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1. INTRODUCTION

Let TRsTyseeesTy be k + 1 independent populations where s has the
associated distribution function F(x,ei) and density f(x,ei) with the un-
known parameter 6. belonging to an interval ® of the real line.R. We are
generally interested in two types of goals. Goal I is to select a sub-

set (preferably small in size) of the k populations Tyoeoe that will

S
contain the best (suitably defined) among them and Goal II is to select
from m,...om (k experimental treatments) those populations, if any,
that are better (to be defined) than m which is the control or standard
population.

In the recent years; several authors have investigated construction
of optimal subset selection rules and also established optimality prop-
erties of known selection rules for specific cases. Some of the impor-
tant papers in these directions are Berger and Gupta [1], Bickel and
Yahav [2], Bjgrnstad [3], Chernoff and Yahav [4], Goel and Rubin [5],
Gupta and Hsiao [6], Gupta and Hsu [7], Gupta and Huang [8,9], Gupta
and Kim [12,13], Gupta and Miescke [14], and Miescke [17]. These in-
vestigations generally dedal with the symmetric case of equal sample
*The research of the first two authoré was supported by the Office of
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sizes. There have been some investigations in the unequal sample sizes
case but these are concerned with ad hoc and heuristic procedures and

are not generally successful in establishing the least favorable configur-
ation (LFC) for the probability of a correct decision. For many classical
procedures in the Titerature for selecting a subset containing the best,
the LFC turns out to be 61 = e T 0. This provides the motivation for
séeking rules which are optimal in some suitable sense in a neighborhood
of every equiparameter point. When we are comparing these populations
with T the local optimality is related to the ability to reject the
populations that are inferior to 0 and select those that are superior

in a suitable neighborhood of selected parametric configurations.

Though some early investigation of locally optimal subset selection
rules based on ranks appeared in Nagel [18], such rules were not investi-
gated further until recently. Some locally optimal subset selection
rules based on ranks were derived by Gupta, Huang and Nagel [11] and
Huang and Panchapakesan [16]. The first of these papers considered Goal
I whereas the latter considered both Goals I and II. Though these rules
were based on ranks it was assumed that the functional form of the den-
sity is known; the justification for seeking rules based on ranks comes
from the usual robustness considerations in that the ranks are 1n§ensi-
tive to outliers and there could be possible deviations from the model.
Gupta, Huang and Nagel [11] maximized the probability of a correct selec-
tion in the neighborhood of any equiparameter point whereas Huang and
Panchapakesan [16] used for Goal I the criterion of strong monotonicity
in the same type of neighborhood and for Goal II a local optimality con-
dition which reflects the sensitivity of the rule when all but one popu-
lation are not distinctly superior and the remaining one is close to

others but distinctly superior.



The present paper derives a locally optimal subset selection rule
for Goal II based on parametric inference type statistics with no assump-

tion of equal sample sizes. In Section 2, we state a local optimality

condition and prove the main theorem giving the construction of a locally
optimal rule. Section 3 deals with the applications of the general re-
sult to the following special cases: (a) normal means comparison - common
known variance, (b) normal means comparison - common unknown variance,
(c) gamma scale parameters comparison - known (unequal) shape parameters
and (d) regression slopes. In all these cases, the locally optimal rule
is obtained based on samples of unequal sizes.

Finally, for detailed discussions on optimality and other aspects of
multiple decision problems and general decision theoretic approach, the

reader is referred to Gupta and Huang [10] and Gupta and Panchapakesan

[15].

2. DERIVATION OF THE RULE
Let'{Xij}, j=1,....n;, denote the random sample from mes 120,7,... k.
Our goal is to construct a rule to select all populations that are better
than the control. The selection rule will depend upon the observations
through the statistics TiO’ i=1,...,k, where Tij is suitably defined to
indicate the difference between ms and TS For fixed NgsNys«-sfy s We
assume that Tij has a density function gTij(tij) depending on the param-

eter . The parameter 43 is a measure of the 'separation' of s from

ij’
T Also, Tig is the same for all i and this common value is denoted by

t*. For example, in the location case, we can take'rij =05 - ej giving

t* = 0. On the other hand, if ¢ is a scale parameter, we can take

= * =
Tij 61/6j so that T 1.



Now, we define population ms to be superior to the control if

Tig > t* and inferior otherwise. Let

0 = {x]r=(rygsreatyg)s Ti0€ Rs 151500 00kE

2.1. Optimality Requirement. Let 0 < ;o< 1 (1<i<k) be specified.
Define

(2.1) S = {g[EL*(ai)wi, 1<i<k} .

We wish to derive a rule §€ S which

K
(2.2) maximizes } I (6.)
i=1 9Tj0 T 17| pagx

among all the rules in S. We note that §€ S means that the error prob-
abilities are controlled and that the condition (2.2) amounts to maximiz-
ing the efficiency in a certain sense of the rule in picking out the
superior population in the direction of each component at T* = (t*,...,1%).
Let hT(E) denote the joint density of T = (T10”"’Tk0) with respect

to a o-finite measure u. Let h_«(t) denote the density h_(t) when t = c*

and hil)(g) denote the partial derivative &j hT(E) evaluated at 7 = t*

Finally, we need to assume certain regularity conditions, namely, that

hT(E) s continuously differentiable with respect to each component of

T and h_(t) is integrable. Under these regularity conditions, it

T T
i0 —

is easy to see that

d




where 7 is the sample space of T = (Tlo""’TkO)'

Summarizing the above discussion, we are seeking a rule § (t)

such that

(2-3) f 61(£)hT*(£)dU(£) = Y'i’ i=1,...,k
T

and it maximizes, among all rules satisfying (2.3), the expression

[ B

(2.4) [ ot Dauy) .
J

i=1

2.2. A Locally Optimal Rule. We now state and prove the main

theorem of this section.

Theorem 2.1. Under all the assumptions stated previously, a rule

§9(§) which satisfies (2.3) and maximizes (2.4) among all rules satisfy-

ing (2.3) is given by

1 >
0 _ . (1) -
(2.5) 5i(8) = a1 () = egh(b)
0 <
where A and Cs such that
(2.6) [ 60N ((E)du() = vqs i=Tsesk .

‘:," . —

Proof. The proof is straightforward by noting that for any §

satisfying (2.3) we have

(2.7) [ ()-8, () (1 (B)-cih_o(£)au(t) > 0.

1 7
Remark 2.1. I

il >~ 7

;
t is easy to see that the rule §P(§) given by (2.5)

. . o
actually maximizes .z a5 3 ET(Gi) _— for any set of positive

constants a; among all rules satisfying (2.3).



3. SPECIAL CASES

In this section, we apply the result of Section 2 to several special

cases.

is N(

Case A: Normal Means Comparison; Common Known Variance. Here ms

ei,og), where og is known. Let Xi be the sample mean based on n;

independent observations from i i=0,1,...,k. Take T1.0 = (Xi'XO)/UO

and Tig = (ei'eo)/GO‘ Of course, t* = 0. Then the joint density

n (&)

mean

(3.1)

of T = (T10""’Tk0) is a multivariate normal distribution with
vector T = (110,...,Tk0) and covariance matrix A = (Aij) given by

1 1 . .

— (1 +—) fori=]j

_J "o 3
iJ

] . .

— for i #

o

where a; = ni/no, i=1,...,k. Thus

(3.2)

h () = (2m) 2 a7V 2exp[- 4 (t-1) 07 (£-0)1.

T

It is easy to verify that hil)(g)/hT*(E)

-1
(rrps 0% T a)- T age)
=n t.(1+ a,)- a.t.} ,
0 1+£az 1 Q/;é] L J?S'l J J

where (A_]E)i denotes the ith coordinate of the vector (A']g) and in sum-

mations involving the a, such as ) A, the subscript ranges from 1 to

% 21

k subject to any exceptions stated. The locally optimal rule gp is now

given by



I B x
. 1if t - g3 ; a, j§1 ast; > ¢
(3.3) §5(t) = a1
0 otherwise
where c? is determined by
(3.4) PoalTy - v L ayTyze) = v,

Now, using the fact that, when i_= t*(=0), (A-]I)i is normally distribut-

a )/(1+Za2), it is easy to

ed with mean zero and variance nya;(1+ ] a,

L#1
see that

(3.5) | Cc* T-vy. )//Ti+2a /noa (1+ ¥ ag)

L#1

. (1-y;) /N/n (V-]

where N = o + n] + ... + nk and ® denotes the standard normal distribu-

tion function.

0

1( ) in (3.3)

Remark 3.1. The individual selection probability §

can also be expressed as

0 otherwise
In this form, it can be recognized as a weighted average type rule.
When the sample sizes are equal, it is the usual average type rule and

selects m, if and only if t. - %- Yot > c¥.

it v T

Case B: Normal Means Comparison; Common Unknown Variance. Unless

stated otherwise, the notations of Case A will apply here. Let S? denote

the sample variance (divisor n; - 1) based on the sample from s Then



k .
(n1-1)5§/ N (ni-1) is the usual pooled estimator of the common
i=0 i=0
2

unknown variance ¢ on v = N - k - 1 degrees of freedom. Define

Yi = (Xi'XO) and T1.0

multivariate normal t distribution and its density hT(E) can be written

= Yi/Sp, i=1,...,k. Then T = (T10""’Tk0) has a

in an integral form as follows:

(3.6) h (t) = AO Z e W dw ,

T

where 1 = (T]O,...,Tko), Tig = (ei—eo)/o, i=1,...,k, Ay is the appropri-

ate constant, and A = (A,.) is the same as in Case A given by (3.1).

iJ
Now, letting Cv K= /?'P(V+§+])/T(v;k) , it is easy to verify that

T e
,k(A_1>i)1/’ vsoay'aly

P

n{D (0/n (1) = ¢

1l
(ep]

v

_ R
_o Miteny) it
v,k N 5 -
/ vsp+¥fA y
n.{N-n.)
— i i 2
- C\),k N IP_I(y_aSp)’ say »

where y = (y],...,yk).
Thus, the locally optimal rule gp is given by

. 2
Tif . (y,s.) > c¥
(3.7) 61 "‘X’S[z)) = 1 p 1

0 otherwise

where c? is determined by

(3.8) P05

p)ic*) T Yq -

1

1 -Nn.

Since, under <=0, Y. N ! ) anj‘has a normal- distribution with mean zero and
‘ 7

1 3714



11)/02 has a chi-square distribution

2

variance 02N/n1(N—ni) and (vSE+X}A'
with N - 1 degrees of freedom, it follows that wi(xﬂ§p / V/ﬁ%(N;ﬁ?)(N']) has

a t-distribution with N - 1 degrees of freedom. So we see from (3.8)

that

. N
(3.9) SRR /ni(N-nixN—n

where tY N-T denotes the upper 100Y1 percent point of the t-distribution
-i’

with N - 1 degrees of freedom.

Case C: Gamma Scale Parameters Comparison: Unequal (Known) Shape

Parameters. Let (i=0,...,k) be a gamma population with density

v.-1
i
. = X -
(3.10) f(x3055v5) v exp{-x/6.}, x > 0, 8; > 0,

where the shape parameters v, are known. We take Tig = 91/90 so that
t* = 1. Let Xij’ j=1,...,ni, be independent observations from s and

define T1 = Xi/XO’ i=1,...,k. The joint density of T]O""’Tko is

0
easily derived to be

k n, \N.v.
(3.11) h (t) = (M) = ;(TL“> o ‘r‘(livi)z

i

where M = n.v. . From this we get

.i

| )



10

hé;)(g) ] Mn.t,
(3.12) hT*(E) k - n_i\)_i
L + .TC.
ng jz] thJ
Mn.X
" : 1 - Yy
Y nsX;

30

Thus the Tocally optimal rule gp is given by

(3.13) a?(io,...,ik) = J
‘ 0 otherwise

where the constant c? is determined by

i™i _
(3.14) Plf - c? =Y.

X,
jZO "%

When = = t*, anj has a gamma distribution with parameters 6 and nivye
However, the probability in (3.14) is independent of 6. It is known

k

that niiil Y njij has a beta distribution with parameters n.v; and
j=0

M- n.vs, denoted by B(njvi,M-niv.). Thus c? is the upper 100y percent-

i

.) and can be obtained from tables of incomplete

age point of B(“1V1’M‘"1V1

beta function.

Remark 3.2. It should be first pointed out that the above prob-
lem includes as a special case the problem of comparing normal vari-
ances based on samples of unequal sizes. It also includes the problem
of comparing scale parameters 0. of Weibull populations which has a com-

mon known shape parameter g. If X.., j=1,...,n1, are the sample obser-

1J
vations from Tis then we can transform these by Yij = ij into sample



11

observations from an exponential distribution with mean Ay o= e?. Thus

it is a special case of the gamma problem.

Case D: Comparison of Regression Slopes. Let s denote a simple

linear regression model

(3.15) Y=o, +B;x+e

where € ~ N(O,cz) and 02 is unknown. Let {Xij’Yij}’ j=1,...,n1, denote

the sample data from (3.15). Define T T (B.-BO)/O, i=1,...,k. The

1

least squares estiamtors of o and 81 are given by &1 =¥, - B.X. and

i i ij’ i T,

i 1
A' = 2 v = y = 2 = v,
B. = Sx.Y/Sx. , Where X; inj/ni’ Y. = zY../n., S . ( -Xs ) , and

= Z(xij-ii)inj—Yj). A1l the summations are over j going from 1 to n,.

xiY 1
The usual pooled unbiased estimator of % is Sg =
koM o
¥ Y (y1 —a -B / Z (n1-2). It is well-known that Q = vS /o
i=0  j=1 J v P
has a chi-square distribution with v = ) (ni-2) degrees of freedom.
i=0

A

Define Zi = 8; - By and TiO = Zi/sp’ i=1,...,k. Then the joint density

h’l.'(l:') Of I_ = (:T]O"..’

with Ti0 ~ (Bi’ﬁo)/q and A = (Aij) given by

TkO) is the same as the expression in (3.6) but

- (50, i
S 3;
_ 0
(3.16) ,Aij =
SX
0

where a; = Si /Si , i=1,...,k. It is now easy to see that the locally
i 70

optimal rule gp is given by



1Af y(zssh LS8 ) 5 e
(3.17) (z) = 0 k
0 otherwise
where z = (21""’Zk) and
] Se.2;
z Zj#i J .
. 1 SX + z SX
(3.18) v (252 ,...,82 ) = 0_Jj7i 7J
T X "k 2 -1
vs +Z'p T Z
The constant c¥ is determined by
(3.19) Pl 1352 L. .,82 ) s e) =
3. 1*1_9)(0:- -9xk_.i Y'l
and by appealing to the result of Case B, we get
S2
(3.20) o =t 1+ i
i yi,N-k—Z Sx S2 + ] S2

! oo §AN

/(N+k-2).

12
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