ [a,t]} > 0.
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By using i1) of theorem 3.2 one can prove that £ puts no mass on [a,x])

ifac Xy - Furthermore, by using again the relationship ii) of theorem

3.2, choosing 6 in succession to be ¢x.’ j=T1,...,m, one concludes that the

J
sign of do(xj) is the same as that of ¢X.(c), namely (—])me, and that
J .
( Vo
6.6) gglx:) = Jo (c)]/ ¥ o, ()] >0
U T g Ty

for j=1,...,m. The unicity of £y will be verified following our demonstra-

tion that 5ém) must be proportional to h.. Let g €= satisfy

P, (J) om .
gn(xj) = — where {pn(J)} are positive integers for each n,
J=T
m _ P, (J) |
) pn(J) = n, and lim = go(xj). Consider the estimation problem,
jz] N->c0

using Speckman's minimax linear estimator based upon n uncorrelated obser-

vations {Y](x]),...,Yp (])(x]),...,Y (xm)} where E(Y(x)) = 8(x) and

n p, (m)

n

m . .
T=vnn D', We know that the minimax mean square error is

inf sup V_ (t,8,9) = n 'd (e &)
g [ITe[<1 *n Ao e
=1
=n dle..e )
and that g, = m(én) yields the best estimator where én is any solution to
m My oM | b
: * A = : 1 = *
<jé]”&jm§;ﬂ”(D)*D)8n e, Setting M(g ) g LxL dg (x),

and noting that whenever the support of a measure g contains m or more

points M—](g) exists we have én = M'](gn) 75- . Now write
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nf Y, (60,9) =V (6,65,) = g [<Z,9 > -6 (c) 17
m o Pa(3)
SEC L L Vlggtag)eete))?
m n
(6.7) - L P (3)820x;) + p B, (%5 )P, (3)0(x;)-8(c))?.

in (6.7) we see that p_(j)8 (x.) = ¢_ (c) and that sup inf V. (t,6,9)
NIy [ITell<1 g

: . . m -1 .
occurs for o satisfying eé ) - Yohe where v = (/ﬁﬁhllhcil) . Acgordlng

to the proof of theorem 2.1 if /ﬁﬁ'fleém)llz > 0 then o = ] ~(;) .

We claim that for n sufficiently large we must have [[égm)llz > 0. The
. e .
reason is that én = M-](g ) 7? so that ng converges in
=1
a

n
wé[a,c] to M—](go)eC §y- Since ][6ém)i|2 > 0 the conclusion follows.
We therefore have, for n sufficiently 1arge,é(2) = k h_ for the constants
k, = v/ Iléém)llzyn hence négm) = nk h. converges in L2[a,c] to %—dém).
(m)

Clearly we must have lim nk. = k where [k| <« and we conclude that 85
n-o

is indeed proportional to hc.

Now one can again employ ii) to prove that the constants given in
the asserted form of 8y are as claimed.

The design £y must be unique for suppose otherwise. Let &1 solve
S, Let S(gg) = {xgs..x Jand S(g;) = {Xp,...,%,} and let
jO = max{j: xjfij}. Clearly, because the same supports imbly the same
weights, Jo 1s well defined. Both S(go) and S(g]) determine via (6.6)
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the same function 50 because of the unicity of the solution to Pn’ Thus

on s €fa,c]

O
in
I e~13

Do (0)0xg-5) g (e)(7y-5)™ 1,

J J J

Assume without loss of generality that x. < X. . Then for s €(x: ,x; )
ig g Jg*7g

O = -4, (c)(ij-s)m. This is impossible because of (6.8). This concludes
)
the proof of the theorem. 0

In the following theorem we assume as above that for every finite set
of distinct points {Z]""’Zk} in the closed bounded interva] [a,b] and
for every collection of positive integers {n],...,nk} we are able to ob-

serve the uncorrelated random variables {Y](z]),...,Y (z]),...,Y (zk)}.

We assume that for every x in the closed bounded interval [a,c], ¢ > b,
the expectations E[Yz(x)] are finite E[Y(x)—E(Y(x)]]2 = 1, and that the
function of x, e(x) = E[Y(x)] though unknown has m-1 absolutely con-
tinuous derivatives and an mEﬁ-derivative e(m) which is in Lz[a,c]. Let
N>m>1 be an arbitrary integer and ¢ > 0 be an arbitrary number. Set
n = (Nez)'] and let £0 solve Sn' It has been proven that £g is uﬁique
and has support S(go) consisting of exactly m points which we denote by
{Xp5.000x 1 Let ﬁ]""’ﬁm be any one of the non-empty collection of '

m
integers satisfying

(N-m) [, (c)]
i) ﬁi > | = ! for i=1,...,m, where [x] is the smallest
Yo le, (c)]
=t %

integer greater than or equal to x,

He~13
=
£}
=

and i)
;
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Let 8(c) denote the value at c of the polynomial of degree m- 1 which
m
passes through the m points {(Xi’ ) yj(xi)/ﬁi)}

J i=1
Every Tinear estimator of o{c) based upon N observations is
K n, .
of the form o'y = 7§ Toe. yJ( z.) where {zij} is a collection of real
' i=1 §=1

numbers and {Z]""’Zk} and {n],...,nk} are as above with the additional

k
restriction that k < N and J ny = N. Define

I{N) = inf sup E (R'Y-G(C))Z
(m), °
[le Ilzfﬁ

where the infimum extends over all linear estimators based upon N

observations.

Theorem 6. 3.

0<1-1I(N)( sup E (8(c)-0(c))?) < B,

Proof.  Because of theorem 4.1 it suffices to prove that 8(c) is Speckman's
estimator based upon observations at {x],...,xm} in the quantities
{ﬁ1,.“,ﬁm}5 It can be shown that the assumptions of lemma 2.1
are satisfied in our present case. Thus Speckman's estimator is

the value at ¢ of the function &(Y) in wﬁ[a,c] which minimizes

n C
I (y;(x)-80x;)% + 2 af t))%dt.
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B(x;) = ¥(x;), & is in Wola,cl,
and é(m)(t) = 0 we have proven the theorem. O

When m=2 more can be said. By straightforward but tedious compu-

tation, setting X, = b in (6.5), one can show that

X,-b
L L P GO .
; = - s)ds.
Sglx (b-x,)2 b ! e
Setting
(b-a)°

- [ ] + 1 ]-1
0 24 b-a 2{c-b)
and defining the function x](n) to be a when np > ng and to be the unique

real solution to

(6. 8) (b-x)° 1

! 24n 2(c-b) b-x
when n E(O,no) one can check (see also Spruill (1981a and b)) that the
conditions i), ii), and iii) of theorem 3.2 are satisfied by 5, and £ in

(6.4) and (6,5) when X is as above and X, = b. Thus the unique optimal

desi 1 ss —Cb_ at x4 ((N 2)—]) and ~—E:il—— at b
esign places ma c—b+C~X] 1((Ne c-b+c-x] .

Huber (1975) employed somewhat different assumptions and arrived
at similar conclusions. Huber assumed that observations were available on

x€[0,=), 6(-1) was to be estimated by a minimax linear estimator, and the

contamination was  sup [6"(x)] < e. The same results obviously
-] <x <t

hold if the interval is (-« ,0] and 8(1) is to be estimated by replac-
ing his 1/y with -1/y as the Tocation of the left-most point of support

in the optimal design. In this context, the right-most point is 0. As
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Huber points out, his optimal designs also assign weights corresponding
to those of the usual optimal designs on [- %-,OJ to extrapolate to 1.
Using only i), i1), and 1ii) of theorem 3.2 reveals that our results con-
tinue to be valid of a = -» by setting éL-= 0. We shall compare the

0
two optimal designs at Ngzvalues. In Huber's notation n = N, and we take
2

o = 1. Denote the location of our left-most point by x](Nez) = %—- and
1
his by x(ch) = - %-. Using his equation (6.22) and our equation (6.8)
2
]2Y1(1+2Y]) 5
we see that 1 = 5 . As Ne™ » = both Y, and y become
8Y“(1+2y) (v/(1+7))

i 1
large and we have Pl (%) /3, Thus our right-most point is to the right

of his by a factor of roughly (3/2)]/3 - 1 for large N and equal 52.

How does one find, for general m, the points {x],...,xm}? One
method which suggests itself involves the problems Pn‘ Since the form
of the solution to Pn is known one should be able to combine numerical
searches for maxima with sequential selection of the points {x],...,xm}
to get a sequence converging to the solution of Pn and a sequence of
sets converging to the correct support. e leave these matters and others

for future consideration.
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