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ABSTRACT

An explicitly computable necessary and sufficient condition for the
existence of an adaptive classification procedure is obtained. By definition,
an adaptive procedure, which classifies a sample as coming from one of alternative
distributions known only up to a finite-valued nuisance parameter, is required
to have the same asymptotic behavior of error probability for these families
as asymptotically optimal rules for each of the families. We investigate
the conditions under which the overall maximum 1likelihood procedure is adaptive
and derive a rule which is adaptive if any procedure is. The consistency of
these procedures is studied. Several exponential-family examples illustrate

their form, and small-sample study of error probabilities is performed.

Key words: Classification procedures, information divergence, adaptive

procedures, exponential family, maximum Tikelihood procedures.



1. INTRODUCTION
Let us consider a problem of classifying a random sample X = (x],...,xn)
as coming from one of m possible probability distributions P],...,Pm given
over a probability space X. Denote by Toeeeat prior probabilities of these

n
distributions and by pi(g) =1 fi(xj)’ i=1,...,m probability density functions
1

of x for given value of the finite parameter i.
It is well known that the decision rule & which minimizes the probability

of error,
m -~
Pe =iZ] Pi(d(ﬁ) # 1)ni,

is the maximum Tikelihood procedure, i.e. &(x) = i if p; (x)ms = max pk(g)nk.
k

It is also known (see Renyi 1969, Krafft and Puri 1974) that P, tends to

zero exponentially fast as the sample size n increases. More precisely

Tim Pl/" = max inf f f?(x)fl's (x)du(x)
N-oo itk 0 <s <1 !

= max p(P;, P, ). (1.1)
ik 1k

Several useful bounds for Pe have been developed by Kailath (1967), Hellman
and Raviv (1970) and Ben-Bassat and Raviv (1978).

In this paper we assume that the distributions P],...,Pm are not known
exactly, but only up to a finite nuisance Ghape) parameter ¢, o« = 1,...,A. For
instance, there might be A experiment types and for each fixed (but unknown to the
observer) type o the measurements have one of m alternative distributions. Another
examp]e is the transmission of a message in one of A possible languages which
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use the same alphabet. The message is sent n times over a discrete memoryless
channel and the choice between m possible messages (or between m probability
distributions which correspond to them) has to be made. Many more examples
of this situation, which are important in statistical application in the
case A = 2 and for continuous structural parameter,have been considered by
Cox (1961, 1962). In the former paper (p. 122) the treatment of a "discontintous"
parameter is suggested as an open probliem.

Thus for each value of o a family of distributions P“,...,P; is given,
and one can construct a decision rule (which typically depends on @) such that
(1.1) holds. If such a rule can be chosen independently of a it is called

adaptive. In other terms, a decision ru]eaa is adaptive if for any a

m
Tim [PZ]”" = Tim [_Z]ni PY (s,(x) # 9)11/M

N0 N> 1

= max inf f f? (x,0) fl-s (x,0) d u(x) =p .
ik 0<s <1 @

Here fi (+, a) denotes the density of P?.

Thus an adaptive procedure is asymptotically optimal for any value of the
nuisance parameter and does not depend on it.

This formulation of adaptation for a finite structural parameter appears to be
the natural analogueof adaptation in the case of a continuous parameter as initiated
by Stein (1956). Bickel (1982) gives a general definition in the latter case
and derives necessary condition and sufficient conditions for adaptation, which
are used to construct adaptive procedures in situations studied earlier by Beran
1974, Kraft and van Eeden 1970, Policello and Hettmansperger 1976, Sacks 1975,

Stone 1975, and van Eeden 1970. A review of adaptive robust procedures is provided
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in the paper of Hogg (1974).

One of the methods of estimation in the presence of a nuisance parameter
suggested by Cox (196]) and Hogg, Uthoff, Randles and Davenport (1972) consists
of the following. Estimate (or eliminate) the nuisance parameter by the maximum

likelihood method, i.e. define o« by the formula

mgx Ty Py (X, a) = mgx mgx Ty Py (X5 B),

n
where Py (X, @) = ? fo (Xj, a).

For this value of o use the maximum likelihood procedure §. The combination of

these two methods Teads to the overall maximum likelihood classification rule §

{8

i} = {max ML Py (x, B) = max max e Pk (x, B)}.
B k 8
A closely related procedure §* corresponds to the Bayes method of eliminating

the nuisance parameter o by means of prior weights W, s i.e.
‘ * = 5 = =
{8 i} {ni g WP (X, a) max T g Wy Py (x, a)l.

In this paper we investigate the conditions under which procedures §
and &* are adaptive. The existence of adaptive procedures has been studied by
the author (Rukhin 1982), who obtained a necessary and a sufficient condition
for the existence of such rules. In this paper we derive one very simple
necessary and sufficient condition for adaptation. It turns out that an
adaptive procedure exists if and only if the classification problem for any

fixed value of the nuisance parameter is "at least as difficult" as the



classification problem for distributions belonging to different values of this
parameter. The "difficulty" of the problem is described here by an information
divergence function p introduced in (1.1). We construct procedure Sa’ which

is adaptive if any adaptive procedure exist, and its consistency property

when the model is uncorrect is studied. We also consider several examples

of adaptive procedures for exponential families and investigate small sample
behavior of & and ga; The necessary mathematical results and some notation

are gathered in the Appendix.

2. CONDITIONS FOR THE EXISTENCE OF ADAPTIVE PROCEDURES

For any two probability distributions P and Q we define

p(P, @) = inf [ p% (x) 9% (x) d u(x) = o(Q, P).
0<s <1
Here p and g are densities of P and Q with respect to some measure u. Clearly
-0 <p(P, Q) <1, and if P and Q are different, then o(P, Q) < T,and if P and Q
are not mutually singular, then p(P, Q) > 0. Thus the quantity o(P, Q) characterizes
the divergence or discrimination between P and Q. In particular, as follows
from (1.1), the larger is ?gi p(Pi, Pk) the "more difficult" is the classifica-
tion problem in the sense of the rate of convergence to zero of error probability.
(See Vajda 1970 for further properties of the function p).
We shall need the discrimination p(F, G) between any two mutually absolutely

continuous positive (non-normed) measures F and G which is defined by the formula

o(F, 6) = inf [ [d6/dF]® dF.
s>0
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Theorem 1. An adaptive procedure exists if and only if

max max p (F?, FE) < 1.
af B ifk

CO.U.
Pss

Here F? =e Pl c =-Togp ,i=1,...,ma=1,... A

Proof. If an adaptive procedure exists then Lemma 1 with a =

implies

c, 5
1=max [e%p ,e pB]

zmax [ o (F§, Fp)s o (FF, FI.

Since o, 8, i, k are arbitrary, (2.1) holds.

Because of (5.71),

Ca

max € © o (Cyy...5C,) < max max p(FS, F

)
But for any a

max o (F%, FY) =1,
itk 1k

so that (2.1) implies that, for any o,

c
o
mzx e "o (c],...,cA) <1

(2.2)



or
-C

o, (c],...,cA) <e =p .

The existence of an adaptive procedure follows now from Theorem A.

According to (2.1) if an adaptive procedure exists then for all o # B, i # k,

a B
p(Fi, Fk) < 1.

c

Since F? 2)=e %> 1,

e

c . .
min [FY (%), FE(QQ] > o(F%, FE) =e % inf E? [fk(X,B)/fi (X,0)1®
1 1 0<s<1

- B ga
= p(Fk’ F.i),

. c
vmmefi(La)=fi(La)ea,i=1,”.m,a=1,“.A.ShweaQO

Cc ~ ~
p(FS, Fp) < e @ inf E3 [F, (X,8)/F, (X,a)1°,
O<s<l1 1

we can reformulate Theorem 1 in the following way.



Theorem 1]. An adaptive procedure exists if and only if for all a # 8

max inf E¥ [f, (X,8)/F. (X.q)1S
2K Osery i i 8)/f; (X,a)] < Py

Theorem 2. If condition (2.1) is met then any of the following procedures

. n .
based on the modified Tikelihood functions 1 fi (xj,s) is adaptive:
1

(i) modified overall maximum 1ikelihood estimator 8a

n. v n.
g = i} = {m:x ms ? fi(xj,a) = mzx mzx L ? fk(xj’ a)}s

{8

(i1) modified Bayes-maximum likelihood rule 6;

where Wis-..oW, are arbitrary but fixed positive weights.

The proof of Theorem 2 follows from Lemma 2.
Our next result provides a sufficient condition for the adaptation
~ of the modified overall maximum 1ike1fhood procedure 8b based on pi(g} ).
In particular when b] =...= bA = 0 Theorem 3 gives a condition for the
adaptation of 5.

Theorem 3. For fixed real constants b], cees bA define procedure Sb by
the formula

R nb nb

- 31 = o _ [
{8y =i} = {m, mgx p;(x, ale = mEx T mgx P (X, aJe "} .
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If for all o # B8

max min 1nf exp {s(b -b )} E?[fk(X,B)/fi(x,y)]s__
ik v s>0 *

then 8b is adaptive.
Proof. Because of Corrollary 1 to Lemma 3

P f_pa (b]s vens bA)

. _ A s
max max  inf exp{Zsr(bB-br)} E? n [f, (X.8)/F. (X,r)] r
B i#k Sqsee-55,20 r r=1

|A

max max min inf exp {s(b - b )}E (f (X,B)/fi(x,y))S
g itk vy s>0

Thus the condition of Theorem 3 implies that
p_= pa (b], ceey bA):

and because of Theorem A éb is adaptive.

Corollary. If for all o # B

By _ s L
max p(F Fk) < min [1, exp(c8 c - bt ba)],

i£k 8

then gb is an adaptive procedure.
Proof of Corollary. The condition of this Corollary implies the existence

of an adaptive procedure. If Cq- bB > C.- ba then

max inf exp {s(b.- b )) E‘?‘[fk(x,s)/f.(x,a)]S
ik s>0 1 !

-Cq 8
< e ~ max p(F oF ) < p..
i#k *
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If ¢ -c < b_-b then according to Theorem ]1
B o B a

-C - @ B
exp (cg-c -bgtb ) > max (FY, F))

B o ik
c s{c_-c ) s
=max e *infe P ¢ Eq[fk(x,ﬁ)/f-(x,a)]
itk 0<s<l ! !

. s(bB-ba) u | s
—ca—b8+ba) max inf e Ei[fk(x’ﬂ)/fi(x’“)] ,

> exp (c +c
- o B itk O<s<l

so that the condition of Theorem 3 holds true in both cases.
Our Tast result in this Section gives a condition for the consistency

of the procedure 8b for arbitrary family of distributions {Q?, i=1,..., m; a=1,...,A}.

Theorem 4. Procedure 8b is consistent for any family {Q?} if for any

afB, i#k there exists y such that

a B
bY - K(Q?3Q¥) > bB - K(Q-l st)

Here K(Q,P) = EQ 1og9(d@/dP) is the information number.

Proof. According to Lemma 3 3b is consistent &f

(b

—_ o .
. bA) = max zi(b], cees bA) <1.

1° ;

p(’.

If the condition of Theorem 4 is met then with gk(X,B) denoting the density
B
of Qk

b o) s(bB-bY) o s
p (bys wuus < max max inf e " ESLg, (X,8)/9: (X,v) ]
1 Al ST 10 it9k 9
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since the derivative of the latter function at s = 0 is negative and its
value at s = 0 is 1.
Corollary. Procedure Sb is consistent if for any o#B
b, - b < min K(Q%,Q°).
B (63 .i#k 1 k

Procedure & is consistent for any family {Q?} such that Q? # QE for i#k, a#B.

To prove this Corollary put y = o in Theorem 4.

Notice that Theorems 3 and 4 hold true also for procedures 63 of the
form

nb nb_

=iz = tm Ty e py(xe0) = max me Lw, e " pylxa))

where Wis +-.s Wy are fixed positive numbers.

3. DISCUSSION

Because of (2.2) Theorem 1 has a very clear-cut meaning: An adaptive
classification procedure exists if and only if the information divergence
between members of one family is not smaller than the divergence between
distributions in any two different families. In other words, such a rule
exists if and only if the classification problem for any fixed value of the
nuisance parameter is at least as difficult as the classification problems
formed by the distributions corresponding to different values of this parameter.

Condition (2.1) is explicitly computable and if it is met i.e., if an
adaptive procedure exists, then the modified overall maximum 1ikelihood
procedure Sa is adaptive. In Section 4 we perform a small sample study of

the procedures 8a and § in several cases when (2.1) is satisfied. According
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to these results, the procedure Sa exhibits very reasonable behavior compared
to the optimal (Bayes) procedure which uses the knowledge about the nuisance
parameter o. Therefore it can be recommended in application if the family
'{P?} satisfies (2.1). In Section 4 we show that in classification problem

of normal population 8a and 8 have the same parametric_region of adaptation.
However in classification problem of exponential population 8a may be
adaptive when 5 is not. Moreover, as we shall see, 8a may have smaller error
probability than 5 for all sample sizes.

The drawback of procedure 8a is that when (2.1) is violated it may not
be consistent. Because of Corollary to Theorem 4 § is always consistent.
Therefore intermediate weights ba, 0 5_ba < €, Mmay be used in constructing
modified maximum 1ikelihood procedures gb' Indeed assume that the parametric
region, where the adaptation is desired, is described by the inequalities
?;E p(F?,FE) <min [1, exp(cB-ca-bB+ba)]

for some constants b], cens bA‘ Then the estimator 8b will be consistent

for any fami]y'{Q?} such that the condition of Theorem 4 is satisfied.

4., EXAMPLES

Let the distributions Pﬁ be members of an exponential family over Euclidean

space, i.e. the densities f, (x, a) have the form

f (%, o) =exp {0} (K)x - x (8, (k)1

o=1,...,A, k =1,...,m. Here Oy (k) and x are vectors, and ' denotes the
transposition. Since the distributions Pﬁ are supposed to be different, the
common support of these distributions contains at least two points, and

the function x is strictly convex.
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If

then

lTog o(F, G) = inf [x((1-s)e + sg) - sx(&) - (1-s)x(e) + sby, + (1-s)b 1,
s>0

where 6 = 0, (i), ¢ = 66 (k).

In particular

c, = - log Py

= - max inf [x((1-s)e (i) + s 6  (K)) - s x(6 (k) - (1-s) x(e_(i))]. (4.1)
i#k s>0

According to Theorem 1 an adaptive procedure exists if and only if

max max inf [x((1-s)e (i) + s o _(k)) - sx(6_(k))
a8 itk $>0 o 8 B

- (1-s)x(e (1)) + s cg + (1-s) ¢ 1 <0, (4.2)

where c, are defined by (4.1).



15

Let us consider some specific situations.
1. P? is multivariate normal distribution with mean na(i) and nonsingular

covariance matrix y. Then
= gt - 2 vy _ v=1 .
x(6) = 6" ] 0/2 = [[o]|%/2, 6 (i) = [ n_(i)
and

¢, =min e (i) - s (k) [|?/s. -
i#k

Because of (4.2), a necessary and sufficient condition for adaptation

is that for all o # B, i #k
1/2 . . 2
(2¢ ) lleﬁ(k) - o ()] 5_||eB(k) -0 ()72 + Cy = g
For instance, when m = 2 this condition means that

2 [1gg - 0,11 2 e, = o 11+ []g, - o).

Here £g = 96(2)’ 8, = ea(l).

In this case the condition of Theorem 3 with b] = ... = bA =0 is met

for all parametric points in the region defined by (2.1), and the procedures

A

8, and ¢ are adaptive simultaneously.

In Table 1 we reported the results of a small sample study of the efficiencies

e, = =0 log [m PR(5. # 1) + m, P3(5, # 2)]
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and
d, = -0 Tog [ny P33 £ 1) + my PR3 # 2)1,

for - my = .5, -6; =€ =1, 0, =3, ¢, =4 and different sample sizes

n. In this case

{8, =1} = {x < 0} U {35/16 < X < 7/2},

{8=1r={(X<0rU{2<Xx<7/2)

Along with e, and dn we also tabulate, for given o, the efficiencies fn of
the Bayes procedure Go,which in this case is just maximum likelihood rule.

For a = 1

{8g = 11 = {x < 0}
and for a = 2
6y = 2} = (X > 7/2).

For given a. the quantities e dn’ fn converge to their common

Timiting value Cy rather slowly (in this and the next examples the differences

e, = Cy» d

n

R fn - ¢, are of order log (Cn)/n for some constants C). (Similar

phenomenon has been reported by Goeoneboom and Oosterhoff, 1980). However it.

follows from Table 1 that for n > 25, the procedure Sa is practically as good

as §,. A well known approximation to the standard normal distribution function

(see Feller 1968, p. 193) was used to evaluate the probabilities of large
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deviations which arosein ens dn’ fn.

2. P? is a distribution over the real line with a density of the form

filys a) = C exp {-ea(k)lyla'] +alog 6 (k)},

or of the form

fk(y, a) =C exp'{-ea(k)ya'] + a log ea(k)}, y > 0.

These families include normal, exponential and Weibull distributions with
unknown scale parameter. In this case x(6) = - a loge, 6 > 0, a > 0, and
c =a T;E [ra(1,k) - log ra(1,k) - 1],

where ra(i,k) = 1og(ea(i)/e&(k))/(ea(i)/ea(k) - 1).
Condition (4.2) means that
min min [an(i,k) - log an(i,k) -1 - ca] > 0,

a#B itk

where

91K = (10g (6 (1)/6,(K)) + ¢, = c )/ (s (1)/og(k) - 1).
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We have also evaluated the efficiencies e d . f for Sa, § and
ao,respectively,when 6y = 2.5, £y = 3.5 (Table 2). In this case Sa is
adaptive, but,for a = 1,3 is not adaptive. To evaluate numerically the quantities
r(n, nt) which enter in the formulae for e dn’ fn,an algorithm suggested

by Gautschi (1979) was used.

3. Pi is the binomial distribution with parameters N and p (i). An easy
. o

calculation shows that

Cy =N m;rll[r‘a(i;kﬂog(r‘a(i,k)/pa(i)) + (1 - r (1,k))0g((1-r (i,k))/(1-p (1)))],
;

where

ry(isk) = Tog((1-p (i))/(1-p_(K)))/Tog(p (k) (1-p_(i))/p_(i)/(1-p_(K))).

An adaptive procedure exists if and only if

min min [a,p(1:k)108(q4(1,K)/py (1)) + (1-0,5(1,K))10((1-q,5(1.K0)/(1-p, (1))
of B 1 _

- Ca] z_os

where

%l iok) = 10g((1-p (1))/(1-p,(Kk))/Tog(p (k) (1-p (i))/p,(1)/(1-p,(K))).



In Table 3 the efficiencies € dn’ fn are tabulated for Py = .7

9 = .65. In this situation Sa is adaptive, but &-is not. For a = 1
dn > 9 10g a/p; + (1-q) Tog ((1-q)/(1-p;)) < ¢y,
q = q],z (1,2).

In fact, the procedure Sa is preferable to & for all sample sizes.

To evaluate the probabilities of large deviations for the binomial
distribution which entered into the quantities e, dn’ fn’ we used an
approximation for the latter distribution due to Bahadur (1960).

More examples of adaptive procedures in the estimation problem of a
shift parameter on a cyclic group are given in Rukhin (1983b).

Acknowledgement. Thanks are due to Professors Walter Gautschi and

Herman Rubin of Purdue University for consultation in the calculations of

Example 2. The author is also grateful to the referee for many penetrati

comments.
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APPENDIX

In this Appendix we give three Lemmas and a Theorem needed to prove
Theorems 1-4 of Section 2.

Let o, B be two different values of the nuisance parameter and let
i, k be two different values of the structural parameter. Define positive
measures F and G in the following way: F = el P?, G = eb PE, where a, b

are fixed numbers.

Lemma 1. For any procedure s,

max {e? 1im inf [P? (s(x) # i)]]/n, e® Tim inf [Pﬁ (s(x) # k)]]/n}

n > e n-> o

> max [p (F, G), o (G, F)].

Proof. Let 8§, be a rule which takes only two values,i and k,and is

of the form

8y = i} = {p; (x, o) €™ > p (x, 8) e"P)
and

(8; = kI = {p, (x, g)e"® > p; (x, a) "%,

The definition of 8 in the case of the tie, pi(g) ) %= Py (x, B) enb,

is immaterjal. Clearly 81 is a Bayes rule against the uniform prior distribution
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over {i, k} for the loss function

0 ifa=6
L (0,8) = e ifa=1, &=k
enP ifa=k, o=i

Therefore for any procedure s

e" P (s(x) # ) + ™ P (s(0) # k)

2P o (0 # 1)+ ™ PP (o) (1) £ K.

But
Py (8y () #4) = P (57 (x) = k)
o N
= Pi (; (Tog fk (xj, B) - log fi (xj, a) + b - a) > 0).
Because of Chernoff's Theorem (Chernoff 1952) we have

vim [P3sy (x) # 4)3V/7 = inf eS(0-) B2 1 (x,0)/t, (X,0) .
N s>0
= e ofF, 6).
Ana]ogbus]y

Tim [PE(s (x) #)1'/" = inf (20D €8 [, ()7, (0,0

= e o(6, F),

and Lemma 1 is proven.
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The following Lemma is proved with the help of multivariate version of
Chernoff's Theorem (Groeneboom, Oosterhoff, Ruymgaart 1979). Details of the

proof can be reproduced from Rukhin (1982).

Lemma 2. Let G N = 1, 2,...,be a sequence of positive numbers such
that n'] log C, converges to a finite 1imit L. Also let ass bi’ i=1,...,A,
be real constants and let Pi» Q55 i=1,...,A,be strictly positive measurable

functions. If,for all positive probabilities Vis i=1,...,A,and all k,

A
Pr’i% v; [oglp, (X)/q;(X)) +a - b;J>1} >0

then for any positive weights, wy,...,w,

Tim [Pr {} w :(p (X-)egk) >c )W ;(q (X-)ebk)}]]/"
K k 1 k'"j = n g k 1 k*j

N

n a n b
. k k,41/n
Tim [Pr {mﬁx wk[¥ pk(xj)e :]3-Cn mﬁx W, ?IBk(xj) e J}]

N>

A S.
max inf exp {-] s.(a, - b;)} E m(p,(X)/q.(X)) 1.
T<keh  5q5..05, > 0 AL S T b S

Lemma 2 motivates the following notation for a collection of mutually

absoTutely continuous probability measures P?, i=1, .oo,mya=1, ..., A

o
Ql(b] ,---’bA)

A s
= max max inf exP{gsr(bB'br)}E?rE][fk(X’B)/fi(x’r)] r

k:k#i B s],...,sAzp

- o
p (b],...,bA) = max zi(b],...,bA).

o i
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Here b],...,bA are real numbers. Notice that

b
e apa(b],...,bA)

< max max inf exp (ba+ s(bB - ba)) E?[fk(X,B)/fi(X,a)]S

B8 i#k s>0
= max max p(F?, FE), (5.1)
B i#k

b
where F? =g ¢ P?, i=1,...,my 0 =1,...,A.

Lemma 3. Let Sb be a maximum 1ikelihood procedure based on the likelihood

nb
function max P (x, a)e <, j.e.
¢ ]
~ L nba nb
{6 = i} = {m, max p, (x, o)e = max m max p, (x, a)e @},

o

Then
Vim [PF (8,(x) # 1)1'/" = 42 (by.,,..b)

and, for any procedure s,

b
max fe % 1im inf max [P? (s(x) # i)]]/n}

o N i

b
: [¢]
3n3x{e o, w]”{qb

A)}.
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Proof.b The first statement of Lemma 3 follows frem Lemma 2 applied to
functions e ¢ fk(x,a). We derive the second from the inequalities

nb
A ; m5 max [P? (s(x) #i)e 4]

nb
> ) g f...f max [p; (x, a)e’ *] du(x)
T {spiy @

nb
2 ) my [ooof max [p; (x, a)e *T du(x)
Voo @

n nb
> 1wy max [PY (8, (x) # i)e 1.
i a
The penultimate inequality here follows from the fact that Sb is the Bayes

rule with respect to zero-one loss and the density proportional to

nb
max [p.(x,a)e “1.
o

Corollary. 1. For any o
p, (byesssbp) 20 .

This corollary follows from Lemma 3 and (1.1).

\.

The asymptotical minimaxness of procedures similar to 8y, in classification

problems without nuisance parameter has been studied in Rukhin (1983a).
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Theorem A. If an adaptive procedure exists then for all real b],...,bA
b, b,
max e “p > max e P, (b],...,bA).
a a

If for all o and some real b],...,bA

P —>'p0L (b]’---9bA)s

o

then an adaptive procedure exists.

Proof. Assume that an adaptive rule 84 exists. Then because of Lemma 3

b b

max e © p, = max e *[1im max [P? (5,(x) # 1')]]/n
a o i
bOt
> mgx e p, (b],...,bA).

Because of the Corollary 1, the inequalities

o >p wP“”%)fWa=],“”A

o

imply  the equality of these quantities, which establishes the adaptiveness
of procedure Sb of Lemma 3.
Corollary 2. The existence of an adaptive procedure implies that for all

real b],...,bA



Indeed one has
b . . b

' o a
< “ e
max e " p < max e p (b], N

o 0]

26

so that Corollary 2 follows from the first part of Theorem A.

Corollary 3. If for some i # k and o # 8, P? = P

procedure.

Indeed in this case

and

max p < max P, (0,...,0) =1,
o a

so that an adaptive procedure cannot exist.

B
k

» then there is no adaptive
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TABLE TITLES

Efficiencies en, dn and fn of Procedures Ga’

Sample Sizes (Normal Case)

Efficiencies e , d_ and f_ of Procedures s_,
n’ n n a

Sizes (Exponential Case)

Efficiencies C dn and fn of Procedures Ga’

Sizes (Binomial Case)

A

8

S

>

8

30

and §, for Different

0

and 60 for Different Sample

and 8 for Different Sample



Table 1
Efficiencies en, dn and fn of Procedures aa’ § and

8y for Different Sample Sizes (Normal Case)

a =] a = 2

n e, dn fn e, dn fn
2 . .796 722 .925 .256 .293 .367

4 .728 .671 772 .249 .269 .286
6 .688 .640 .708 .235 .246 1y

8 .661 .620 .671 .223 .229 .231
10 .641 .605 .646 213 216 217
25 .575 .559 .575 175 .175 .175
50 .544 .535 .544 .156 .156 .156
100 .529 .h27 .532 .143 .144 .150
500 .507 .507 .508 .130 .130 .132
1000 , .504 .504 .504 .128 .128 129

® .500 .500 .500 125 A25 125



oo N

10

50
100
500

1000

Efficiencies en, dn and fn of Procedures 3a’ § and §

Table 2

for Different Sample Sizes (Exponential Case)

.5079

.2874
.2153
. 1807
.1604
L1113
.0918
.0795
.0653
.0629
.0597

.5703

. 3473
. 2666

.2239

L1971
.1262
.0982
.0818
.0656
.0629
.0597

.3770

.1933
.1359
.1083

.0920
.0526
.0379
.0289
.0185
.0167
.0141

.3833

.2009
.1439
.1163

.0998
.0584
.0414
.0305
.0186

.0167
.0141

0

.4461
.2479
L1787
.1428
. 1207
.0642
.0428
.0307
.0186
.0167
.0141
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Efficiencies e dn and fn of Procedures 8a’ & and 6

for Different Sample Sizes (Binomial Case)

.4547
.2554
.1495
.1189
.0997
.0521
.0366
.0285
.0191
017
.0145

Table 3

.3815
. 1965
.1072
.0834
.0681
.0301
.0169
01
.0043
.0031
.0014

0

.3815
.1965
.1333
.1032
.0839
.0372
.0208
.0122
.0043
.0031
.0014
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