CONFIDENCE REGIONS FOR THE SLOPE
IN A LINEAR ERRORS-IN-VARIABLES REGRESSION MODEL
by
Leon Jay Gleser

Purdue University

Technical Report #82-23

Department of Statistics
Purdue University

July 1982

]Research supported by the National Science Foundation under Grant

MCS 81-21948.



Revision December, 1982

CONFIDENCE REGIONS FOR THE SLOPE
IN A LINEAR ERRORS-IN-VARIABLES REGRESSION MODEL

by

Leon Jay Gleser
Purdue University

1. INTRODUCTION

The linear errors-in-variables model of interest in this paper is the

following. Independent pairs (Xi’yi) of random variables are observed,

(X") =(u" >+(e"), i=1,...N, (1.1)
Y; 'a+bui \ fi

e

where

and

PERRRELI fl""’fN are independent N(O,cz) random variables.

The means u; of the xi's are unknown scalars, but are not of central in-
terest in the problem. The intercept a, slope b, and error variance 02
are also unknown, and are the parameters to be estimated.

Over 100 years ago, Adcock (1878) considered the model (1.1), and pro-

posed estimating the parameters a and by by choosing a line {(x,at+bx): x real}

such that the sum of squared distances from the observed points (xi,yi)
to the Tine along perpendiculars to the line is minimized. This
approach contrasts with classical least squares theory, where squared
distances to the line are measured along perpendiculars to the x-axis.
Adcock's methodology has been used in physical science and engineering
applications, but it is only in the past 30 years that statisticians have

given serious theoretical attention to inference for this model. Stimulus
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for this increased interest has come in part from awareness that the model
(1.1) is closely related to important econometric and psychometric models,
and in part from greater concern among scientists about measurement errors

in variables previously assumed to be precisely measured.

Excellent reviews of the literature for the model (1.1), and various
related models, can be found in Moran (1971), Anderson (1976), Kendall and
Stuart (1979), and Bentler (1980). Additional theoretical material appears
in Gleser (1981). Almost all previous research in this area has concerned
point estimation for a, b, and 02, and the distributions of such estima-
tors. As noted by the discussants of Anderson's (1976) paper, very little
work has been done to study confidence regions for these parameters. This
is in spite of the fact that users of the model (1.1) frequently express
interest in confidence interval methodology for the slope b.

The purpose of this paper is twofold. First, to point out that no
universally satisfactory confidence interval procedure for b can exist, at
least if this procedure is based (as are most currently proposed confidence

region procedures) on the sample cross product matrix

1 (x50 ) (R y-9)
i=t ! i=1 ! !

W= C (1.2)
N o N, |
Lo (=x)(y4-y) L vy

1 i=1

To that end, in Section 2, the following theorem is proved.

Theorem 1. Any confidence interval [L(W),U(W)] for b which has coverage

probability at least l-a, 0 < a < 13 for all parameter values must

satisfy
P{IL(W),U(W)] = (~»,=)} > 0

for every parameter value (and thus have infinite expected length).




Contrariwise, any confidence interval which almost surely has finite length

for all parameter values must have confidence level (the infimum of the pro-

babilities of coverage over the parameter space) equal to O.
In Section 3, the advantages and disadvantages of three confidence
region procedures for b are discussed. The procedures described are those
proposed by Creasy (1957) and Williams (1969), by Brown (1957), and by Gleser
(1981). It is concluded that none of these procedures is fully satisfactory.
However, in Section 4 it is argued that if an investigator is willing to make a
very reasonable assumption about the parametérs of thé model the confi-
dence interval procedure proposed by Gleser can give satisfactory performance.
Two additional facts about inference for the que] (];1) are brought
out in the paper. In Section 3.2, is shown that the Tikelihood ratio test
of HO: b = b0 V.S. H]: b # b0 cannot be made to have fixed level of signi-
ficance a, 0 < o < 1, at Teast when the sample size N goes to infinity.
Finally, in an appendix, it is shown that the maximum likelihood estimator

b of b is median biased, thus currecting a misleading remark in Anderson

(1976, pp. 9, 12).

2. PROOF OF THEOREM 1
It is well known that the matrix W defined by (1.2) has a noncentral
Wishart distribution with n = N - 1 degrees of freedom, covariance para-

meter 0212, and noncentrality parameter'c_zncﬁ(],b)'(],b), where

N
2 1 =12
ou = T L (00
i=1
That is
noz :
W % (nao’Ty —2 (D))" (2.1)
(¢



The parameters of this distribution are b, 02 and 03. Hence, the parameter

space referred to in Theorem 1 can be described by

Q= {w='(b,02,o§ fcw<b<w, 0250, g% > 0}. (2.2)

It must be assumed that 05

> 0, or else the model is not identifiable.
Nevertheless, since the confidence level of any confidence region C(W) for

b is defined by

confidence level of C = inf P (b€ C(W)},
: w€Q

this confidence level may be attained as a limit of coverage probabilities
corresponding to a sequence of points w = (b,oz,cﬁ) in the parameter space

Q for which 05 -~ 0. This is the key to the results stated in Theorem 1.

Define
2.-1/2 ,1 -b i Vi
r, = (1+b") ( ), V= ( =T 'Wr.. (2.3)
b ‘ b 1 Vio Voo b b
Theh
2, 2
n(1+b")o
v m?f(n,ozlz, 52(5 8)), 6= —m Y. (2.4)
(e} .

Note that the distribution of V depends only on the error variance 02 and
the noncentrality parameter 62.

To make the argument easier to follow, note that it follows from
(2.3) that without loss of generality all of the probabilities under dis-
cussion can be assumed to be defined on a probability space in which the
sample space consists of nonnegative definite 2x2 matrices V, the family of

pkobabi]ity measures is defined by (2.4), and

W = Iy v Iyt (2.5)



To prove the first part of Theorem 1, suppose that the confidence
interval [L(W),U(W)] has confidence level 1-a, so that

P {L(W) <b < UMM} > 1-a, all o = (b,o",02) € @ (2.6)
It follows from (2.5) that

Pw {L(W) <b < UM)} =P 5 Z{L(F VI' y<b < U(I' VT ')} (2.7)

o 46

where from (2.4) the distfibution of V depends only on czand 62. Thus,

(2.6) and (2.7) imply that

1-0 < liminf P 2 2 {L(r b*) < (FbVFb Y}

+ 0
%

=P, {L(I‘bVI_‘b') <b < U(I‘bVI‘b')},,
o ,0 ‘
since for fixed b,oz, 05 - 0 if and only if 62 + 0sand the probabilities of

the noncentral Wishart distribution (2.4) are continuous in 62. However,
2

when ¢~ = 0, V and PbVFb' have the same central Wishart distribution,
»(n, 0212). Thus,
T-a<P, {L(V)<b<uW)l, all o%,b. (2.8)
o ,0

The distribution of V in (2.8) is independent of b. Thus, taking

b+ -o,b > in (2.8) demonstrates that

P, {L(V) = -=}>1-q, P, {U(V) ==} >1-a,
090 0,0

"and hence that for all 02>-0,

PUZ O{L(FbVPb ) ==, U(FbVbe) =w}= ‘PGZ;O{L(V) = ~o,U(V)=}> 1-2a. (2.9)

Note that 1-2a > O when 0 < o < 1/2. It now follows from (2.9), the mutual



absolute continuity of all the noncentral Wishart distributions (2.4) with

the central Wishart distribution W'(n,ozIz) and (2.7) that

PLILON) = ==, U(W) = =} > 0, all u = (b,o?,02) €a,
as asserted by the first part of Theorem 1.

To prove the "contrariwise" part of Theorem 1, assume that

P l-= <L) <UM) <=} =1, allg-= (b,cz,cS)EQ;
Using (2.7) and arguments similar to those leading to (2.8), it follows
that for all 02,
1= ;m P o plm= < L{rgVry') < U(ryvr ') <=}=P,
g 0 58 o,0

P
°u

{=o < L(V) <U(V)<el},

(2.10)
and also that for all fixed b,cz,

Tim P {L(W) <b < UM} =P, {L(V) <b < UV}
o

05+0 ;0

But since (2.10) states that L(V) > -« and U(V) < » with probability 1 when
V has théé?(n,ozIz) distribution, and since this distribution is independent of b,

taking b + -« or b -+ « shows that

inf lim P {L(W) <b < UMW)} =1inf P, {L(V) <b < U(V)} =0,
b 2 © b &0 :

gu—>0
The proof is now completed by noting that

0 < inf P {L(W) <b < UMW)} <inf Tim P (L(W) <b < UMW)} = O,
w

b 05—»0

so that the confidence level of [L(W),U(W)] for b is

inf P {L(W) <b < uWw)} =0
wE€n ¥

as asserted. [



The proof of Theorem 1 is, admittedly, rather technical. A Tittle
intuition from classical regression theory may thus be more convincing.
Suppose, therefore, that after the data (Xi’yi)’ 1 < i < N, were obtained, you

somehow learned the values of Upseo sy and of 02. In this case, you certainly

would ignore the x;-values in favor of the u.'s, and estimate b by the

usual least squares estimator

N -
2o y;(us-u)
= 171
LS n 2
“u
The 100(1-a)% confidence interval
b * 2(1- 3) —Z—, (2.11)

/ 2
no
u

where z.(1-y) is the 100(1-y) percentile of the N(0,1) distribution, has
many optimal properties in terms of balancing coverage probability and ex-
Vpected length. However, note that even in this ideal case, the length of
(2.11) becomes infinite as 0'205 + 0. The proof of Theorem 1 reflects
this insight, since for fixed b, n, taking»aﬁ to 0 is equivalent to taking

0_205 to 0.

It is thus apparent that for confidence interval estimation of b
under the model (1.1) to give useful results in all cases, one must be
prepared to assume that 0-205 is bounded away from 0. More will be said

about this assumption in Section 4.

3. AVAILABLE CONFIDENCE REGION PROCEDURES

3.1. The Creasy-Williams procedure

Perhaps the most frequently mentioned confidence region for b is one
proposed independently by Creasy (1957) and by Williams (1969). Let r(b)

be the sample correlation coefficient between byi + X and y{ - bxi,



1 <1i <N, and Tet F n_](1-a) be the 100(1-a) percentile of the central
F distribution with 1 and n - 1 degrees of freedom. The Creasy-Williams

(W) confidence region C, for b is then

¢, = {b: (n—])rz(b)[]-rz(b)]']iF]’n_1(1—a))} . (3.1)

The region C] can be thought of as the collection of all b for which the
standard two-sided o-level test of

(b).
0 ° Pby+x,y-bx

fails to reject Héb).

=0 wv.s. nb).

H 1 - pby+x,y-bx

#0

This region does have confidence 1 - o of covering

the true value of b, but also has the following very undesirable property:
i e 1.
b€ C, if and pn1y if - 5 € C], ‘ (3.2)
That (3.2) holds can be seen most easily by noting that

Phy+x,y-bx = “Px-(y/b),y+(x/b)’

and remembering that C] is based on a two-sided test of Héb). Because of

property (3.2), the region C, cannot be used to test the sign of b. Fur-

ther, the only way that C] can be an interval is for C] to equal [-=,»].

This last is an event which has positive probability under all parameter
values.
Although the CW region has some undesirable properties as a region

for b, it appears to yield a useful 100(1-a)% confidence interval for

6 =tan "' (b),
the angle that the Tine a + bu makes with the u-axis. [Anderson 1976;
Moran 1971.] Anderson (1976) gives a compelling argument for the sup-
eriority of 8 to b as a parametrization of the model (1.1). 1In brief,

since the model (1.1) could just as easily be defined by

a
Lopt e

Xs = i

; yi =ty + o t.=a t~bu1, (3.3)

O] —



the treatment of X; as an observed value of an "independent" variable u,
and y; as an observed value of a "dependent" variable a + bu, is not in-
herent in the model (1.1) [which is symmetric in its treatment of the
variables], but isinstead arbitrarily imposed by the statistician upon
the model. On theotheb hand, the angle o is well defined whichever vari-
ant, (1.1) or (3.3), of the model is used. Nevertheless, investigators
who use the model (1.1) as a more realistic alternative to the classi-
cal assumption of error-free "independent" variables x will typically
want to estimate a slope b, and will not find 6 an especially satisfy-
ing parameter for this purpose. (In particular, if the sign of b is
important, this information cannot always be obtained from a confidence

interval for 6.)

3.2. Brown's procedure and a likelihood ratio test

For 02 known, Brown (1957) suggests the confidence region:

N
] ) [¥1-9-b(xi-i)]2 §_xﬁ(1-a)}, (3.4)

C, = tb: [(1+67)o°T

i=1

2,4 oy s . . . :

where xn(l-a) is the 100(1-a) percentile of the chi-squared distribution with n
degrees of freedom. Similar regions, in more general contexts, have been propos-
ed by Villegas (1964) and Lord (1973). These last two authors allow 02
to be unknown, but require an independent estimator of 02 (perhaps based
on independent replications of (Xi’yi))‘

In terms of the sample cross-product matrix W defined by (1.2), the

region (3.4)‘becomes

(]
il

2
_<_ Xn(]-(x)_' .

{b. (-b, ()
)

N



Let

91 92

W=2GDG', G = : 2x2 orthogonal,
921 922,

(3.5)

D= diag(d],dz), d; >d, >0,

1 2
be the spectral decombosition of W. Gleser (1981) shows that in terms of

(3.5), the maximum 1ikelihood estimator of b is

~ g g
b= 22l __ 12 (3.6)
I 922
Combining (3.5) and (3.6), it is easily seen that

A A

1 -b d, 0 1 b
1 1
W= . - N s 3.7
(1+b%) (b 1) (o d ) (-b 1 ) (3:7)

2

and hence that

A
(b-b)~(d;-d,)
1 2§ , i_sz](]-a)f . (3.8)

C, = 3b: 2 5
g (1+b7) (1+b

Note that C2 is the empty set if d2/o2

> Xﬁ(]-a). This is an event hav-
ing positive probability for all parameter values. Indeed, an argument

parallel to that in Healy (1979) shows that the rejection region of the

likelihood ratio test of

. . Vo 020y
Hy: The model (1.1) holds v.s. Hy: (Xi’yi) BVN((w]i,wzi) G IZ)

consists of precisely those data points (Xi’yi)’ 1 <1 <N, for which C,

is empty.
Let
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It is easily shown that
the real line ,  ifs>1,

(-W,L(b,d] sdz)]U [U(bsd] sd2): °°)s if 1 >s5 > ”]_AZ s

C, is 1+b
[L(b,d;,d,) ,U(b,dy,d,) ] N R
1+b
empty , 1f s < 0.

Each of the ébove possibi]ities occurs with positive probability for all
parameter values. Thus, Brown's procedure shares some of the unpleasant
properties of the CW procedure. Like the CW procedure, Brown's procedure
does have fixed coverage probability 1 - « for all parameter values. This

fact can most easily be seen by noting that in terms of V defined by (2.3),

-~

(-b,T)W( -l) - V_ZE )
2, 2 2 Xp
)0 o

(1+b
the distributional assertion following directly from (2.4).
Brown's procedure is, of course, inapplicable when 02 is unknown.
One can substitute a consistent estimator for 02 into (3.8), but then the
fixed coverage probability of the procedure is not guaranteed, except per-
haps in large samples. Brown originally defined C2 to be the collection

of all b values for which a standard a-level ANOVA test [see (3.4)] of

Héb): E(yi—bxi) = constant, all 1,

versus general alternatives failed to reject Héb). When 02 is unknown,
no such test can be formed. However, one can try to generalize Brown's
procedure to the unknown-oz'case by Tetting C2 be the collection of all b0
values for which the Tikelihood ratio test of

Hg: b =by v.s. Hy: b # by, (3.9)
in the context of the model (1.1), fails to reject Hy at Tevel of signifi-

- cance a. It is not hard to show that this region has the form (3.8) with
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02 replaced by its maximum likelihood estimator 52 = (2N)"]d2, and with the
cutoff point xﬁ(]—a) replaced by the 100(1-a) percentile K(]-a;bo,cz,oﬁ)

of the resulting statistic
(b-by)%(dy-d,)
0 172

2N(1+ ~ 5 ) = TN(b
(1+b )(]+bo)d2

0)-

That is

2N(-b,1)w('? )

Ck = {b: < K(1-a; b,0%,0% )}
2 d.,(1+b%) = u
2 (3.10)
= b: Ty(b) < K(1-a3 bo?,07)).
Using the results of Gleser (1981), it can be shown that if
limo2 = 4 > 0, (3.11)
u
N0
then
T, (bn) 2
e R N G m L T (3.12)

(1+b§)A

Since o_ZA can have any value in the interval (0,=), the result (3.12)
indicates that, at least asymptotically, one cannot find a-cﬁtoff

point K(1-o; bO) independent of o2 and 05 which will give the confidence
fegion {b: TN(b) < K(1-a; bO)}'a fixed (or even bounded) probability

of coverage for all parameter values. The same argument shows that,

‘at least asymptotically, one cannot construct an a-level, 0 <a <1,

likelihood ratio test of (3.9).
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Although it may yet be possible to adapt Brown's procedure to cover
the case when 02 is unknown, the prospect does not seem promising.

Further, any such adaptation that starts with the statistic

(-b,1)H(;")
(14b)

will, because of the term (1+b2) in the denominator, yield regions for

b which are not intervals.

3.3. Gleser's Procedure

Under the assumption (3.11), Gleser (1981) proposed the following

large-sample confidence interval for b:

n(B-b)z(d]—dz)z )

C, = _ < ¥2(1-a)}. (3.13)
3 (1+65)%4.4 1
192
When (3.11) holds, b, o are fixed, and Tim o> = 4 > 0,
N->oo
Tin P, b €Cy) = T-a, all byo® s, (3.14)

Nve b,o 20,
as shown in Corollary 4.3 of Gleser.(1981).

On the other hand, Theorem 2 asserts that for any fixed cutoff value

k, and any finite sample size N = n+l,

n(b-by)*(dy-dp)*

0" (14692

inf P [b ¢ {b < k3] = 0. -(3.15)
wE Q @

didy

)
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This apparent contradiction between (3.14) and (3.15) stems from the
fact that the former result involves limits in N for fixed parameters,
while the latter result involves limits in parameter values & for fixed N.
The conflict in these results serves as a warning that in errors-in-
variables models: one must be very careful with Timiting arquments. In
particular, one cannot generally interchange Timits in N and limits
in parameter values.

The region 03 can be regarded as an adjustment to the Creasy-

Williams procedure. To see this, note that the region C] can be.expressed,

using (3.9), as follows:

(n-1)[(1,b)W(}") 17

C-I = {b: lwl ('|+b2)2 = F] ’n_-l(]-OL)}
(3.16)
. Y. 2
. r(n=1)(1+bb)2, N(b-b)"(dq-dp) |
= {b: : — < F (1-0) 1.
S aand? (146%)%d;d, ~— TN

Comparing (3.13) and (3.16), it is seen that the region_C3:rgp1acés
the term [n(1+b%)%17 (n-1)(1+bb)% in C; by 1, which is the probability Timit
of this term as N ~ « (Gleser 1981). Such a substitution has no effect

upon the asymptotic (N - ~) coverage probability of C1, but does lose

the good global finite-sample control of coverage probabilities provided

by the CW procedure. (However, see Section 4.) In effect, the confidence
_procedure (3.13) gives up control of coverage probabi]jty in order to proVide

'”inteFNa{'éstﬂ}gﬁ)yﬁssfﬁﬁhb;
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The procedure {3.13) can also be viewed as an adjustment to the:
generalized Brown procedure (3.10). Here, the adjustment not only
provides interval regions for b, but also controls asymptotic probability
of coverage by dividing n(B—b)Z'by a correct consistent estimator of the
variance of the asymptotic distribution of n% (B—b).
The major drawback of the confidence interval C5 is that it fails to control
global (over the parameter space) finite sample coverage probabilities.
In the next section (Section 4), it is shown that under a reasonable

restriction on the parameter space, this procedure can be adjusted

to provide control of coverage probabilities in finite samples.

4. CONTROL OF COVERAGE PROBABILITIES FOR GLESER'S PROCEDURE
Since the cutoff x%(]—a) in the large-sample region (3.13) may not
be the correct value to use in finite samples, replace (3.13) by the more

general region:

(b-b)(d; -d,)

3 : 27
(14b°) d]d2

< k. (4.1)

Although k will depend upon N, this dependence is suppressed in our
notation for the sake of convenience.
Let +> 0 be a positivé éoﬁ§téht: Define
‘_p..(k‘qT,N) = inf [Pw {becg(k)}; -0 < b < ©, T < o-_zgﬁ < oo].
(4.2)

Let xﬁ_] denote a chi-squared random variable with N-1 degrees of freedom

and Tet r be a random variable, independent of xﬁ_], with the density
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1
2\5(N-4)

fy(r) = L)t
B(5,5(N-2))

s =1 fr‘i'l. (4.3)

That is, r has the density of the sample correlation coefficient based
on a sample of N bivariate normal observations with covariance matrix equal

to the identity matrix 12. Define

2 .
2 _ 1 3
L(k,T,N) = P{]—‘”—Zi K xgq < (W1t (B L [k(1-r8) 12)2),
-r r
(4.4)
The main result of this section is the following theorem.
Theorem 2. For all k, 0 < k < =,
ol
L(k,T.N) < o(k,T,N) < L(k,T,N) +2P{—— > k}. (4.5)
I-r

Hence, if it is known that o_zcﬁ > T, then for-evéry>a3 0-<a <1, and every N,

there exists a critical value k* = k(1-a,T,N) satisfying

L(k*,T,N) =1 - a

for which the confidence interval Cg(k*) has confidence level at least

1-a.

The discussion after the proof of Theorem 1 indicates why the requirement
that G-Zoﬁ > T>0 is necessary for the confidence interval C§(k*) to have
a confidence level 1-a strict]y greater than 0. In many applications, an

investigator may be able to provide a value of T from knowledge of
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the nature of the experiment, and previous experience with the measuring
instruments. If instrumental variables (see Moran, 1971) are available,
the data (Xi’yi)’ 1 <1 <N, itself can be used to find a lower confi-
dence bound for ™2 05 which can serve as the value of t. Since the
method described for: choosing k-in'Theorem:2 s conservative, if an investigator -
1; willing to be imprecise about the value of o desired, the value of v
can also be chosen imprecisely.
The steps of the proof of Theorem 2 are outlined below in the form
- of lemmas. Technical details, if needed for the proofs of the lemmas,

are given in the appendix.

4.1 Proof of Theorem 2.

Recall that V = r} Wry is defined in (2.3). Using (2.3) and (3.7),

it is easily shown that

[ViT V12 ] 1 -bO d] 0 1 BO

V = = ’ >
A 2 A A
v]2 V22 'l+b0 b0 1 0 d2 -b0 i
(4.6)
where

. 1 . btb
by =22, p=L— . (4.7)

T1+bb 1-bb
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letn=N-1,

v v
pe—12 ho=—tl . (4.8)
. 2
(v1]v22) 22
Lemma 1. The_ random variables r and h are statistically independent,

with r having the density ﬁN(r\ defined by (4.3)., and h having the non-

central Fn n(62) distribution with noncentrality parameter
,  nol (14°)
§7 = —— .

o

Proof Define z = v];]/zvlz, W= v22—22. Using (2.4) and Theorem 2.2

of Gleser (1976), Vi7> 2> and w are mutually statistically independent
with ’

2 2.2
)

22,2
Vii7 @ xn(a ), z-N(0,0)°, w-~o Xp-1°

where xg(dz) is the noncentral chi squared distribution with d degrees of

freedom and noncentrality parameter 62. However,

v
r=—-—, h=1—]2
2 w+tz

and it is well known that r and w + 22 are independent. The conclusion of
the Temma now follows by standard distributionaT arguments. O

It follows from (4.6), (4.7) and (4.8) that

(6-b)% (d-d,)%  (1-bB )% 5 2 o
= = L (1-bb,)

. i 2 .

(1+6%)% q,d, vl (1-r7)
Hence (see (4.1)),
rz ~y2
Pb o 5 1beC(k)} =Pylt——") (1-bby)" < kI, (4.9)
30 5 O 8§ 1-r .

u
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where from (4.6) and Lemma 1, the probability on the right-hand side of
(4.9) depends only on 62 (and b).

Using (4.6) and (4.7), it can be shown that

5 - 1-h + [(h-])2 + 4hr‘2]]/2
0 2rh1/2 (4.10)
For fixed r#0,
FBO is strictly decreasing and continuous in h,
lim rby ==, Tim rby = 0, | (4.11)
h->0 h > o
and consequently rBO > 0.
Lemma 2. For rb#0, define
. 2c1/2
a;(rsb) = B+ (D) [E) ] KON i,
r
2
Then for all b, §°,
p {‘"2 kK, 0 < rb (r,b) ? b )2
2Ky U <rby < q,(r,b)} < P {(—=) (1-bb,)° < k}
62 ]_rZ 0 2 - 62 1-r2 0’ =
Y‘2 N y\2
:PGZ{] 2 < ks 0 < rby < qy(r,b)} +(1/2)P{] >~ > kI, (4.12)
- -r
Proof Note that when b#0,
2 2
r R4 r S ovbyy2
(1-bb,)" = (1-(rb ()" < k
1-r 0" g2 0%'r
if and only if
9 (r,b) < rby f_qz(r,b). (4.13)

However, by (4.11), VBO.i 0, while r2(1-r2)'1 < k implies that

q](r,b) < 0 and qz(r,b) > 0. This establishes the left-hand inequality in
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(4.12) for b#0. Noting that 1im qz(r,b) = » when (1—r2)_]r2 < k, it is
b->0

easily established that this left-hand inequality is an equality when b= 0.

(Therefore, the right-hand inequality in (4.12) also holds when b = 0,

since P{(]-rz)']r2 >k} > 0.)

To prove the right-hand inequality of (4.12) when b#0, let

2
= [r 2 - o ‘
A= {m (]-bbo) < k} {q](r,b) < Y‘bO < q2(r',b)},
) r2 R
B = {;—“?'fgk, 0 < rb, 5_q2(r,b)}.
-r
Then since rBO > 0,
: B 2
c _ N r
ANB" = {q] (r,b) < Y‘bO < qz(r‘,b), ———]_Y‘_z > k}.

However, when rb <0 and (1-r2)7]r2'>k, qz(r,b) <0, and rBO=>q2(r,b).

Thus,
C " 2.-1 2
ANB” = {rb >0, q](r,b)_grbo f_qz(r,b), (1-r%) "r“ >k}

2

c {rb > 0, (1-r2)" W25 k3.

Since the density fy(r) of r is symmetric about 0 (see (4.3) and Lemma 1),

and does not depend upon b or 62,

P LIANBSY < Pirb>0, (1-r2) 1 5 k3 =(1/2)P(1-r2) T 5 k3.
S

This establishes the desired inequality. [
Note that 60 in (4.10) is a function only of r and h, while q2(r,b) is
a function only of r (and b). From Lemma 1, r and h are independent, r has
'a continuous distribution independent of b, 62, and(yﬁ, and h has the Fn’n(sz)

distribution which depends upon b, 02, and 05 only through 62 = n(1+b2)(o'2 05).
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When 0—205 > T,

52 > n(]+b2)1. |

Finally, note from @.11) that when r#0 is fixed, rBO is strictly decreasing
in h. From theSg remarks, and the well-known fact that the Fn’n(sz)
distribution has monotone likelihood ratio in 62, it can be straightfofward]y

shown that for all b, 02, oﬁ for which o2 05 > T,

P { <k, 0 5_r6 < q,(r,b)}

62 1-r2 0 2 e
r2

2 2, |

§7=n(1+b")r 1-r

>P 7~ < ks 0 < rby < q,(r,b)}. (4.14)

Lemma 3. The quantity

2

— Y‘ ) N A .,.
v(b) =P _ (1+b2){_1_r2 <k, 0 < rby < a,(r,b)} (4.15)

is nondecreasing in b for b<0, nonincreasing in b for b>0.

Proof. See the appendix. [J

1t follows from Lemma 3 that

inf ¥(b) = min {Vim ¥(b), Tim ¥(b)}, - (4.16)
b-seo

—co h<coo b~

Lemma 4. For all k, T, N,

Tim w(b) = L(k, 7. N).
b-++eo : ’

Proof. See the appendix. O
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The inequality (4.5) in Theorem 2 now follows as a direct consequence

-1.2

of Lemmas 2, 3 and 4, and the fact that P {(1—r2) r° > k} does not depend for

its value on b or 62.
The function L(k,t,N) is clearly an increasing continuous function of
k, with L(0,t,N) = 0, Tim L(k, t,N) = 1. Hence for any a, 0 < « <1,
k>

we can find k* = k(1-a, ©,N), 0<k¥*< o, satisfying L(k* w,N) = 1 - o.

This completes the proof of Theorem 2.

4.2. Discussion

Note from (4.4) that

r2

L(k*, t,N) < P{ < k*3.

1-r2

In cases where k* is chosen SO that L(k*, t,N) = T-o and o is small

(o = .01, .05),

2
172)Pi" > k*} <(1/2)a,
1-r

and the inequality (4.5) shows that the confidence level p(k*, t, N) of

*
the region C3 (k*) will be very close to 1 - «. To be precise,

T -a< po(k*, 1,N) <1 - % .

Thus, although the method of choosing k* indicated in Theorem 2 is con-
servative, this conservativeness is not likely to be of great practical
importance.

The function L(k, t,N) has been tabulated for various values of
k, n = N-1 and nt in Shyr (1983), and from these calculations values of
k* have been obtained. Shyr's calculations have concentrated on cases where

¢ is small, since (as seen below) these are the situations where modification
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of the asymptotic confidence region (3.13) is most needed. To give an
idea of the modification to the asymptotic region C3 required when T is

1 2

small, Table 1 compares k* to the corresponding value k = n_ X1 (1-a)

for selected values of 1 - a, T and n. From this table, it is clear that
when t© is small (small values of 0'2 05 cannot be ruled out), a controlled
probability of coverage is only possible at the expense of a considerable

increase in the width of the confidence interval.

Table 1. Values of k* and n_]- X?(]-a) for Various Values of 1 -a, n, and t

T n 1 -a=.90 " 1 -0o=.95 1-a0=.99

R*T xf(]-a) ;Ak*"-xf(]-u) kex _j?<$(]'“)

_ | S g - n_ . . N

.01 10 9.9046 0.2706 20.8063 0.3841 68.4376 0.6635
50 0.3578 0.0541 0.7425 0.0768 2.2686 0.1327

05 10 2.2272 0.2706 4.7507 0.3841  15.7813 0.6635
20 .5554 (0.1353 1.1705 0.1921 3.6789 0.3317

0 10 1.2862 0.2706 2.7490 0.3841 9.1235 0.6635
20 .3740 0.1353 .7450 0.1921 2.2875 0.3317

20 10 .8868 0.2706 1.7699 0.3841 5.6855 0.6635
25 .2183 0.1082 .3832 0.1537 1.0476 0.2654

50 10 .6689 0.2706 1.2010 0.3841 3.4360 0.6635

On the other hand,there are cases where one can be fairly certain,
based on experience with the experimental procedure and the theory under-
lying the experiment, that the variability in the unknown means u; accounts
for half or more of the total variability of the observed xi's. In this

case the Tower bound { in Theorem 1 is at least 1, and it would be of
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interest to know how much is Tost in confidence level performance if the

asymptotic region C, is used. Equation (4.5) of Theorem 2 allows us to

3
check this performance by providing an upper and Tower bound to the minimum

probability of coverage

2
u

- . -2
p(n ]x]2(1—a), T, N) =‘ inf[P 2 2{bEC3}:-oo< b< g “g

byo ,0

> 1]

u

of the region C,. Table 2 gives values of the Tower bound L(n'] X?(]-a), T,N)

and upper bound

1.2 2 x$(1-a)
x7(1-a)s 7. N) +(1/2)P{] >
-r

L(n~ }

n

58(1-a) T, N) when 1 - o = .90, .95. .99, n = N-1 = 10, 12, 15, 25,

to p(n
30, 50, and t = .25, .50, 1.00, 2.00. The values of 1t other than 1.0 are

used so that insight can be gained into the performance of C3.

Place Table 2 here

From Tabie 2, it can be seen that the confidence level o-f‘C3 can
Be markedly Teéss that 1 - o in the worst case (n =10, ¢ = 0.25), but
increases as either n or ¢ increase. Indeed, the strategy of calculating
a 99% confidence inteérval 'in the hope of actually getting a confidence
Tevel of 95% would work reasonably well when t > 1.

One interésting fact noted in the calculations leading to Table 2,
but not immediately apparent in the Table, is that as n or t increase,
L(k, T, N) and P {(1-r2)-]r2 < k'} approximate each other more and more

closely in value. This is predictable from the expression (4.4) for

L(k, t, N), where it can also be seen that

Lk, o N) <P ((1-r2) N2 < .

. It is also predictable since we know that C3 and the CW region CT are

asymptotically equivalent to one another (N + ), and the random variable
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Table 2. Lower and Upper Bounds for Confidence Level of C3. .
Desired Exact Value 1 - o for
Confidence Level
T n 1-0a0=.90 1 -a=.95 1 ~a=.99
Lower Upper Lower Upper Lower Upper
Bound Bound... .. Bound. .. Bound. . .. Bound Bound
0.25 10 L7471 .8235 .8050 .8530 8780 .8966
12 .7610  .8327 .8188 .8625 .8903 .9060
15 L7759  .8429 .8335 .8731 .9032 9163
25 .8033  .8633 .8497 .8853 .9263 .9356
30 .8114  .8696 .8682 .9002 .9328 .9414
50 .8304  .8852 .8865 .9156 .9477 9547
0.50 10 7677  .8441 .8265 .8745 .8990 9176
12 .7812  .8528 .8397 .8834 9103 9260
15 .7954  .8624 .8535 .8931 .9219 9350
25 .8209 .8808 .8780 9114 .9418 .9512
30 .8282  .8863 .8850 .9169 .9473 9559
50 .8449  .8997 .9008 .9299 9593 9663
1.00 10 .7855 8619 .8447 .8927 9160 9346
12 .7983  .8700 .8571 .9008 .9262 .9419
15 .8118  .8788 .8699 .9095 .9365 .9495
25 .8352  .8952 .8921 . 9255 9535 9628
30 .8418  .9000 .8982 .9302 9580 . 9665
50 .8564  .9112 9119 .9410 .9675 .9745
2.00 10 .8002 .8766 .8595 .9075 .9290 .9476
12 .8125  .8841 .8712 .9147 9383 .9540
15 .8251 .8921 .8831 .9227 9474 .9604
25 .8467  .9066 .9031 .9365 .9619 L9713
30 .8526  .9108 .9084 .9403 .9657 .9742
50 .8654  .9202 .9203 .9494 9733 .9803
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r has the same distribution as the random variable r(b) in (3.1). Never-

theless, the calculations give some concrete evidence in favor of using

AR )
n-1

in (4.1) as a hedge between the extremes of using the asymptotic region

C3 and the region C3*(k*). Note that

(1a)  x0-a) |

F n-1 N
n-1 =

1,

n

so that using k in (4.1) yields broader intervals than Cs (but also a greater
confidence Tevel). Of course, when n is reasonably large, the difference.

between k and n—]x$(1—u) becomes negligible since

2. .
F (1-a) x7{1-a)
1im nc;LLﬂ:l_____. _ _l~_____)= 0.
n-c n-1 n
Use of k does, however, seem to have merit for small values of n

(say 10 < n < 50) at least for values of t no smaller that the smallest value

of ¢ (t = 0.25) covered in the calculations for Table 2.

5. SUMMARY
Although Theorem 1 shows that no confidence interval for b
based on W can control both coverage probability and expected length
over all parameter values, Theorem 2 demonstrates that it is possible

to control the coverage probability for the confidence interval
-202
means u. has a known lower bound t. Further, the calculations in Section 4.2

procedure C% when the standardized variability o of the unknown

show that the asymptotic confidence interval C3 gives a reasonable control
of coverage probability when t > 1, or N is large. If an investigator sees

no way to determine & -lower bound t, to~afgd§;ih250r she can either use the



asymptotic cbnfidence interval Cg, hoping that N 1is large

enough for (3.14) to hold to an approximation, or can use the Creasy-
Williams region C1. Unless a better generalization of Brown's region C2
than (3.10) can be found for unknown-o2 cases, use of Brown's methodology
must be reserved for known-o2 cases (or cases where a good independent
estimator of 02 is available). Users of the Creasy-Williams or Brown
procedures should be willing to accept the non-interval forms of these
confidence regions, or, alternatively, convince themselves that the
confidence intervals for the angle e available from the Creasy-Williams

approach can satisfy their needs.

APPENDIX

Proof of Lemma 3. Using Lemma 1, it can be shown that

¥(b) = [ ) [Pn T(1+b2){h: rbg(h) < a,(b,r)3Ify (r)dr. (A1)

r
< k -
1—r2 o

Take (d/db)¥(b). Since the probability in square brackets in (A.1)
is bounded, it is easy to show that the derivative can be taken inside
the integral sign., However, letting

M62(q) = sz{h: rby(h) < a3,

it is seen that

d ~
- P {h: rb,(h) < q,(b,r)}
@ " (14b2) bplh) <99
d
= o (q,(b,r)) -
b e (1+b°) 2t
d d

dlne(12) 4y (o bor)).
FTTd g2 2 o))



Since rBO is decreasing in h and h has monotone likelihood ratio in

&, (d/ds® ,(q) < 0. Since M ,(a) is a c.d.f., (d/dq)M 2(q)
)

6
Now

gB-[n T(]+b2)] = 2nt b

while for rb70, r2(1-r)~! < k,

d d r k(1-r=)-1/2
@ %) = g5 G+ I5] T k(=) y172,
= (1+[k(]r)]]/2£2—, %50
r b
KOz g
r b
=<0 b>0
>0 b < 0.
Combining these results, for b#0
d (1) <yt = | =00
- P {th: rb,(h) < q,(b,r)} = { - all r # 0.
b e (1462) 0 2 (>0,b<o0,

Thus, for b#0, (d/db)¥(b) is <0 for b > 0, > 0 for b < 0. Since it
is easy to show that ¥(b) < ¥(0), all b, this completes the proof of
Lemma 3. 3

Proof of Lemma 4. From(A.1)and the dominated convergence theorem,

lim ¥(b) = | [Tim P {rby(h) < a,(b,r)}IF, (r)dr.
b 2 K bote e (1462) '

| A

(A.2)



Note that for r#0, r2(1-r2)"] < k,

2

. . k(1-r7) q1/2

Tim b g (b,r) = lim |b[(L+ L Xr 1 7l/4
Iblsw 2 b B B LT

{r + [k(]—rz)]1/2, b + =,

< (A"S)
L-r + [k(1-r2)1172, b + -
Also, since h~ F n(nr:_.(1+b2)), it can be shown that
plim h = o, b§-£ ﬂﬁ, as b% o, (A.4)
|b]-o b™  xj, |

where xﬁ has the central chi-squared distribution with n degrees of

freedom (independent of r, since h is). However, for r#0

%h (1) (1'+ ar?h ‘)1/2]

- 1< hx /(h-1)% + ar
0 2n1/2 2n'/2 (h-1)?

rb

!

V21 + 0(1)), h > o
It thus follows from (A.4) that for r#0
L Xz 1/2
n ) .
|b|rb0 +yg:£ﬁ£¥_) . , (A.5)

Since the chi-squared distributions are continuous, it follows from

(A.3) and (A.5) that for r#0, r2(1-r)”!

< ks

Vim P trb(h) < q.(b,r)}
b-stoo nT'(1+b2) 0™ =72
— (A.6)

= P{Xﬁ 5_2%-(£r + [k(]-rz)]]/z)z}.
r



However,f”(P) is symmetric about r=0. Hence, from (A.2) and (A.6),
the conclusion of Lemma 4 follows. O

Proof that b is median biased. Note that from (4.7)

A

A - b
Pb > b} = P{b'b2 >0} = P—2 5 03
1+b 1-bb
(A.7)
= P{1 - bby > 0, by > 0} + P{1 - bb, < 0, by < 03.

Note from (4.10)that b, and r always have the same sign.Lemma 1 and (4:3) show

0
that P{r<0}=1/2. Thus, P{by<0}=1/2. Assume b>0. Then by<0 implies

1—b60>0. Consequently (A.7) becomes

P{b > b} = P{E > by > 03 + P{by < 03.> P(by < 0} =

0 2
The inequality is strict unless P{%—> 60 > 0} = 0, which is easily shown
not to be true.

- For b < 0, similar arguments show

o} —

P{b > b} = P{BO > 0} + P{%:< 60 <0} > P{BO > 0}

o>

Of course, when b=0, P(b > b} = P{by > 0 = %a Thus, b is median

biased except when b=0.
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